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1. Introduction 

It is well known that the solution of the programming problem . 

/ (x) — max (1,1) 
subject to 

Xc/-, 

— where L is a subset of the Euclidean «-space E" and / i s a scalar-valued function — 
can be. very difficult unless L is convex and / (x ) is quasiconcave (see: [1], [2]). For 
special cases of (I. 1) efficient methods have been developed among which the so 
called "cutting plane" methods are of considerable importance (see: [3], [4], [5], [6]). 

In this paper we want to apply the cutting plane idea — developed originally 
in [6] for quadratic objective function, in [5] and later but independently in [7] for 
•convex objective function — to more general programming problems including 
such as 

maximizing a quasiconvex function over a convex polyhedron 
maximizing a quasiconvex function over the lattice points of a convex poly-
hedron 
mixed zero-one integer programming with convex objective function to be 
maximized 
fixed charge problems with convex objective function 
separable nonlinear programming with linear constraints 
general continuous nonlinear programming 
general pure integer programming. 

2. A method for accelerating the full description method 

Let the problem be the following1: 

/ ( x ) - m a x . ' (2.1) 
subject to 

Ax ^ b, 
1 Throughout the paper À, B . . . denote matrices, a , b . . . denote vectors, * stands for trans-

position and e, is the jth identity vector. 
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where x£E", b £ E m , A is an m by n matrix, L= {x|AxSb} is nonempty and bounded, 
/ (x ) is continuous and quasiconvex over the whole E". This latter means that for alE 
x l 5 x, and / (O^ASl ) 

(2. 2) / ( ; . x i + ( l - / ) x 2 ) ^ max { / ( x ^ / ^ ) } . 

It is known ([2]) that among the global maximumpoints of (2. 1) there is at. 
least one extreme point of L. This gives a basis to a method of solving (2. 1) called 
"full description method" ([8], [9]) which generates in some way all extreme points 
of L and then we can choose that (those) extreme point(s) which give(s) the maximal! 
objective function 's value. Unfortunately in cases of practical problems this method 
fails because of the large number of extreme points. 

In this section we give a method which is based on an arbitrary variant of the 
full description method but it doss not require usually the determination of all' 
extreme points. 

We shall call the method capable of leading us through all extreme points of 
£ the "wandering method". (A realization of a "wandering method" is e.g. [8] a n d [9]). 
We call a point, x of the convex polyhedron L a nondegenerate basic solution if A 
and b can be partitioned in the following manner: 

A = A, , b = 
V 

.K b2. 

A1x = b1, 
A 2 x < b 2 , (2. 3> 

where Aj is nonsingular. All other basic solutions are called degenerate. 
. To begin with let us determine an extreme point of L, say x0 . If x0 is degenerate, 

then applying the "wandering method" find a nondegenerate basic solution x 0 . 
If x0 is nondegenerate, then x0 = x0. Let the maximal objective function's value 
through the path leading from x0 to x0 be C'0 = C0. If all basic solutions of L are 
degenerate, then we have to determine all extreme points. In this case our method 
reduces to the full description method and C0 = max/(x). 

Since x0 is nondegenerate we can transform (2. 2) into the equivalent problem: 

subject to 

where 

/ ( X o - A ^ y ) - max 

y s o , 

A3y = b 3 , 

A = b = 
AiX0 — b j , 
A2 X0 < b2, 

y = b i - A j X , 

(2.4) 

(2. 5) 

- A 2 AJ ba = bo —AoX, 2 0 • 

The objective function of (2. 4) is also quasiconvex since/(x) is assumed to be quasi-
convex over the entire E". Since x0 is nondegenerate y = 0 in problem (2. 4) has-
exactly n adjacent extreme points: 

a ^ i , a2e2, ..., a„e, 
where <Xj>0 0 ' = 1 , ...,«)• 
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Let 
C0 = max {Co, max / (x 0 - a, A^e , )} (2. 6) 

and t j the maximal number (tj = °° is admitted) for which the inequality 

/ ( X o - i A r ^ s Q , 0 = 1 , ... n) (2,1) 

¡holds ( / j > 0 since f(x0—aJA{1eJ) S C0). 
Denote 

.(If tj = =°, then l / i ; = 0 by definition.) 
• We shall distinguish two cases: 

(i). |t*A1|si7', . 
(ii) |t*A1 |>77, 

•where J is a fixed positive number. 
In case (i) we consider the problem: 

/ ( x 0 - A r x y ) - max 
•subject to 

y s O , (2. 8) 

i* V I. 

By (2. 7) it is clear that the global maximum of (2. 8) does not exceed C0. Therefore 
the cutting inequality 

t*y=El (2.9) 
.and its transformation by (2. 5) 

h *xsh0, (2. 10) 

-where h* = t*A1 and h0 = t * ^ —1 excludes a region of L, where / ( x ) S C 0 . 
In case (ii) let 

d * = ( l / a i , . . . ,!/«„) 
and consider the inequality 

d*A tx s d^b i -1 . (2,. 11) 
It can easily be seen that (2. 11) cuts off the simplex with vertices 

x o > x o — « l ^ i 1 e 1 , . . . , x 0 — a n A x
 1 e „ . 

