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Abstract 

The paper starts f rom the fact that if r0 is an equivalence relation on a free 
semigroup A, then (uniquely) exists a greatest right compatible refinement of r0 
(see e.g. [3, chapter 9] and [4, 1. §]). 

In Part 1, the authors generalize the above question and investigate it in the 
case when A is an arbitrary semigroup. They present a constructive proof for one 
of the concerning theorems (Theorem 1') e.g. they show that if /•„ is an equivalence 
relation on A, then the relation 

rm = {(x, j)|(x, y) £ R0A(VA, b) [a, b £ A=*«ax, ay), (xb, yb), (axb, ayb) £ /-0)]} 

is the greatest congruent refinement of r0 in the sense that whenever is a congruence 
relation on A and / i c : r 0 , then r1arm. 

In an interesting way, it turns out that in the definition of rm, requiring 
(axb, ayb) £ r0 too (in addition to (ax, ay), (xb, yb) £ r0), is not superfluous: generally 
it does not follow from the other two. 

The most general theorem of Part 1 is proved by using lattice-theoretical consi-
derations (Theorem 1). ' . 

In Part 2, it is proved (Theorems 2 and 2 ' ) that a partial reverse of Theorem 1 
is equivalent to A having some sort of the special "quasi-trivial" structure (Defini-
tion 1). 

In part 3, we represent every equivalence class of initially connected Moore 
automata, the elements of which induce the same automaton mapping / , by the 
function / , derived from / by putting for every w£X* (X is the input' alphabet) 

f ( w ) ^ "the last letter o f / ( w ) " . 

These functions / we simply call automata. We draw a short parallel between 
the notion of an a u t o m a t o n / a n d the classical notion of a Moore automaton. During 
this the theorems of Part 1 prove to be directly applicable to the au toma ta / , and in this 
way classical results concerning Moore automata can be deduced (e.g. the Corollary 
of Statement 1). 

As a generalization of the fact that the semigroup of a finite Moore automaton 
is also finite, we prove (Statement 2) that if r is a right congruence relation of finite 
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index, on a semigroup A, then r can always be refined into a congruence relation 
of finite index. 

In connection with the general investigation of the semigroup of the so-called 
semigroup-machine (A ,A, S), where A is an arbitrary semigroup and (Va, b e A) 
ô(a, b) = ab; we introduce the "congruence relations of right uniformity, left uni-
formity and uniformity" (Def. 8). 

At the end of Part 3, we prove that the possibility of simulating an au tomaton 
/ by an automaton g, depends essentially on the semigroups of / and g, and is 
independent of their input alphabets which may be different. 

1. Maximal compatible refinements of equivalence relations; generalizations 

In this paper by the word relation we shall always mean a binary relation r over 
some nonvoid set A i.e. 

r c A x A = A2. 

If we define an associative binary operation " o " on A, we have the semigroup 
(A, o ) . Fo r the sake of simplicity, we shall refer to A as a semigroup simply by the 
same letter A, instead of (A, o > and instead of xoy we shall write xy. If an equivalence 
relation r on A has the property 

(\ix,y,u,w)[{(x,y)irf\{u,w)(Lr) ^{xu,yw)(Lr], (1.1) 

we call it a congruence relation on A (as a semigroup). If we regard only "one ha l f " 
of (1.1), namely ' 

(Vx,y,u)[((x,y)£r/\u€A)=*(xu,yu)£r] (1.2) 
or 

' ( V x, y, u) [«x, y) € M u e A) (ux, uy) e r], . / (1.3) 

then we call r a right or left congruence relation respectively. Of course, a congruence 
relation is at the same time a right congruence relation as well as a left one. Conversely, 
because of the transitivity of r (as an equivalence relation) 

(V/")[((1.2)A(1.3)) ••=> (1.1)]. 
Hence 

" ( V r ) [ ( ( 1 . 2 ) A ( 1 . 3 ) ) ~ ( l . l ) ] 

i.e. r is a congruence relation iff 

(Vx, y, u)[«x, y) t r A u 6 A) =* (<XM, yu), (ux, uy) € #•)]. • (Î .4) 

We shall always use (1.4) instead of (1.1). 
The following notations will also prove useful 

= {r\r is an equivalence relation on A}, 

fflh = {r\r is a reflexive relation on A}, 

¿PA = {r|r is à symmetric relation on A}, 

¿TA = {r\r is a transitive relation on A}, 
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^ A = {r|r is a congruence relation on A}, 

^ o r A = {r|r is a right congruence relation on A}, 

A = {r\r is a left congruence relation on A}. 

