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1. Introduction 

In this paper we take a language to be any set of words (finite strings) ove 
a finite alphabet. We call those languages regular which can be described by a specia 
kind of finite expressions, the so called regular expressions. (Using a different ter-
minology a language is regular if, and only if, it is right linear context free.) 

Regular languages have a special significance from an engineering point of 
view, because they can be used to describe the behaviour of sequential circuits, 
which are often used in electrical engineering. Conversely, given a regular expression R 
one can design a binary sequential circuit which will in a certain sense accept amongst 
all the possible words over the alphabet only those which belong to the language 
described by R. In such a case we say that the circuit accepts the language described 
by R. 

Certain subclasses of the class of regular languages are distinguished by the 
fact that the languages belonging to them can be accepted by some special kind 
of sequential circuits (e.g. feedback free). 

In recent years there has been a great upsurge of interest in (binary) linear 
sequential circuits (i.e. circuits which use only unit delays and exclusive or gates). 
If a language is accepted by some linear sequential circuit, we call it a linear regular 
language. 

In this paper we give a rigorous introduction to the concepts mentioned above 
and discuss the following problem: Given a regular expression R, how can we decide 
whether or not the language described by R is a linear regular language? 

2. Regular Expressions 

Definition 1. An alphabet 5 is a finite non-empty set of symbols. 

Definition 2. Any finite string of symbols from an alphabet S is called a word 
over S. The set of all words over S is denoted by Is. The empty word is denoted by e 
(e$S, e£7S). 

1 This paper has been presented at the International Colloquium on Mathematical Linguistics, 
Balatonszabadi, Hungary, Sept., 1968. 
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Definition 3. Any subset W of Is is called a language over S. The set of languages 
over S is denoted by Ls. 

Definition 4. The set Es of regular expressions over the alphabet S= {i^ 
is defined as follows: 

(i) su s2, ..., s,, e, o are regular expressions (o(E S). 
(ii) If P and Q are regular expressions, so are (P + Q), (PQ) and P*. 

(iii)All regular expressions are words over the alphabet .SU {e, o,(,+,),*}, 
but only those words are regular expressions which can be shown to be such using (i) 
and (ii). . 

Definition 5. An interpretation of regular expressions over S is a function I: 
Es—Ls, defined by (for simplicity we denote I(R) by |i?|): 

(0 \s,\ = {s,} / = 1 , 2 , . . . , / , 

\e\ = {e}, 

W = 0; 

(ii) K - P + 0 1 = l - P | U | g | , 

\ ( m = { p r , p № & 

for i ^ i m n } . 
n = 0 

Definition 6. A language W over S is called regular if, and only if, there exists 
a regular expression R over S such that 

W=\R\. 

Example 1. Let S = {a, b). The set of all words which contains exactly two 
6's is regular. The regular expression which describes it is 

(((,a*b)(a*b))a*). 

Example 2. Let S= {a, b). The set of all words which contain an even number 
(possibly none) of b's is regular. The regular expression which describes it is 

(a*((ba*)(ba*))*). 

3. Linear Sequential Circuits 

Definition 7. The clock is a device which emits pulses at regular intervals to 
which we shall refer to as units of time. 

A delay is a device with one input and one output wire such that it will emit 
a pulse on its output wire if, and only if, a pulse has been received at its input wire 
exactly one unit of time ago. 

An exclusive or gate is a device with two input wires and one output wire, such 
that it will emit a pulse on its output wire if, and only if, it is receiving a pulse at 
exactly one of its input wires at the same time. 
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The existence of a pulse in a wire is denoted by 1, the lack of pulse by 0 
(0©0 = 0 , 0 © 1 = 1, 1 9 0 = 1 and 1 © 1 = 0 ) . ' 

Clock Delay Exclusive or gate 
ylt)-l . y[M)=xlt) yithxMfSx^t) 

Fig. 1 '• 

Definition 8. A linear sequential circuit is a network formed from delays and 
exclusive or gates according to the following rules. ' 

Fig. 2 

The network will have a certain number (k, say) of external input wires and 
one external output wire. There is a clock, all wires may (or may not) carry pulses 
at the time when the clock emits a pulse, but will carry pulses at no other time. 
The propogation of pulses within wires is assumed to be instantaneous and hence 
the whole circuit is synchronized to the clock. 

