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Why should we use diversity profiles for diver-
sity comparisons? 

Different diversity indices may rank inconsis-
tently a given pair of communities (Hurlbet, 1971). 
For example, two communities with the following 
abundances 

A = (33, 29, 28, 5, 5), 5 species community 
В = (42, 30, 10, 8, 5, 5), 6 species community 

are ranked differently by the Shannon, H, and 
Simpson, D, indices: 

H(A) = 1.3808 < 1.4574 = H(B), 
D(A) = 0.7309 > 0.7194 = D(B). 
Values of Shannon diversity was calculated by 

H=-Epj/ogpj using natural logarithm. Simpson di-
versity was calculated by D=l-[Zn¡(n¡-l)]/[N(N-l)]. 
n¡ is the abundance and pj is the relative abundance 
of the i-th species; N=Zn¡.There are many reasons 
for this mis-ordering. Patii and Taillie (1979) em-
phasized that such inconsistencies are inevitable 
whenever one attempts to reduce a multidimen-
sional concept to a single number; a community is a 
multidimensional entity and its diversity is only a 
scalar quantity. A more straightforward illumination 

of the problem, provided by them, is related to the 
different sensitivities of diversity indices. The 
Shannon index is more sensitive to the effect of rare 
species; while the Simpson index tend to stress the 
effect of dominant species. A possible solution is to 
use parametric families of diversity indices instead 
of a numerical-valued diversity index. An important 
property of the family of diversity indices is their 
variable sensitivity to rare and abundant species. 
This means that communities can be compared for 
different "dominance levels" as a scale parameter 
changes. When we use a one-parameter family 
{Da: a real} of diversity indices then the family 
may be portrayed graphically by plotting diversities 
D a against the scale parameter a. This curve, the 
graph of {Da: a real}, is frequently mentioned as 
the diversity profile of the community (Patii and 
Taillie, 1979, 1982). In fact, a serves as a scale 
parameter; members of the D a family have varying 
sensitivities to the rare and abundant species as α 
changes. Diversity profiles of communities A, В 
and 

С = (32, 21, 16, 12, 9, 6, 4) 
are presented in Fig. 1. 
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Using diversity profiles we can define the 
diversity ordering of communities in the following 
way: Community A is more diverse than commu-
nity В (written A>B) when the diversity profile of 
A is above or equal to the diversity profile of В on 
the whole range of the scale parameter. 

It can be shown that diversity ordering is a par-
tial order so that if A>B and B>C then A>C. How-
ever, it is not true that for every A, B, either A>B or 
B>A; i.e. curves of two diversity profiles may inter-
sect. In this case the two communities are not com-
parable; this means that we can find at least two 
diversity indices which order the communities 
differently. This situation might reflect important 
ecological processes which can be interpreted 
clearly; see for example Matus and Tóthmérész 
(1992), Tóthmérész et al. (1993). In Fig. 1 we can 
see that A and В are non-comparable, but that C>A 
and C>B. 

While calculating diversities is very popular in 
theoretical and field ecology, diversity ordering 
based on parametric families of diversity indices is 
not frequently used. These methods involve more 
calculations than a simple diversity index. On the 
other hand they are relatively simple and more 
straightforward than the multivariate statistical 
methods. However, none of these are included in 
standard computer packages. NuCoSA might be an 

Rényi's diversity 

1.8 

exception (Tóthmérész, 1991, 1993c). This software 
gap has delayed the spread of these methods. 

Overview of diversity orderings 

Historical notes 
There are a long history and tradition of diver-

sity in ecology. Tremendous lot of indices were 
published to measure it. These statistics were also 
used in other sciences, especially in physics. Statis-
ticians also looked into the details of the characteri-
zation of "diversity". Rényi (1961) has published 
the first generalized entropy function. Generalized 
entropies are heavily used in physics nowadays 
(Hentschel and Procaccia, 1983). Based on this 
paper Hill (1973) derived a family of diversity indi-
ces and examined the usefulness of this unified no-
tation. This index family is a straightforward 
derivation of the Rényi's entropy. Daróczy (1970) 
published another generalized entropy which also 
includes the Shannon diversity as a special case. At 
that time, ecologists did not recognize one of the 
most useful properties of these index families; i.e. 
they can be used for diversity ordering. It was rec-
ognized and emphasized by Patii and Taillie (1979); 
see also Solomon (1979). They had a very impor-
tant contribution to the idea of diversity. They also 
proposed other families of diversity ordering. 