Of course, by definition, %>A = 01A C\,9>A C\3~ A and by the equivalence of (1.1) 
and (1.4) 

Further notations 
nX = {Y|Y.cX} 

(here and all along the symbol " c " may stand for " - " too), 

l x
 de- {<*, z>jz(-X}. 

If r c A 2 and n is a natural number, the n-.th power of r we define as 

r"= {(x, y)\(3z0, z,, .:.,z,,)[(;r0,zl5 ...,zn£A)A 

Az0 = xAzn = yA((z0, zj), . . . , <z„_!, z„>€r)]} 

and the transitive closure of r is 

f ^ u rl. (1.5) 
1=1 

As is well known, for any set X, nX forms a complete lattice with respect to the 
partial ordering a . 

In this case, the meet and join operations are the following 

(VZciTtX) 

n z= n.z (1-6) 
z 6 Z zÇZ 

and 

U z ^ U Z (1.7) 
z € Z ziZ 

where n , u denote the lattice-theoretical operations and f l , U are the usual 
symbols of the set-theoretical intersection and union respectively. We agree (as 
usual) that 

fl z = X , U z = 0. 
z € 0 z € 0 

E.g. if X = A 2 , TIA2 is a complete lattice with meet operation (1.6) and join operation 
(1.7). However, if we replace nA2 with ST A, we must modify the join operation of 
(1.7) for A to be a complete lattice (under the partial ordering c ) 

def r r def " m ^ u r = u /•= U r. (1 8) 
r€ Z Z r £ Z v 1 , 0 - ' 



/ 
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The reason why transitive closure (1.5) has entered is just the transitivity of the ele-
ments of STA. It can easily be checked that with the operations П and И, А, с ) 
is indeed a complete lattice. 

Using the following notat ion for any two lattices V and W, V— W=" W is 
a complete sublattice of V", the following "directed g r a p h " is valid 

* ¡РУАч 
¿ГА <вА Ч Й А . (1.9) 

\ г а к / \ <eaLk / 

(The relation " —" is itself a partial ordering over the complete sublattices of any 
complete lattice, as it is reflexive, antisymmetric and transitive.) 

The "edges" in (1.9) between ¿Г A and 9?A may be verified simply by using 
definitions (1.6) and (1.8), while for those between 4>A and (ваА we must take in to 
account (1.2), (1.3) and (1.4) also (to show that the meet and join operations always 
result in an appropriate — belonging to A etc. — relation). This is a rout ine 
calculation. (7rA2 — ^~A is not true, because the join operat ion in A (see (1.8)) dif-
fers f rom that in 7tA2 (see (1.7))). 

The common unit element of all these complete lattices is A2, while the zero 
e l e m e n t o f ST0tA, <#A, <£nRA, <ёпьА a n d <gaA is 1 A , a n d t h a t o f ST A a n d ¿ГУ A 
is 0. For any two relations r, i\ for which ri cz r, we say. that гг is less than or equal 
to r, or r is greater than or equal to rx, or (equivalently) rx is a refinement of r. 

Theorem 1. If A is a semigroup and 

(a) г ^ Г Я к and M c j ^ A , V D L A, V n R A , V a A}, 
or 

(b) г0££ГА, лг0 and M = ^ A , 

then the set H = M П жг0 has a (unique) greatest element rg 

(Вг,ен)(Уг)[ген=»>гсг^ (l.io) 
Proof 
(a) By the definition of r0, l A c r 0 , so Н ^ 0 (the case is not trivial). Being 

M a complete lattice and H c M , there is in M a least upper bound of H (see (1.8) 
and (1.9)) 

r g ^ U r ( 1 . 1 1 ) 
ген 

for which r € H =>• г с rg of (1.10) holds. So we have only to prove that 

rginr0. (1.12) 

Being r the transitive closure of a subset ( U '') of r0 (see (1.11), (1.8) and (1.5)) 
r € H 

and r0 being transitive, 
r,<=r о (1.13) 

i. e. (1.12) holds. 
(b) Again (the case is not trivial) and by an argument, similar to tha t 

of (a), we again have (1.13) i.e. (1.12). 
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Now we proceed by giving a constructive proof for a special case of Theorem 1, 
part (a). 