Adjoining inequality (2. 10) or (2. 11) to the original constraints of (2. 1) we 
reduce the feasible set L. Let the new feasible set be L 1 (£=£ 0 ) . Then the whole 
procedure can be repeated with the obvious modification that in S t ep / :+ l 

C t = m a x {Cfc-i, C'k}. 

When computing Ck by (2. 6) we replace the index 0 by A: and C'k denotes the 
maximal objective function's value along the path leading to a nondegenerate basic 
solution in S tep^+1 . 

It is clear that 
L o D l i D - D i p . . . , 

Co —£-1= ••• 52 Ck = C, k +1 
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The procedure terminates if for some index 1, L = 0. Then x ' is a solution of 
(2. 1) if / (x ' ) = C p_ 1 . 

We shall prove that the procedure terminates in finite number of steps. For 
the proof we need a simple lemma. 

Lemma 1. If xk is the nondegenerate basic solution obtained in Step & + 1 and 
cut (2. 10) is applied, then 

where uk is the orthogonal projection of xk onto the hyperplane h*x=/?0 (h^O) . 

Proof. By the definition of h and h0 it follows that xk is on the hyperplane h*x = 
= h0+l. Write Schwarz's inequality for h and xfe—uk 

|h*(x*-u*)| s | h | | x t - u , | . 
Since the left hand side equals 1 we get the desired inequality 

Ixt-uil £ |h|-x = IfA^-1 s T~\ 
Theorem 1. There is an index p= \ for which Lp=0. 
Proof. It is sufficient to prove that cut (2. 10) cannot be applied infinite times 

since (2. 11) cuts off a simplex and every polyhedron consists of finitely many 
simpleces. 

Suppose on the contrary that (2. 10) occurs infinite times. Then the sequence 
of nondegenerate basic solutions determined in the steps when (2. 10) is used has 
at least one cluster point x because L is bounded. Thus there is a neighbourhood 
K(x, e) of x and an index r such that for a xk£K(x, s). In the step when xk 
is cut off by inequality (2. 10) Lemma 1. assures that the distance of xk f rom the 
cutting plane is at least T~x. Thus s can be chosen so small that the entire isT(x, e) 
lies on the infeasible side of the cutting plane. But this is a contradiction. 

Remarks 
1. If / (x) is strictly convex that is for any x 1 ^ x 2 and 0 < A < 1 the inequality 

f(Ax1 + ( 1 '—A)x2) < / / (x j ) + (l —X)f(xn) holds, then the method described above gives 
all global maximumpoints. We have never cut such points where the objective 
function's value equals the maximum obtained so far and since/(x) is strictly convex 
every global (and local) maximumpoint is an extreme point of L. 

2. It is clear that the procedure works well with an arbitrary extreme point as 
a starting solution in each step but it seems us more advantageous to start with a 
local vertex maximumpoint. (This is a point that has no adjacent extreme point of 
higher objective function's value.) 

3. It is obvious that the efficiency of the method is greatly reduced if degenera-
tion occurs frequently. Therefore it is of disadvantage if cut (2. 11) has to be applied 
many times since this cut increases the number of degenerate basic solutions. In 
the next section we give a variant of this method which is insensitive to degenera-
tion. 

4. By the construction of the method the number of constraints increases. 
But simultaniously some of the old constraints may become redundant. (We call 
a constraint redundant if there is no feasible point satisfying it as an equality.) 
For elimination of the redundant constraints the method proposed in [6] can be 
used. 
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5. The procedure can be simplified to a great extent if we are content with 
an "e optimal" solution of problem (2. 1). We call z £ L an "e optimal" solution if 

max/(x) s / (z ) + e, £ > 0 . 

In this case it is sufficient to find a local vertex maximumpoint in every step (not: 
necessarily nondegenerate) and tranformation (2. 5) can be carried out with any 
basis associated with the extreme point in question. Inequality (2. 7) is changed 
by replacing the right hand side to C 0+e. Since / ( x ) is continuous every t j will be 
positive and cut (2.10) excludes a proper subset of the feasible region. Thus cut 
(2. 11) is not necessary and we do not need the "wandering method" too. 

It is an open question whether this modified procedure terminates in finite 
number of steps. 