1.6 

1.4 

1.2 

0.5 1.5 2 2.5 

scale parameter 
3.5 

Fig. 1. Diversity ordering of three artificial communities using Rényi's index family. Community С is the most diverse ( O A and O B ) . 
Communities A and В are non-comparable becausc the diversity profiles intersect. 
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Fig. 2. Tree diagram of one-parameter diversity index families 
(diversity orderings). 

Tóthmérész (1993b) reviewed the families which 
may be useful for diversity ordering; he also pro-
posed a new one. 

The story of rarefaction diversity, which also 
can be used for diversity ordering, is even more 
interesting. This is usually attributed to Saunders 
(1968) and/or Hurlbert (1971). A minimum variance 
unbiased estimation of it was published by Smith 
and Grassle (1977). However, this is nothing else 
just a species-individual curve which was invented 
in botany during the 1920's (Arrhenius, 1921; 
Gleason, 1922). That time there was a lot of discus-
sion about the role of species-area and species-indi-
vidual curves (Ashby and Stevens, 1935; Blackman, 
1935). They even published many of the numerical 
formulas re-invented later in the same or a some-
what different context. 

Types of diversity orderings 
There are two main groups of diversity index 

families (Fig. 2). In the first group the scale 
parameter is related to the dominance structure of 
the community. In the second group there is a 
straightforward interpretation of the scale parameter 
related to different sample sizes. Thus, the meaning 
of the scale parameter is somewhat different for the 
two groups. 

There are two subgroups of the first group; they 

can be mentioned as generalized entropy plots 
(GenE plots) and cumulative relative abundance 
plots (CuRe plots). All the diversity index families 
included in a subgroup are closely related; see the 
proofs in Tóthmérész (1993b). The first one 
includes the methods of Rényi, Hill, Daróczy, and 
Patii & Taillie; the second one contains the loga-
rithmic dominance plot and right-tail-sum diversity 
plots. For the members of the first subgroup there is 
a scale parameter which is usually larger than 0 or 
-1; see Table 1. For the members of the other sub-
group the range of the scale parameter is 
"automatically" the number of species. 

Table 1. One-parameter diversity index families useful for 
diversity ordering. The name of the families is in the first 
column. The graph of an index family is displayed in the 
second column in the form of (x-coordinate, y-coordinate) 
which curve is the diversity profile. The third column 
contains the range of the family where the result is relevant 
from mathematical and ecological point of view. 

Name Graph Range 
Generalized Entropy Plots (GenE Plots) 
Rényi (α,Η(α)) α>0,α#1 
Hill (α, expH(a)) a¿0, α*1 
Daróczy (α, DH(a)) α>0, ο β Ί 
Patii & Taille (ß,D(ß)) β>-1,β*0 
Cumulative Relative Abundance Plots (CuRe Plots) 
Logarithmic dominance plot (logi, T(i)) i=l,...,S 
Right tail sum plot (i,T(i)) i=l S 
Rarefaction Diversity Plots 
Logarithmic species-individ- (logm, S(m)) m>0 
ual plot 
Logarithmic spccies-area (logA, S(A)) A>0 
plot 

There is a sophisticated relationship between 
the diversity orderings of the second group and the 
direct spatial series analysis. It is evident that the 
diversity of a community also depends on the spa-
tial structure. Strongly aggregated or segregated 
appearance of the species may heavily decrease the 
diversity. It is not possible to represent the effect of 
pattern in diversity comparisons except for the 
members of the second group. In the traditional 
form these methods also ignore the spatial structure 
of the community. Indeed, when the spatial struc-
ture is included we should speak about direct spatial 
series analysis. The spatial series analysis, however, 
needs special sampling techniques (Juhász-Nagy, 
1976; Juhász-Nagy and Podani, 1983; Tóthmérész 
and Erdei, 1992); thus, these are not included in the 
package. This needs a special package like MULTI-
PATTERN (Erdei and Tóthmérész, 1993). 

It can be proved that all these families are 
equivalent from the point of view of ordering (Patii 
and Taillie, 1979). It does not involve, however, 
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that there is no reason to use the others. Tóthmérész 
(1993b) demonstrated studying the graphical prop-
erties of the diversity orderings that different meth-
ods may be useful for different data sets depending 
on the community structure, sample size, number of 
species, etc. Another important feature of the spe-
cies-area and species-individual relations the possi-
bility of the density dependent and density inde-
pendent representations and the close relationship to 
the direct spatial processes (Tóthmérész, 1993a). 