The external output wire and the input wires of any delay or exclusive or gate 
can be connected to any external input wire or the output wire of any delay or exclu-
sive or gate provided only that the following restrictions are satisfied. 

1. If there is a closed (feedback) path within the network (i.e. a point which 
we can get back to going along connected wires), it must go through at least one 
delay. 

2. If there is a path from any external input wire to the external output wire, 
it must go through at least one delay. 

Example 3. The following is a representation of a linear sequential circuit 
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Fig. 3 

Definition 9. Let W be a language over the alphabet S. W is called a linear 
regular language if there exists a positive integer k, a linear sequential circuit with k 
external inputs and a function / from S into ^-tuples of O's and 1 's satisfying the 
following conditions. 

For each symbol s of S we denote by Sj the _/th element of f(s) (1 s j=k). This 
way each symbol s of S determines an external input condition for the linear sequen-
tial circuit, namely the j th external input wire carries a pulse if, and only if, Sj = 1. 

A word w = w1w2...w„ belongs to W if, and only if, the following is true. If 
(i) at time 1 the output of the first delay is 1 and of all other delays is 0, 

and (ii) the external input condition to the circuit at time t is determined by 
w, for 1 S 

then (iii) the external output at time n + 1 is 1. 
In such a case we say that the circuit accepts w. 

Example 4. Let W be the language of Example 2. W is a linear regular language. 
This is true, because if we let k = 1, the linear sequential circuit to be that of Example 
3, and / b e defined by 

f(a) = 0, f(b)=l, 

then the conditions of Definition 9 are satisfied. 
In order to see this let us mark the external input, the outputs of the delays 

and the external output at time t by x{t), y^t), y2{t) and z(t), respectively. Then 

z{t) = y1{t)®yi(t) = \®yz{t) 

(therefore z{t) — 1 if, and only if, >'2(0 — 0)> 
>'2(i + l) = x{t)®y2{t) 

and J^O) = 0. 
So —0 initially and it changes value at time t +1 if, and only if, x(t) = 1. 

So it accepts w if, and only if, w £ W. 
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4. The Relationship between Linear Regular and Regular Languages 

Linear regular and regular languages have been defined in entirely different 
ways. In this section we show that every linear regular language is in fact regular, 
but there are regular languages which are not linear regular. In order to do this 
we need to establish some properties of linear sequential circuits. 

Definition 10. Let C be a linear sequential circuit which has n delays. We num-
ber these delays from 1 to n, and let denote the state of the output wire from 
the ith delay at time t (>'f(<) = 0 means no pulse, ^¡(i) = l means pulse). Then the 
«-tuple (^i(i), y%(j), ..., y„(t)) is said to be the state of the circuit C at time t. 

Theorem 1. The operation of a linear sequential circuit C with k external input 
wires and n delays can be completely described by two matrix equations of the form 

(1) y{t+\) = y{t)A®x(t)B 

(2) z(t) = y(t)C 

where x( t ) is the &-tupie of inputs.at time t, y(t) is the state at time t, z(t) is the 
output at time t, A is a « X « matrix, B is a kXn matrix, and C is an « X I matrix 
of 0's and l's. All additions are to be performed modulo 2. 

Proof. We deal with the second equation first. Starting from the external output 
wire we go backwards along all possible paths. When we come to an exclusive or 
gate the path splits into two. A path comes to an end when it reaches the output 
wire of a delay. Because of the restrictions in Definition 8 this must happen to every 
path. It is clear that the output is the number of paths (modulo 2) which finish at 
a wire which carries a pulse at the time. The output wire of a delay can modify 
this sum if, and only if, the number of paths leading to it is odd. So the construction 
of the circuit uniquely determines the value of C. 