3. Maximizing a quasiconvex function over the lattice points 
of a convex polyhedron 

Let the problem be 
/ (x ) — max 

subject to 

A x ^ b , (3. 1> 

x=integer, 
where 

(i) L = {x |Ax^b} is nonempty and bounded, 
(ii) The entries of A and b are integers, 

(iii) / (x ) is continuous and quasiconvex on E". 
The method proposed for solving (3. 1) consists of iterational steps. In each 

step we reduce the feasible region. Denote the feasible set in Step k by Lk . 
Step 0. Find a feasible point to (3. 1) with any method of integer program-

ming. If there is no such point, then (3. 1) has no solution. Otherwise go to Step 1. 
Step k. 
a) Find a local (vertex) maximumpoint xk of Lk (L^L). 
b) Do transformation (2. 5) and determine t j as the maximal positive number 

satisfying the inequality 

/ K - i A f l ^ . ) ^ Ck + e, e > 0 ( 7 = 1 , . . . , « ) , (3.2) 

where A n is a nonsingular submatrix of Ai (we have not assumed nondegeneracy!) 
and Ck is the maximal objective function's value obtained so far on lattice points-
of L. Then we construct the vector tk as in Section 2. and test the inequality | t£Au | ^ T. 
If it is satisfied by tk or xk — integer, then we reduce Lk by cut (2. 10). If xk has a t 
least one noninteger component and | t jA1 1 |>7' , or there is no positive t satisfying 
(3. 2) then reduce Lk by a Gomory cut (see [1] p. 272). Let Lk+1 be the new feasible 
set and go to S t e p ^ + 1 . 

The procedure terminates if for some pSl, Lp — d-

Theorem 2. After finite number of steps Z,p = 0 for some p S 1. 
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Proof. Cut (2. 10) cannot be applied infinite many times by the reasoning in 
the proof of Theorem 1. and because the number of lattice points of L is finite. 
Furthermore the application of the Gomory cuts provides an integer point after 

• finite number of steps ([1] p. 276). 

Remarks 

1. The procedure described above gives "only" an "e optimal" solution which 
is always satisfactory in practical situations. But i f / ( x ) takes on integral values for 
any integer x (e.g. /(x) is a polynomial with integer coefficients), then we can replace 
•£ by 1 and determine at least one " t rue" optimal solution of (3. 1). 

2. It is clear that this procedure can be used instead of the method proposed 
in Section 2. in almost all practical cases since the integrity stipulation is very week 
if we choose proper scale. In addition if in (2. 1) every extreme point of L is integer 
{e.g. (2. 1) is a transportation problem with integer parameters [11]), then the pro-
cedure of this section can be applied without changing the scale. 

4. Mixed zero-one integer programming with convex objective 
function to be maximized 

Let us consider the problem 
F(x) -»max 

subject to 
O ^ X j ^ l , Xj = integer ( j = l , . . . , p ) , p s ï 1 

0 S x j ^ k j ( j = P + h : . , n ) , (4.1) 
. n 
Z a i j x j = bi (i"= 1, m), 

i 

where x = ( x 1 ; . . . ,x„) and F(x) is convex on E". 
For the solution of (4. 1) we can apply the full description method. The follow-

ing theorem gives the basis for doing so. 
Theorem 3. Among the optimal points of (4. 1) there is at least one extreme, 

point of L. ( L denotes the set of points satisfying the conditions of (4. 1) ignoring 
the integrity stipulations.) 

Proof. Let z be an optimal solution of (4. 1). Fix the first p components of z 
and consider the problem: 

Hzi, ...,zp, xp+1, . . . , x j - m a x 
subject to 

O^xj^k) ( j = p + l,...,n), 
» p 

2 dijXj ^ b - 2 aijzi 0 = 1 » • • • » '«)• (4- 2) j=p+1 j=1 
Let y be an optimal extreme point of (4. 2). (There is at least one such point since 
<zp + 1 , . . . ,z„) is a feasible point and F(x) is convex.) Let 

x * ^ , ...,zp,y*) 
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x0 is an optimal solution of (4.1) since F(x0) s F(z). Suppose that x0 is not an extreme 
point. Then there are points x1£L,,x2£L, x1^ix2 such that x„ = $ (x - l+x^. Since 
the first p entries of x0 are 0 or 1 the first p components of xx and x2 are equal. But 
the last n—p components of x± and x2 must coincide because y is an extreme point 
of (4. 2). This contradicts the assumption X 1 T Î X 2 . Thus x0 is an optimal extreme 
point. 

Our purpose is to apply the methods of Section 2. for (4. 1) to accelerate the 
full description method. The following theorem provides a continuous equivalent 
to problem (4. 1). 

Theorem 4. Consider the programming problem: 
i 

F(x) — A 2 X j ( l - X j ) - max (A>0) (4.3) 
7=i 

subject to 
xÇL. 

There exists a real number Ao>0 so that for all AsA.0 the set of optimal extreme 
points of (4. 1) and (4. 3) coincide. 

Proof. Let 
p 

¿o = mm Z X j ( l - X j ) , 
* f c L j = l 

where L' denotes the set of those extreme points of L which have at least one non-
integer component among their first p components. 

Let x°(A)=(xî(A), . . . , x°(A))* be an arbitrary optimal extreme point of (4. 3). 
Then 

F(z) g F(x°(A))-A ¿>°(A)[1 -x°(A)], (4.4) 
7=1 

where z is an optimal extreme point of (4. 1). If one of the first p components of x°(A) 
is not integer, then from (4.4) it follows 

I [F(x°(A))-F(z)] S 1 x«(A)[l — (4. 5) 
A 7=1 

Thus we see that if A is sufficiently large, then x°(A) cannot have noninteger components 
among its firstp entries. Consequently there is a A0 such that for AsA0 every optimal 
extreme point of (4. 3) is an optimal solution to (4. 1). 