Theorem Г. If A is a semigroup, r0 M 6 {<#BR A, <#nLA, <*?„ A}, and H = M П 
Пяг 0 , then (1.10) holds. 

Proof First we deal with the case М=<^ П А and then point out the obvious 
differences for the case M£{ ( i f i ) RA,'^ i ) LA}. 

Let 

/-m= {(x, _y>!<x, v>£r0A(Va, b)[a,be A => {(ax, ay), (xb, yb), (axb, ayb)£r0)]}. (1.14) 

Obviously, rm<^r0 i.e. rm£nr0 and it can easily be verified that rm satisfies con-
dition (1.4), so 

r M € « i ? 0 A ( b r 0 = H. • 

It remained to prove (1.10) for rm in place of rg 

(V r)[r cn=>rczrJ. (1.15) By the definition of H 
' ( i ) r & a A 

(1.16) and 
(ii) f c r 0 

From (i) of (1.16) follows (see (1.4)) that 

(Va, b, x, A)(Vr€H)'[<*, y)tr => ((ax, ay), (xb, yb), (axb, ayb)£r)]. (1.17) 

From (1.17), (ii) of (1.16), and (1.14) we get that 

(V x, y £ A) (V r £ H) [<*, y) £ r => <*, j> € r j , 

which is equivalent to (1.15). 
If e.g. M=i?oL A, then b, (xb, yb) and (axb, ayb) above must be deleted etc. 

Remark. Condition (1.4) suggests that requiring (axb, ayb)£r0 too in (1.14) 
is perhaps superfluous, but this is not at all the case 

Fact. In definition (1.14), condition (Va, b£A)[(axb, ayb)£r0] does not follow 
from 

(Va, b£A)[(ax, ay), (xb, yb)£r0}. 

Proof. We construct an example. Let A = {1, 2}* (the free monoid, generated 
by the set {1, 2}) and 

r0 = {<uav, waz)\u, v, w,z£{ 1, 2}Aa£{ l , 2}*}U{<A, A), (1 ,1), <1, 2), <2, 1>, <2, 2 » , 

where 
A = the empty word (of any free monoid). 

It can easily be seen that r0£^A, because ( f i , y)£r0 means that (denoting the 
length of the words in A by "lg") lg ( /? )=lg(a) and if lg ( j6)>2 , then removing 
the first and last symbols f rom /? and y, the remaining word will be the same. 
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Constructing from this r0 relations 

r'm = {(x, v)|(x, y) € r0A(Va £ A) [(ax, ay), (xa, yd) £ r0]} 

and rm — the latter according to (1.14) —, then by an easy calculation we get that 
'm^>rm, r'm^rm, r'm£<6A, rm$<&nA. Namely, rm= 1A and r'm-rm = {<1, 2), <2, 1)}. 

Remark. If A is a monoid (i.e. a semigroup, having a unit element) then (1.14) 
becomes simpler 

rm^{(x,y)\(ya,b)[a,b£A~(axb,ayb)ir0}}. (1.18) 

2. A characterization of quasi-trivial semigroups 

We shall introduce the following 

Definition 1. W e call the semigroup A right quasi-trivial iff | A | s 3 and there is 
a decomposition of A : A = A 1 R U A 2 R , A l f i n A 2 J ! — 0, for which there is a func-
tion fRA:A2R-*A2R (in case A2R^0) and fRX \ @(fRA)= W ^ ) 1 and 

( V x £ A ) ( V j € A ) 
_ j x, if y £ A 

X y ~ 1/kaOO, if y t A 

We analogously interpret the left quasi-trivial property. We can refer to both 
of right and left quasi-triviality by saying simply quasi-trivial. We call the semi-
group A strongly quasi-trivial, iff the structure of A is one of the following ¡three 
alternatives 

(i) (V .x, >') [x, v 6 A => xy- x], 

(ii) Cix,y)[x,y£A => xy=y], (2.1) 

(iii) ( B C 6 A ) ( V X , 7 ) [ X , J € A =>xy=c]. 

Obviously, if A is strongly quasi-trivial, then it is quasi-trivial also, but the con-
verse is not true. Further, it can easily be checked that the quasi-trivial structure is 
associative. 