Diversity orderings implemented in the 
program 

Generally, a community A may be identified 
with the ordered pair А=(8д,пд)=(8(А),п(А)), 
where Бд is the number of species that are present 
and 

n A = ( n 1 ' n 2 > · · • 'ni> • • · 'nS( A)) 
is the abundance vector of the community and n¡ is 
the abundance of the i-th species of the community. 
Frequently enough to know the relative abundances 
of species; thus a community may be identified by a 
pair (Бд.рд), where р д is the relative abundance 
vector of the species. 

Patii and Taillie (1979) stressed the view that 
community diversity can be defined to be the aver-
age species rarity. Many different rarity functions, 
and thus many different diversity functions can be 
defined. The one-parameter diversity index families 
implemented in the program are displayed in Table 
1. The diversity index families are defined in the 
following way. 

Entropy of order α (Rényi, 1961): 

Η(α) = 
t s л 

log Σ Ρ ? /(!-<*) 
. i = l ) 

T(i) = P(M)+-+P(S)= Σ P(j) 
7 = 1 + 1 

where p ^ are the relative abundances 
of the species of a community arranged in descend-
ing order. 

Rarefaction diversity (Saunders, 1968; Hurlbert, 
1971) or species-individual curve: 

S(m) = S- Σ d-Pif 
i = l 

The expected number of individuals in an area 
is proportional to the size of the area. Therefore, we 
can calculate the species-area curve (Blackman 
1935) using the following relationship 
where N is the total number of individuals on the 
area. 

Smith and Grassle (1977) presented the mini-
mum variance unbiased estimation of S(m) as: 

S(m)=S 

where 
¿=1 

N1 

N-n,·) I N 
m 

N 
m J (N — m)\m\ 

An important property of family of indices is its 
variable sensitivity to rare and abundant species. A 
precise definition of sensitivity is given by Patii and 
Taillie (1982). For large values of the scale parame-
ter, GenE plots are sensitive to abundant species, 
whereas they are sensitive to rare species for 
smaller values of the scale parameter. 

Entropy of type α (Daróczy, 1970; Aczél and 
Daróczy, 1975) 

DH(a) = Σ ρ ? - ι 
υ = ι 

/ ( З 1 - " - ! ) 

Diversity index of degree ß (Patii and Taillie, 
1979): 

D(p) = ι - Σ РГ 
i = 1 

β + 1 /β 

Right-tail-sum diversity (Patii and Taillie, 
1979; Solomon, 1979): 
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Table 2. The relation of the magnitude of scale parameter and the 
sensitivity of diversity orderings. 

Name 
Value of the scale parameter 

Name small large 
GenE plots sensitive to effect 

of rare species 
sensitive to the 

effect of dominant 
species 

CuRe plots sensitive to effect 
of dominant spe-
cies 

sensitive to the 
effect of rare 
species 

Rarefaction plots sensitive to effect 
of dominant spe-
cies 

sensitive to the 
effect of rare 
species 

The pattern of sensitivity of the CuRe plots are 
opposite to that of GenE plots: they are sensitive to 
abundant species for small "i" and to rare species 
for large "i". In the case of rarefaction curves the 
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pattern of sensitivity is the same as with CuRe 
plots. 

Special cases and interpretation of index 
families 

It is important to know some special cases of 
diversity index families to interpret the result of 
diversity orderings. 

For the Rényi's diversity ordering the following 
relations are valid. 

H(-oo) = logarithm of the reciprocal of the rela-
tive abundance of the rarest species. This is men-
tioned just because of the completeness of the spe-
cial values because it was proposed not to use scale 
parameter values less than 0. 

H(0) = logarithm of the total number of species; 
H(a->1) = Shannon index; 
H(2) = logarithm of the reciprocal of Simpson's 

index; 
H(+oo)= logarithm of the reciprocal of the rela-

tive abundance of the commonest species. This is 
the logarithm of the reciprocal of Berger-Parker 
index (Berger and Parker, 1970). 

The following special cases can be mentioned 
for the Patii and Taillies's diversity index family. 