Conversely if z is an .optimal extreme point of (4. 1), then z has to be optimal 
for (4. 3) because of (4. 5). . 

For practical computation we need an estimation for A„. Suppose that we are 
content with an "almost feasible" "e optimal" solution of (4. 1). We call y "<5 feas-
ible" "e optimal" ( ¿>0 , e>-0) solution of (4. 1) if y can violate the conditions 

n 
2 auXj ^ bt (/--= 1, ... m), 

7=1 

4 Acta Cybemetica 
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by no more than 8 and F(y) S F(z)—s where z is an optimal solution of (4. 1). The 
following theorem provides an estimation for X0. 

Theorem 5. Assume that 
(i) for every x1 £ T, x2£Twhere 

(j=l,...,p), O^Xj^kj (j=p+\,...,n)} 
the inequality 

| F ( X 1 ) - F ( X 2 ) | S M K - ^ R 

holds where M and a are positive constants, 
(ii) K a ^ F ( z ) ^ K f where z is any feasible solution of (4. 1), 

(iii) A=[a,j] has no zero rows and columns. 
If X satisfies the inequality 

» > K f ~ K a (4.6). 
«o( l -ao) 

then every vector obtained from an optimal extreme point of (4. 3) by rounding 
the first p components to the nearest integer is a "<5 feasible" "e optimal" solution 
of (4. 1) where 

a0 = min (a, a) 
• a 

ä ^ m i n i mm , (4. 8) 
. 2 K\ j=i 

Proof. Let x°(A) be an optimal extreme point of (4. 3) with X satisfying (4. 6) 
and z an optimal extreme point of (4. 1). Then by (4. 5), (4. 6) and assumption (ii) 
we obtain -

x)(X)[\-x)Q.j\ == | [ F ( x » a ) ) - F ( z ) ] s 
/=1 a 

. (4- 9) 
(/=1, ...,'p). 

This implies that one Of the following inequalities holds (. . 

0 = 1 ,...,p): (4.10) 

Denote-by x(A) the vector obtained from x°(A) by rounding the first p components 
to the nearest integer. By (4. 8) we get 

This means that x(A)=(x1(l), ..., .x„ (/>.)) is "8 feasible". 
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To prove the "e optimality" we obtain by assumption (i), (4. 7) and (4. 10) the 
inequalities: 

a 

which means that x(A) is "s optimal". 

Corollaries 

1. If every atj and bt is integer a n d p = n , then by choosing <5< 1, x(A) is a feasible 
solution of (4. 1). Furthermore if F(x) takes on integral values for every integer x, 
then by choosing e < 1 we obtain an optimal solution of (4. 1). 

2. If x°(/l) is a " A optimal" solution of (4. 3), then by changing (4. 6) to 

x ^ K f - K a + A 
a o ( l - « o ) 

we get a "<5 feasible", "A+e optimal" solution x(X) by rounding[x°(A). 
In the pure integer case 5 and A+e have to be chosen smaller then 1 in order 

to get an optimal solution of (4. 1). 
For the solution of (4. 3) we can apply the methods proposed in Section 2. 

« 
a n d 3 . I f F ( x ) = 2 c j x j > then (4. 1) is the mixed zero-one integer linear programming 

i=i 
problem. In this case we can increase the efficiency of our cutting plane method by 
adjoining to the constraint set the inequality 

n 
Z CjXj^ Fk + A, 

where Fk is the largest objective function's value obtained up to Step k. In the pure 
case A can be chosen 1 provided'all the Cj-s are integer. 

5. Fixed charge problems with convex objective function 

The following problem occurs very frequently in economic applications: 
A production vector has to be found which satisfies a number of linear con-

straints and minimizes a cost function composed of individual cost functions having 
a fixed cost at Xj=0. For 0 the cost function is concave. 

In mathematical terms the problem to be solved is the following: 

n 
/ 0 ) = - Z f j ( X j ) - m a x 

subject to 

0 ^ x j S k j 0 = 1 , : . . , . « ) , (5.1) 

x C / . , 
4' 



180 F. Forgó 

where L is a convex polyhedron and 

¡i X jZo , 0 = 1 . . . . , » ) , 

g j (xj) is a concave monotone increasing function. 
We can formulate (5. 1) as a mixed zero-one integer programming problem 

in the following manner: (For convenience we suppose that A j > 0 0 = 1 , . . . , p ) 
and Aj=0 ( j = P + l, -,«)•) 

F(x, Q = - Z [¿jtj+gj(Xj)]+ 2 gj(xj) - max 
j=1 y = p + l 

subject to 

O^xj^kj (j= 1, ..., «), 

x € L (5.2) 

X j - k j Z j S 0 

O S ^ l , = integer 0 = 1, ...,/»). 
Since (5. 2) is of type (4. 1) the method proposed in Section 4. can be used for solv-
ing (5. 2). From computational point of view it is not indifferent that (5. 2) has p 
new variables. In this section we give a method for solving (5: 1) without increasing 
the number of variables. 