Since Ihe output of a delay is equal to its input at one unit of time ago, analogous 
argument shows that A and B are uniquely determined. 

It is clear that the two equations completely describe what external output 
will result from a given sequence of inputs. In fact 

t 
(3) z(t+\) = 0 , 0, ...,0)A'C ®Zx(i)BA'~iC 

i = 1 

as can easily be shown by induction on t. 

Example 5. The circuit in Example 3 can be characterized by the equations 

(ji(i+ i), y*(t+1)) = (:Vi(0> MO) 

2 ( 0 = ( J i ( 0 , M 0 ) 

1 0 

0 1 

1 

1 

© * ( 0 [ 0 , 1 ] , 
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Therefore, 
ri m»r11 ' ri ni'-' m < 

= i . z ( / + l ) = ( l , 0 ) [ J 1] 
1 0 I—I 1 

o 1. . 1 1 = 1 

showing again that this circuit accepts the language described in Example 2. 

Theorem 2. Every linear regular language is regular. 

Proof. (Although this theorem is the consequence of a well known theorem 
in automata theory, here we give a direct proof, which is conceptually considerably 
simpler than the proof of the general theorem and which also has interesting con-
sequences.) 

Let W be the linear regular language over S and C be the linear sequential 
circuit which accepts it using the function / from S into ^-tuples of of O's and l ' s . 
For C there will be matrices A, B and C as described in Theorem 1. In particular 
equation (3) will hold. 

A is an « X « matrix with elements 0 or 1. There are only finitely many such 
matrices and there must be positive integers u and v such that ucu and A" = Av. 
Choose u and v the smallest such integers and let d = v — u. If t = qd+u + r where 
OSr<¿7, then 

d 

z ( i + l ) = 2 x i O B A ^ ' ^ C ® 
¡=1 

d 

< = I 

2,x{{q-\)d+i)BAv+r-iC® 
i = l 

11 + r 

2,x{qd+i)BAuJ"~lC® (1, 0, . . . , 0 )A u + r C. 

Let P0 be o if cx = 0 and P0 be e if cx = 1. Let Pr, P2, ..., Pp be all the regular 
expressions over S of the form (...(wi w2)... wt) £ 5) for which t-=u and 

ZfiwdBA-'C® (1,0, ...,0)A'C = 1. 
¡=1 

It is in principle easy to enumerate all such expressions. Let P be the regular expres-
sion 

(...^P0 + p1) + p2) + . . . + P p ) . 

For r = 0, 1, ..., d— 1 let X r X r X r be all regular expressions of the form 

(.. . (wjVfj) ... wu+r) for which 

ZfiwdBA"*"'C©(1, 0, . . . , 0)A"+rC 
i = l 
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is equal to 0, and Yrl,...,Yryr be all such expressions for which the same sum is 
equal to 1. 

Let Frl,..., Frfr be all regular expressions of the form (...(w! w2)...wd) for 
which . 

d 
Z f W B A ^ ' - ' C 
i - x • • 

is equal to 0, and Grl,..., Grq be all such expressions for which the same sum is eqalu 
to 1. 

Let Xr be the regular expression 

or o if * r = 0, and let Yr, Fr and Gr be similarly defined. 
Let Dr be the regular expression 

(((Fr* ((GrFr*) (Gr F*)T) (Gr F*)) Xr} 

and Er be the regular expression 

{(F* ((Gr F*) (Gr F*))*) Yr). 

Then the regular expression 

( P + ( . . . ( D 0 + • £ « ) + . . . + ( ^ - 1 + ^ - 1 ) ) ) . 
describes W. 