D(-l)= total number of species - 1 
D(ß->0) = Shannon index 
D(l) = Simpson index 

Finally for the species-individual relationship 
the following cases may be mentioned. 

S(2) = (1 + Simpson index); 
S(+oo) = total number of species. 
When m is a positive integer, S(m) is the 

expected number of species to be found in a hypo-
thetical random sample of size m. For a given 
community, the plot of this index versus m is the 
expected species-individual curve. There is 
mathematical sense of S(m) for a noninteger m 
value. In direct spatial series analysis there is eco-
logical sense as well (Tóthmérész, 1993a). 

D(ß) of Patii and Taillie can be interpreted as 
the number of species that a completely even com-
munity would need to have its diversity to be the 
same as that of the studied community. Thus, some-
times it is mentioned as equivalent number of spe-
cies. ехрЩа.) also can be interpreted this way. 

How to use the program 

Place the DivOrd diskette into the A: disk drive. 
Copy the DIVORD.EXE file to your hard disk. 
From the root directory, type COPY 
A:\DIVORD.EXE then press <ENTER>. Preferable 

you should copy the program into a subdirectory 
instead of the root directory. 

To activate the program, type DIVORD and 
press <RETURN>. Then one page of information 
appears, and if you press any key you can see the 
main menu (Fig. 3). 

1 - Data Input 

Generalized Entropy Plots (GenE Plots) 
2 - Rényi 
3 - Hill 
4 - Daróczy 
5 - Patii & Taillie 

Cumulative Relative Abundance Plots (CuRe Plots) 
6 - Logarithmic Dominance Plot 
7 - Right-Tail-Sum Diversity Plot 

Rarefaction Diversity Plots 
8 - Species-Individual Curve (Density Independent) 
9 - Species-Area Curve (Density Dependent) 

10 - Other Samples to Compare 

11 - Result to Disk in HG Format 

12 - Exit 

Your choice : 

Fig. 3. The main menu of the DivOrd program. 

The program takes data from data files and not 
directly from the keyboard. The instructions for the 
arrangement of data input files are in the 
"Arrangement of input data" Chapter. This version 
of the program can handle data matrices containing 
50 samples and 200 species (50 rows and 200 
columns). The "Data Input" option is used to load 
data matrices into the program in the following 
way. First the name of the file is requested (Fig. 4). 

Name of Input File = DEMO.DAT 

There are 3 sample units. 

How many curves do you want to draw (less than or equal to 4) ? 2 

Please type the identity number of the sample sites: 
1.: 1 
2.: 3 

Fig. 4. Data Input screens of the DivOrd program. In the 
"DEMO.DAT" file there are 3 samples and the diversity 
profile of the 1 st and 3rd samples (communities) are asked 
to draw. 

Then, the computer informs you about the 
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number of communities (sampling units) contained 
in the data matrix and then the number of 
communities (sampling units) to be compared is 
asked (Fig. 4). 

The computer informs you when the data file 
cannot be found, for example, owe to mistyping of 
the file name. Then you have to use again the "Data 
Input" option to load data into the program. After 
finishing the data input procedure successfully you 
are in the main menu again and you can select a 
diversity ordering. 

Fig.5. The menu of changing the range of scale parameter and the 
steps of calculations. 

In the case of the GenE plots the pre-defined 
range of the scale parameter is the [0,4] interval for 
Rényi's and Hill's ordering, [0,2] for Daróczy's, and 
[-1,2] for Patii & Taillie's. If you press any key the 
diversity profiles disappear and you can choose an-
other range of the scale parameter (Fig. 5). You can 
also change the step-size of the calculations; using 
larger steps the calculation is faster but the curve 

might not be as smooth as using an optimal step 
size. There is no reason to use a scale parameter 
higher than 10. Very frequently 4 or 6 is excellent 
as an upper bound; sometimes 3 is enough. For 
practical reasons the program is designed not to use 
parameter values higher than 15 or 20. 

Finally, the "Other Samples to Compare" option 
allows you to choose other communities (sampling 
units) to be compared from the same data set. First 
the program informs you again about the number of 
communities (sampling units) in the data matrix as 
in the case of choosing the "Data Input" menu and 
then you proceed in exactly the same way as before. 