Without any loss of generality we may assume that p = n . The following theorem 
asserts the existence of a continuous equivalent to (5. 1). 

Theorem 6. Let us consider the problem: 

/ ( x , r) -»max 
subject to 

O ^ x j ^ k j 0 = 1 , . . . , « ) , (5 .3) 

x£L, 

where r*=( r 1 ; ...,/•„) ( r s O ) is a parameter vector and 

j=i 

M " j ) \gj(Xj) if Xj^rj, U - l , •• . ,") , 

m. = 
rj 

There exists a positive vector r„ such that for all r ( 0 < r S r 0 ) the sets of optimal 
extreme points of (5. 1) and (5. 3) coincide. 
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Proof. Let x0 and x t ( r ) be optimal solutions to (5. 1) and (5. 3) resp. Since 
both / ( x ) and / ( x , r) are concave functions we may assume that x0 and Xj(r) are 
extreme points. Let x*=(x l 5 . . . , x„) and 

s = min i min x,) 0), 

where L' denotes the extreme points of the common feasible region of (5. 1) and 
(5. 3). (We can disregard of the trivial case if O Ç L ' since in this case x 1 ( r ) = x 0 = O 
for any positive r by the monotonicity of the functions gj(xj).) Let r0 be a positive 
vector satisfying r j e j - ë s 0 = 1, . . . , «). Then 

' / ( x i ( ro) > ro) — / ( x i ( ro)) • 

Since fj(xï(r0)e;,rîe;)=0 if xî(ro)e,.=0 and fj(xj(r0)ej, rje,)=gj(xj(r0)ej) if 
x*(r0)ej-SiSroe7- ( j = l , ..., n). But by the optimality of Xj(r0) it follows 

/ ( x i ( r 0 ) ) = / ( x i f r o ) , ro) — / ( x o i r 0 ) = / ( x 0 ) 

which means that x^r,,) is optimal to (5. 1). Conversely by the optimality of x0 

/ ( x o . ro) = / (x 0 ) = / ( x j (r0)) = /(x^ro), r0) 
which means that x0 is optimal to (5. 3) if r s r 0 . 

Corollary. The objective function of (5. 3) is convex on E" and therefore the 
method of Section 2. can be used to solve it. 

The only difficulty is that we cannot give an a priori estimation on r0. For-
tunately by a slight modification of the algorithm described in Section 2. we do 
not need the exact value of r0. There are only two places where changes haVe to 
be done: 

1. In (2. 4) / ( x 0 — A f 1 y) is defined only for those values of y where 
X o - A f i y s O . (5.4) 

2. In the définition of t j ((2. 7)) (5. 4) has also to be taken into consideration. 
Thus t j is the maximal number for which the inequalities 

/ ( X o - f A f ^ C o _ 0=1. •••»«) (5.5). 
X o - f A r ^ ë O 

hold. 
All other statements of Section 2. including Theorem 1. remain valid. Naturally 

our method can be combined with other methods e.g. approximative methods like 
[14] since any good approximative solution can serve as a starting point for the 
cutting plane method. Of course the difficulties caused by degeneration can be 
overcome by searching for an "e optimal" solution. 

6. Separable nonlinear programming with linear constraints 

Nonlinear programming with general objective function is a rather undiscovered 
field of mathematical programming. There are methods based on the idea of approxi-
mation with polygons, [1], [15], algorithms applying "branch and bound" [16], [171 
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and full description methods [18]. We shall apply the cutting plane method of Section 
2. for accelerating the full description method. We begin with the simple case of 
separable objective function and thereafter we discuss the general programming 
problem. 

n 

/ ( x ) = Z f j ( x j ) - max 
j=i 

subject to 

O ^ x ^ k ( k s O ) (6. 1) 

Ax^b. 
Suppose that 

(i) L = { x | O S x S k , A x ^ b } ? ^ , 
(ii) for every x), x) satisfying O S ^ - S ^ e , {r=\, 2) holds the inequality: 

l/}(*})-/}(*?)l ^ Mj\x) — x)\ <J=h...,n), (6.2) 
where M j is constant, 

(iii) f j ( x j ) = — for Xj<.0 and xy>k*e,- ( / '= 1, . . . , w). Our purpose is to de-
termine an "e optimal" feasible solution x £ L . 

The method for solving (6. 1) consists of iterational steps. To start with let us 
determine an extreme point of L=L0, say x0=(x®, . Let us assume that 
we have a "good" approximative solution y0£L. (y0 can be e.g. a local maximum-
point of (6. 1) which can be obtained, by several local methods such as gradient 
methods, linear approximation e.t.c.) 

Put K0=f{y0) and define / (x) in the following manner: 

№ = Zfj(xj)> 
j=i 

where f j ( x j ) is convex, /,-(*;) ==_/}(*,) for all Xj, / ; (x j ) =/,•(*?) 0 = 1, . . . ,«) . 
Because of Property (ii) / (x ) is defined over the entire E". Since x0 is a vertex 

of L transformation (2. 5) can be carried out. Now consider the problem (see (2. 4)) 

/ ( x o - ^ f ' y ) - max 
subject to 

y s o (6.3) 

A 3 ySb 3 . 
By the definition of / (x ) 

/ (x 0 )=/(x 0 ) . 