Example 6. For the. circuit of Example 3, w = 1, v = 2, d= 1. Looking at Example 5 
we see that 
P0 is e, p = 0, P i s e; 

x0=l, A^isZ), X0isb; 
y0=\, Ynlisa, Y0 is a; 
/ o = l , f o i i s a > ' F0isa; 

go=h G01isb, G0 is b\ 

D0is(((,a*((ba*)(ba*)T)(ba*))b), 

E0is((a*((ba*)(ba*))*)a). 

Hence a regular expression which describes the language accepted by this 
circuit is 

(e + ((((a* ((ba*) (ba*)f) {ba*)) b) + {(a* ((ba*) (ba*))*)«))). 

A much simpler expression which describes the same language has been given' 
in Example 2. 

Theorem 3. Not every regular language is linear regular. 

Proof. The language W described in Example 1 is regular, but it is not linear 
regular. 
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To see this we have to look at the proof of Theorem 2. 
Suppose W is accepted by some linear sequential circuit. Let w be the word 

bba"; 
then w£W. Since 

W= | ( P + ( . . . ( £ „ + £•„) + . . . + (Z)„_ J + Ed-J))\, 

|P| or vv£ |DP| or >v £ |£,| for some r. 
However, |P|, since it is too long. 
If we \Dr\, then 

bba"~r e I (((/? (Gr /?) (G, Fr*))*) {Gr F*)) I 

and so b must occur in some word belonging to \Gr\ or |Fr|. But then there must 
be words belonging to W in which b appears more than twice, contradicting the 
definition of W. 

The case w£ \Er| is analogous. 

5. Characterization of Linear Regular Languages 

In the last section we have shown that every linear regular language can be 
described by a regular expression of a certain type. Now we consider the problem: 
Given a regular expression R, how can we decide whether or not the language descri-
bed by R is a linear regular language? 

Unfortunately the decision method used is quite complicated, it will form 
Part II of this paper. Its essence is the checking the linearity of the languages over 
/c-tuples of O's and l 's which are the images of \R\ under some func t ions /mapp ing 
S into such /c-tuples. 

The method is not only indirect, but is needs the introduction of a number 
of new ideas. It seems likely that there is a more direct solution, something along 
the lines of the proof of Theorems 2 and 3. The kind of question which we ought 
to try to answer is: What do regular expressions which describe linear regular langu-
ages look like? 

It was mentioned in the introduction that a language is regular if, and only 
if, it can be described by a right linear context free (Chomsky) grammar. A similar 
question to the above is: What are the characteristics of those grammars which 
describe linear regular languages? 

6. Final Comments and Acknowledgements 

There is very little in this first part of the paper which has not already appeared 
elsewhere is one form or another. However this is the first time that the results have 
been discussed from the point of view of linear regular languages, and the novel 
approach bore fruit in the proofs of Theorems 2 and 3. 

The algorithm given in Theorem 2 for analyzing linear sequential circuits works 
faster than any other algorithm published so far for this purpose. This is not really 
surprising since other published algorithms can be used to analyse sequential cir-
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cuits in general, while our algorithm makes essential use of the linearity of the sequen-
tial circuit under consideration. 

Because the paper is introductory, all definitions and results have been fully 
explained and references to original sources (sometimes difficult to ascertain) have 
been omitted. The bulk of the author's knowledge is based upon lecture courses 
given at the University of California by Professors J . A. BRZOZOWSKI and M. A. HAR-
RISON. His indebtedness to both these gentlemen is great. 

A comprehensive list of references is given, which includes many original papers 
on the topjc under discussion including those which have been used for Part II. 
The author apologizes for the possible omission of relevant papers, and hopes that 
they are referenced in the literature cited below. 

Most of these papers refer to the closely related problem of the linearity of 
sequential machines. A good critical review of the work done on this problem can 
be found in DAVIS [10]. 

The author wishes to invite any comments relevant to the problems discussed 
here. 

PRESENT ADDRES : 
DEPT. OF COMPUTER SCIENCE 
STATE UNIVERSTY OF NEW YORK 
AT BUFFALO. 
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