The figures presented by the DivOrd program 
can be included into papers directly using the 
GRAB.EXE utility of WordPerfect or any other 
utility distributed with high quality word processors. 
There is a special option in the DivOrd to save the 
results into as ASCII file in a special format which 
can be used directly to import into the 
HarvardGraphics program package. Thus, you can 
produce high quality figures comfortably. You 
should consult the documentation how to use 
HarvardGraphics. We present a short description 
how to import ASCII data into the 
HarvardGraphics. 

1. Select "Create new chart" at the main menu and 
then "bar/line chart". There you must select "number" 
as X data type. Finally press FIO; see Fig. 6. 

2. At the Main Menu, select Import/Export. 
3. At the "Import/Export" menu, select Import 

ASCII data. 
The Select File screen appears, (a) Select an 

B a r / L i n e C h a r t D a t a 

T i t l e 
S u b t i t l e 
F o o t n o t e 

X D a t a T y p e Menu 

P t Name Day Week M o n t h Q u a r t e r 
M o n t h / D a y M o n t h / Y r Q t r / Y r T ime Number 

Y e a r Name Day Week M o n t h Q u a r t e r 
M o n t h / D a y M o n t h / Y r Q t r / Y r T ime Number 

X d a t a t y p e : Number 

S t a r t i n g w i t h : E n d i n g w i t h : 
! I n c r e m e n t : 

F l - H e l p F 3 - S a v e F 5 - S e t x t y p e 
F2- Draw c h a r t F 4 - D r a w / A n n o t F 6 - C a l c u l a t e F 8 - O p t i o n s 

F 9 - M o r e s e r i e s 
F l O - C o n t i n u e 

Range of the scale parameters during the previous run : 

Start = 0.000 

End = 4.000 

Step = 0.250 

New run with other range <y/RETURN> ? 

Fig. 6. "Bar/line chart" menu of the HarvardGrafics. 
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I m p o r t A S C I I D a t a 

Rényi's diversity 

1.7918 1.9459 
1.7202 1.9044 
1.6494 1.8643 

Import Titles and Legends 

0.0000 1.6094 
0.2000 1.5500 
0.4000 1.4973 
0 . 6 0 0 0 
O.SOOOjj 
1 . 0 0 0 0 
1.20008 Import title and subtitle: 
I.4OO0S Import first line as series legends: 
1 . 6 0 0 0 
1 . 8 000S 

•Υ·β No 
Yes »No 

Read data by »Lina 
Tabular data format »Y«a 

Column 
No 

Read from line 4 
Read from column 1 

to line 243 
to column 4 

Fl-Help F3-Select files 
F4-Reselect F8-Options FIO-Continue 

Fig. 7. "Import ASCII dat" menu of the HarvardGraphics. 

ASCII file to import. Then the Import ASCII Data 
screen appears; Fig. 7. (b) If you have already im-
ported from an ASCII file, the Import ASCII Data 
screen appears. Press F3 to display the Select File 
screen and then go to step 4. 

4. Set the options on the Import ASCII Data 
screen as displayed by Fig. 7. 

5. Press FIO. 
You are the "Bar/Line Chart Data" menu and 

you can use the options to define the final form of 
the figure. 

Arrangement of the input data 

The program reads ASCII files in the form of a 
two-way table; i.e. an η by m data matrix is used, 
where η (rows) is the number of communities 
(sampling units) to be studied and m (columns) is 
the total number of species in the samples or any 
other characteristics measured for each sample. The 
data matrix must be full; i.e. missing values are not 
admissible. The first line of the data file must con-
sist of a label for the data set which will help you to 
identify the data. The maximum length of the label 
is 159 characters. The second line contains two 
figures separated by spaces. The first figure is the 
number of rows in the data matrix. The second 
figure is the number of columns of the data matrix. 
It does not matter how many spaces are between the 
two figures; the line might also begin with space 
characters. 

On the third line the data matrix starts, in free 
format. The items of the matrix must be separated 

by a space or spaces; the number of spaces and the 
arrangement of the matrix is entirely free. It is prac-
tical, however, to arrange the figures as a table 
because this can be useful for other purposes and 
easy to check and correct. 

It is easy to create these data files using any 
spreadsheet program package such as Quattro, 
Excel, Symphony or Lotus 1,2,3 or by using the 
full -screen editor of the DOS5 or any word proces-
sor and saving the data in DOS text file format. The 
file named "DEMO.DAT", distributed with the 
DivOrd program is presented in Fig. 8. 