Let tj be the maximal number (but at most M, a large fixed positive number) sa-
tisfying 

/ ( X o - f A i ^ ) s K0 + s 0 ' = U - , » ) • (6.4) 

Each tj is positive since J(x0)^K0 and / (x ) is continuous. (Since it is convex over 
En.) Let 

t* = OAi> ' • • •» l / O -
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Take a fixed positive number T and apply the cut 

t * y s l (6.5) 

if | f % ( s : r . With cut (6. 5) we have excluded a region where 

and since / ( x 0 — A f x y ) s / ( x 0 —A1"1y) the relation 

/ ( X o - A f 1 } ' ) ^ K 0 + s 

holds for every y in the excluded region. 
If |t*Aj. | then we apply the cut 

t * y s i , (6.6) 
where 

t *=( l / a i x , . . . , 1/atn) 

and a is chosen so that |t*Ai| = T is satisfied. 
Of course in this case we can only guarantee that for all y in the excluded 

region 
/(Xo-A^y) = 7(xo" Af 1y) is maxJlXo-atjA^ej) = P0. 

The whole procedure is repeated for the reduced polyhedron Lx. We have seen in 
Section2. (Theorem 1.) that after finite number of steps Lp=Q for some p^l. 

Naturally if in the course of computations we arrive at a vector which gives 
higher objective function's value than K0, then starting f rom this point we can find 
a better local maximumpoint with objective function's value and replace 
tfobytfr. 

After having arrived at the situation where Lp=0 the best solution yr obtained 
so far satisfies the inequality 

f(yr) S m a x Rk, O S l c S p - l 

where Rk = Kk+s if in Step k cut (6. 5) was used and Rk=Pk if cut (6. 6) was applied. 
Thus if 

max Rk = Kk. + s for some 0 g i ' s ^ - l (6.7) 

then yr is an "s optimal" solution of (6. 1) if 

f(.yr)=Kk. 

L e t - Q = { q i , ••., qr} be the set of indices for which 

P„ > max Kk+s (s = l, ...,r). qs osksp-l ' 

For each qs there can be associated a problem: ' 

f & i s - K 1 y ) - m a x 
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subject to 
y ^ O 

A«,y = b«5 ( J = 1 . ^ 

O s l -

(6.8) 

where A 9 j y^b 9 j , y S O defines after having done transformation (2. 5), B9 j is 
the matrix of transformation, t9s is defined in (6. 6), xis is the actual extreme point 
of A,,-1. 

We shall decompose (6.8) into d subproblems having the form: 

subject to 
/ ( x i s - B - y ) - max 

y s O 

K v ^ K 

t* v = — 9'y d 

(1=1,...,d). (6.9) 

Lét s ^ O be an arbitrary feasible point of (6. 8) and v the intersection of the ray 
determined by O and s with the hyperplane t^y = l. Let further / be the index for 
which the inequality 

1 1* l+l t S r< 
d ~ tq> ~ d 

holds. Denote by r the intersection of the ray (O, s) with hyperplane t9jy = 

Since r and s are on the ray (O, v) they can be written in the following way: 

r=Xry, 

s=A s \ , 

where XR = Then the following relations hold: 

| r - s | = | W , I M = 
Since 

r - A , |y| = I 
7 

V s / + 1 
M = ¿1*1-

|v| £5 max t* e, ^ M, 1 1 lSJSn q' 1 

d can be chosen so large that ]r—s| S 8 for given ¿ > 0 . But because of property 
(ii) if 8 is small enough, then 

l / ( r ) - / ( s ) | S 

This means that if we can solve problem (6. 9) for each /, then the objective function's 
value of an "fi/2 optimal" solution of problem (6.9) cannot differ from the optimum 
of (6. 8) by more than s. But the feasible set of (6. 9) is of lower dimension than that 
of (6. 8). 
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For solving subproblems (6. 9) we can apply the same procedure as for (6. 1). 
It is clear that after finite number of steps either situation (6. 7) occurs or the di-
mension of the subproblems reduces to zero. In both cases we obtain at least one 
"E optimal" solution of (6. 1). 

Of course the right hand side of inequality (6. 4) may increase by discovering; 
new better solutions and those subproblems of type (6. 8) where does not exceed 
the best objective function's value obtained so far can be dropped. 

To illustrate the method let us take a numerical example: 

Subject to 
/ ( * i = x 2) = - ( * ! - l ) 3 + x 2 - l 

— 153cx + 10jc2 ^ 2 

— 3xx+4x2 â 2. 

max. 

(6. 10> 

P'irst of all determine a local maximumpoint. For this purpose we can use e.g. the 
method of Zangwill [19]. If we start from xx=2, x2=2, then this method leads us-

3 13 to the local maximumpoint = —, x2 — -5- where the objective function's valuer 
2 o 

Ak' " t ) - K l - T 
According to the method proposed in this section we have to start with an; 

arbitrary extreme point. Let this be x 2 =2 , x2=2. The construction of the func-
tions fi(1)(X]) and f2

(1)(x2) is an elementary task. (The upper index denotes the number 
of iterations.) 

' /{ 1 ) (A- 1 ) = - 3 X 1 + 5 , 

Z«1' (^2) = X2 1 • 
The matrix of the transformation and its inverse is the following: 

Ax = 
- 3 41 

1 o j ' A f 1 0 1 
1/4 3/4 

We have to find the maximal positive solutions to the inequalities: (The admiss-
able error e = 0 , l ) 

2 - t ' 
J _ 

2 + 10 
_3 
5 ' 

/ ( i) 

The solutions are ri1} = °°, 4 1 ) = 4/15 . Thus the cutting inequality obtained in the: 
first step is 

[0, 15/4] 
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•or briefly 
26 
15 

26 9 
In the second iterational step let our starting extreme point be x1 = —, x2 = —. 

Since / [ j j > j ) < y , K 2 = K 1 = Y ' The matrix of transformation remains un-

changed but / ( 2 ) (x) will be different from / ( 1 )(x) . By simple computation we get 

75 ' 3375' 

/ 2 ^ (^2) ~ — 1. 

Consider the inequalities 

JO) 

26' 
15 

* 

0 

9 
— 1 1 

V . 5 . . 4 . / 

/ '26' 
1 

•v 

15 
— t 

1 

9 
— t 

3 
. 5.. . 4 . V 

3 ) 3 - í h s -
4 I ~ 5 

196800 The maximal positive solutions /i2) = = 344 729 ' ^he cutting inequality 

482658 3 
X, < — . 

344 729 2 

To make the calculations simple we take the less sharp cut 

3 

Our starting solution in the third iterational step is: xx — A2 

of transformation is also unchanged and K3=K2=K1. 

, x2 — The matrix 
o 

J P ( X 2 ) = X 2 - 1. 
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Consider the inequalities: 

/ ( 3) 

f ( 3) 

" 3 ' 
T 

* 

0 

13 
— 1 

1 
\ . 8 . .4 . / 

/ ' 3 ' 
~2 

* 

1 
V 

13 — 1 3 
\ . 8 . 4 . 

The maximal positive solutions are: ¿i3) = °», tf* = Thus L 3 = 0 which means 
3 13 

that Xj = —, x2 = -¿- . is an "0,1 optimal" solution of (6. 10). 
2 8 

(Throughout the calculations we have assumed M and T very large.) 

7. The solution of general continuous nonlinear programming problems 

As a first step of generalization let us drop the separability stipulation for / (x) . 
That is we consider the problem 

/ (x ) — max 
subject to 

AxSb , (7 . 1) 

where 
(i) Z,= {x |Axsb} is nonvoid and bounded, 

(ii) for every closed, bounded, convex set CcE" there exists a constant Mc 
such that for all xx , x2 £ C 

I / ( X ! ) - / ( X 2 ) | ^ M C | X 1 - X 2 | . (7.2) 

The method proposed to solve (7. 1) is very similar to the méthod of Section 6. 
Since we have used the separability of the objectivé function in the construction of 
/ (x ) we define/(x) for (7. 1) in an other way. Let 

/ c(x) = Afc |x —x„|+/(x0), (7. 3) 

where x0 is the starting extreme point, Mc is the constant belonging to a closed, 
bounded, convex set C (see (7. 2)). It is easy to prove that / c(x) is convex an'd i f / ( x ) 
is continuously differentiable on E", then 

M„ max | / ' ( x ) | , (7.4) 

where / ' ( x ) is the gradient vector o f / (x ) . 
Since in the definition of / c(x) the set C is involved we have to modify the 

procedure of determining tj. In this case tj is the maximal number for which the 
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relations 
Je (Xo - / A f 1 e ) 

/ [ ' 0 = 1, • ••,«) (7 .5) 
X o - i A f ' e ^ C 

hold. 
All other steps of the method of Section 6. remain unchanged. 
It is clear that the efficiency of a particular cut depends greatly on the choice 

of C. Theoretically we ought to choose C to minimize |t+Ax|. But this is a very 
difficult problem solving. Instead of solving this problem we propose choosing 
a region depending on one parameter (e.g. a ball with radius X, a cube with edge-
length X etc.) and to solve the one variable minimization problem. 

Now we are able to treat the general continuous nonlinear programming pro-
blem: 

/ ( x ) — max 
subject to 

x € L , 
g k ( x ) ^ 0 (&=1, •••,/>), (7-6) 

where L is a bounded convex polyhedral set and the functions/(x), gi(x), . . . , gp(x) 
are continuously differentiable over E". 

By using the idea of Fiacco and McCormick [20] we reduce (7. 6) to (7. 1) and 
then we apply the method of cutting planes. 