Diversity ordering (noncomparable communities); DEMO.DAT 
3 7 

33 29 28 5 5 0 0 
42 30 10 8 5 5 0 
32 21 16 12 9 6 4 

Fig. 8. The "DEMO.DAT" data file distributed by the DivOrd 
program. 

The data matrix in Fig. 9 contains 3 samples of 
7 species. In the first sample there are 33 indi-
viduals from the first species; there are 29 individu-
als from the 2nd species, 28 from the 3rd species, 
etc. Similarly, we can say that the 1st species is rep-
resented by 33 species in the first community 
(sample) and by 42 individuals in the 2nd one and it 
is represented by 32 individuals in the 3rd commu-
nity (sample). Thus, the data matrix is organized as 
it is shown in Fig. 9. 
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species 1 species 2 species 3 
sample 1 33 29 5 
sample 2 42 30 10 
sample 3 32 21 16 

Fig. 9. The arrangement of data items in the data ñle used by the 
DivOrd program. 

Guideline to the applications of the methods 

Graphical comparison of diversity order-
ings 

Tóthmérész (1993b) compared the diversity 
orderings according to their effectiveness in 
displaying the differences of community structures. 
He was stressing a practical point of view: which 
methods were the most useful during the graphical 
inspection of data comparing the diversity of com-
munities. 

One of the best method for ordering communi-
ties was Rényi's index family irrespectively of the 
species number of the communities; the intersection 
of the diversity profiles was well-indicated by this 
method. Logarithmic dominance ordering also pro-
duced clear, well-interpretable figure for communi-
ties of all size. For species-poor and moderately 
species-rich communities Hill's index family was 
useful; for species-poor communities the right tail 
sum ordering also performed well. 

When the differences between the species num-
ber of communities are medium or high (i.e. when 
one of the compared communities are much richer 
in species than the others) then also the Rényi's 
index family or logarithmic dominance plot was 
useful. 

Calculation of rarefaction diversities was overly 
time-consuming compared with the others in the 
case of unbiased minimum variance estimation. The 
curves produced by rarefaction diversities clearly 
indicated the relation of sample size and the number 
of species but it was not especially effective in 
reflecting the intersection of diversity profiles. The 
logarithmic scaling of the x-axis, however, highly 
improved the figure. Plotting them this way they 
were also very useful for both small and large 
communities. 

Density dependent and density independ-
ent representations 

Evidently the number of species in a sample 
depends on the number of individuals which can be 
found in the sample. The density of vegetation, 
however, is frequently different for the compared 

communities. We are interested in the diversity pat-
tern of the communities and the density has a 
"scaling" effect. Therefore, depending on the goal 
of the study, it may be useful a density independent 
representation of the rarefaction diversity profiles. 
Density dependent and density independent repre-
sentations evidently may produce different diversity 
ordering relations as it is demonstrated by Fig. 10. 
Here B>A, but the density of community В was 
higher. Using a density independent or density-free 
representation of the rarefaction diversity profiles, 
we can see that the communities are non-compara-
ble. The possibility of density dependent and den-
sity independent representations are extremely use-
ful in ecological research; see an application in 
Tóthmérész and Matus (1993). There is no such 
possibility for GenE and CurE plots. 

Complementarity of GenE and CuRe plots 
GenE plots depend strongly on the number of 

species because at the starting point of the diversity 
profile they take the value of the number of species 
or a value directly related to it, like S-l or logS. 
CuRe plots are heavily depend on the abundance of 
the most abundant species. From this point of view 
these methods are exactly complementary. Lets 
compare the diversity of the communities of the 
first Chapter to a community 

A' = (29, 29, 28, 5, 5) 
which is almost identical with A; the abundance 

of the first species is 29 instead of 33. Using one of 
the GenE plots evidently A<B but it is rather diffi-
cult to recognize that A'<>B. The diversity profiles 
intersect for a scale parameter value which is larger 
than 16 and it is almost impossible to recognize the 
intersection. On the other hand the non-comparabil-
ity is evident using one of the CuRe plots; see Fig. 
11. 

It is easy to produce an example which is the 
"opposite" of the above mentioned. Lets compare 
the following communities: 

El = (790, 74, 19, 123, 50, 3, 25, 13, 28, 37), 
El' = (790, 74,19,123, 50,3, 25,13, 28, 37, 1,1), 
E2 = (8, 60,55,45, 8, 7,14,4, 1, 75,45). 
The first and the third communities are almost 

identical; the only difference is that in the commu-
nity El ' two new species are included with 1-1 indi-
viduals. Using a CuRe plot it is rather difficult to 
detect that E1'<>E2, however, it is evident using a 
GenE plot; see Fig. 11. 