Problem (7. 6) can always be transformed into the following problem: 

—expz—max 
subject to 

y e s , • 

hk( y ) = 0 (*=1 , ...,/>), (7 .7) 

<p(y)-z = 0, 

where 5 is a convex polyhedron. 
We shall search for a "(<5, Q) solution" (¿>0 , g > 0 ) of (7. 7). A point (y0, z0) 

is called "(S, e) solution" of (7. 7) if 
y 0£S, 

l^*(yo)l = <5 {k=l,...,p), (7 .8 ) 

where z is optimal to . (7. 7). 
Consider the following problem: . 

F(y, z, a,) = — expz —a, [ ¿ / ¡ I (y ) + (q>(y)-zf] - max (7 .9) 

subject to 
y € S , 

where a, is a positive parameter. 
(7. 9) can always be solved since S is bounded. Let (y,, zt) be an "e, optimal" 

solution of (7. 9) (e t>0). 
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Theorem 7. If lim a ,=°° and lim e t=0, then every cluster point of the sequence 
{(yt, z,)} is an optimal solution of (7. 7). 

Proof. Let (y, z) be an optimal solution of (7. 7). By the definition of (yt, zt) 
the following inequalities hold 

- exp z t - a, [ J ; hl (y,) + (<P (y<) - *()2] ^ 

S - e x p z - a , I z)2 - £ , = - e x p z - £ ( . 
lfc = l J 

Hence 

0 = hl(y,) s — [ - e x p z f + expz + et] ^ —[expz + e j (k= 1, ..,,/>). (7.10) 
a, a, 

From (7. 10) we get-for any cluster point (y, z) 

hk{ y) = 0 (k=\,...,p), 

which means that y is feasible. By the same reasoning we obtain 

A , ( y ) - z = 0. 
Also from (7. 10) 

• exp z, S exp z + £, 

which means that if et —0, then z, ->-z. 

Corollary. Let us assume that we know lower and upper bounds for z. 

- N S z ^ M . (7.11) 

Then from (7. 10) 

AJ(y,) - ( e x p z + e() s - ( e x p M + £ 0 ) (7.12) 
a, a, 

( £ 0 S £ , ; i = 1 , 2 , . . . ) (k-\,...,p), 

If we want to hold, then a, has to be chosen to satisfy 

expM + E0 
«r --

Furthermore from (7. 10) 

»pi» | 0 fn 1 
1 — s 1 — " ( 7 - 1 3 ) . 

exp zt—exp z S e0 

exp {(z,—z)+z}—exp z S e0 

exp z [exp (z, —z) — 1] S £„ 
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and using inequality (7. 11) we obtain the estimation 

2 , - Z S log I — 1 
l e x P z I, exp N ) 

If we want zt—z S g to hold, then we have to choose e0 to satisfy 

£„ S (exp e - l ) exp N. (7. 14) 

Summing up. If we find an "e„ optimal" solution to (7. 9) where e0 satisfies 
(7. 14) and a, satisfies (7. 13), then this solution is a "(5, o) solution" of (7. 7). 

To solve (7. 7) we can apply the cutting plane method described in this section. 

8. General pure integer programming 

Let us consider the problem 
/ 0 0 — max 

subject to 

x C l , (8.1). 

x = integer, 

where L is a polyhedron and / (x ) satisfies Property (ii) in Section 7. 
The method of Section 6. and 7. can be modified to be able to solve (8. 1) too. 

The main steps of the procedure are as follows: 
Step 0. Find a feasible point (if there is any) of (8. 1) with an integer program-
ming algorithm. 
Step k. Take an extreme point xk of Lk (L=L1). Denote by Kk the maximal objec-
tive function's value obtained so far on integer points of L. Let Ax be the matrix of 
transformation and T a fixed positive number. 

Case 1. xk is noninteger, f(xk)^:Kk. 
If | t*Ax | s r , then apply cut (6. 5). 
If |t*Ai|=-7", then make a Gomory cut or construct subproblems (6. 9). 

Case 2. xk is noninteger, f(xk) >Kk. 
Make a Gomory cut. 

Case 3. xk is integer. 
Apply cut (6. 5). 
It can easily be proved along the lines of the proof of Theorem 1, Theorem 2 

and Section 6. that these procedures converge in finite number of steps to an "e 
optimal" solution of (8. 1). 
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9. Computational considerations 

For the various algorithms contained in the previous sections concrete computa-
tional experiences are available only for application of the cutting plane method 
to the pure zero-one integer linear programming. Detailed description of test pro-
blems and results will be reported elsewhere. However we can mention in advance 
that finding the optimal solution needs much less computational effort than verify-
ing the optimality. We think that an optimal solution of zero-one integer linear 
programming problems up to 120 variables can be obtained by the cutting plane 
method within acceptable time interval with the best computers available in Hungary. 
It may happen however that we cannot make sure that this is the optimal solu-
tion. 

There are special problems where existence theorems assure that there is at 
least one integer feasible solution and every feasible point is a solution of the prob-
lem (e.g. finding an equilibrium point of a bimatrix game [21]). In these cases the: 
cutting plane method seems to be able to solve the problem completely. 

DEPT. OF MATE MA TICS 
KARL MARX UNIVERSITY OF ECONOMICS 
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