40 TISCIA 27 



dens i t y dependent representa t ion 

average number of spec ies 

plot size 

dens i t y independent representat ion 

1 10 100 1000 
number of individuals 

Fig. 10. Density dependent and density independent representation of the diversity profiles of the same communities. 
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Fig. 11. Complementarity of the GenE and CuRe plots from the point of view of displaying the non-comparability of communities. 

The effect of grazing 

Matus and Tóthmérész (1992) and Tóthmérész 
and Matus (1993) studied the effect of moderate 
cattle grazing to the structure of a sandy grassland 
in Eastern Hungary. This region is characterized by 
inland dunes having been formed during the Pleis-
tocene. The studied meadow is not sustained or sta-
bilized by the grazing; the grazing is not part of the 
ecosystem here. 

There were 33 species in the ungrazed case and 
36 in the grazed one. 30 species were detected in 
both transects. The species-individual diversity of 
the ungrazed community was 2.2757 and 2.2269 for 
the grazed community using the corrected Shannon 
formula proposed by Hutcheson (1970), the differ-
ence is not high, yet it is significant in statistical 
sense using the analog of t-test developed for com-
paring diversities. Another interesting fact was that 
the grazed community was more species rich while 
the ungrazed community was more diverse. The 
diversity profiles of the communities intersected; 

for the rare species the cattle grazed community 
was more diverse while the ungrazed community 
was more diverse for the dominant and subdominant 
species. Therefore, the moderate grazing decreased 
the diversity of dominant species; the abundance of 
these species also decreased. At the same time the 
number of rare species and their diversity increased. 
The situation was much more sophisticated using 
rarefaction diversity ordering with special emphasis 
on the effect of the distributional pattern 
(Tóthmérész et al., 1993). 

Diversity orderings and spatial processes 

The rarefaction curves are well known in 
botany and zoology as species-area and species-
individual curves; more exactly these are the spe-
cies-area or species-individual curves of a "random" 
or unstructured community. However, the diversity 
of a community heavily depends on the pattern. The 
importance of the patchiness on the community 
level was recognized very early in botany; see 
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Fig. 12. The effect of spatial pattern on rarefaction diversity ordering. 
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Godwin and Conway (1939), Watt (1925, 1937). 
Watt (1947) suggested that plant communities are 
comprised of a mosaic pattern of patches which are 
dynamically related to each other. Ecologists 
always professed the importance of multispecies 
patterns; see Watt (1947). This is also confirmed by 
the fact that Watt's seminal paper is the most 
frequently cited paper in the ecological literature 
(Mcintosh, 1989). 

The effect of pattern to the species richness is 
demonstrated by the Fig. 12. Each community has 
exactly the same number of species and the same 
number of individuals; therefore the S(m) curve is 
the same for each community if we ignore the spa-
tial pattern. The distribution of individuals, how-
ever, are strikingly different. The number of species 
was counted for 50 plots for each plot size and the 
average number of species was plotted against the 
plot size. The communities are well ordered; the 
community having regular pattern is the most 
diverse; the aggregated community is less diverse 
than the totally random, unstructured community. 

The less diverse is the segregated community where 
the distribution of individuals is aggregated and 
there is a strong segregation between the species; 
i.e. the patches usually contain one or only few spe-
cies. 

Table 3. The relation of rarefaction diversity orderings and direct 
spatial series analysis. 

density dependent density independent 
expected 
(random) 

species-area curve species-individual 
curve 

observed 
(field) 

direct spatial series 
analysis: location-
type statistics for 
number of species in 
the plots 

direct spatial series 
analysis: location-
type statistics for the 
number of species in 
a sample of N 
individuals 

That is a very significant feature of the rarefac-
tion diversity orderings. All the other methods 
ignore the spatial pattern of the communities. To 
utilize this important feature of the rarefaction 
diversity ordering we need a special sampling tech-
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nique which reflect the spatial arrangement of the 
individuals. The relation of rarefaction diversity 
orderings and direct spatial series analysis is 
demonstrated by Table 3. A more detailed discus-
sion of direct spatial series analysis can be found in 
Tóthmérész (1993a). 
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