As a characterization of quasi-trivial and strongly quasi-trivial semigroups, 
we prove the following theorem, which is a partial reverse of Theorem 1'. 

Theorem 2. If A is a semigroup with | A | s 3 , r 0 c A ! and H = M f i 7 r / - 0 , where 

(i) M=VqrA, 

(ii) M=VnLA, 

(iii) M=<$nA, 

then the needful and sufficient condition of 

( V r o ) [ ( ( r o € ^ A ) A ( 1 . 1 0 ) ) = > r 0 £ F A ] (2.2) 

1 As usual, 2) and M stand for "domain" and "range" respectively. The symbol "I" is used 
to denote the restriction of functions. 
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is that 
(i) A is right quasi-trivial, 

(ii) A is left quasi-trivial, (2.3) 

(iii) A is strongly quasi-trivial, 
respectively. 

Remark. If in (2.2) we change " = > r 0 £ ^ A " into " => r0e<i?A", then (2.2) re-
mains the same. 

Proof. First of all, transform (2.2) into an equivalent form 

( V r0) [((r0 € SfdtA) A(r0 (f JTA))=> 1(1.10)]. (2.4) 

If (2.4) is true, then it must hold for every r0 of the form 

r'0 = 1A U {(a, b), (b, a), (a, c>, (c, a)}, 

a,b,c£ A, a^b^c^a. 

(Evidently, for any such r'0, r¡, t^MA and r'0 $ 5~A.) 
(i) M=<g' i 3RA. If one of the two equivalence relations 

rb¥ lAU{(a,b),(b,a)}(^r'0) 
and 

rc
dJi . l A U{<fl ,c ) ,<c , f l>}(c /o) 

is not a right congruence relation, then (2.4) does not hold for r^—r'^. (Because if 
e.g. rb^QR A and rc£'^[2RA, then taking rg=rc, (1.10) will hold; and if also r c ^ n R A, 
then rg= 1A will satisfy (1.10).) On the other hand, if rb, /-..G^qrA, then sup(H) , by 
virtue of its belonging to ST A, must contain (b, c) (as (b, a), (a, c) £ r'0) therefore in this 
case sup ( H ) £ H , i.e. (2.4) holds. This argument is valid for any r'n of the type (2.5), 
so an equivalent transcription of (2.4) is the following 

(Vtf, b)[(a, b£A) => (1AU {<o, b>, (b, a})fci?flRA]. (2.6) 

Using criterion (1.2), (2.6) is further equivalent to 

(Va, b, x)[(a, b,x£A) => (ax = bxV({ax, bx} c {a, 6}))]. . (2.7) 

Now we shall deduce (2.3) (i) f rom (2.7) (the converse is obvious: if A is right 
quasi-trivial, then (2.7) holds). Indeed, define the subset.A1R of A so 

A1R ^ { * | * e A A ( V ^ ) [ ^ e A = > ^ = y ] } (2.8) 

(obviously, A1R may be empty), and let 

A 2 R ^ f A - A 1 R . (2.9) 
Fix an arbitrary 

x £ A 2 R ( i f A 2 R ^ 0 ) . 

By the definition of A2 R , there is a y £ A, for which 

yx^y, say yx=z. (2.10) 
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Then because of |A |&3, there is a w£A, u ^ y , u ^ z . According to (2.7) 

(z = )yx = uxV({yx, ux} c {y, w}). 

As z^y (see (2.10)) and, by its choosing, z^u, yx=z$ {y, u}, so 

(Vm ) [ (m ^ yAu ^ z ) => ux = z]. ( 2 . 1 1 ) 

Let us now examine zx. On the basis of (2.7), if u^y and w ^ z 

(zx = yx\J({zx, yx) c {z, j}) )A(zx = uxW({zx, ux} c {z, «}). (2.12) 

As yx=ux=z — f rom (2.10) and (2.11) —, (2.12) is not other than 

zx - zv({zx , z} c ({z, y} n {z, «} ) (= {z})) 
i.e. 

zx=z. 

Summing up, if x£A2R, then the value of wx does not depend on w 

( 3 / R A : A 2 R - A)(VVI', X ) [ ( W 6 A A X € A 2 I 0 W.V = / * A ( X ) ] . ( 2 . 1 3 ) 

Taking now into consideration that the structure of A is associative; if x£A2R and 
w, s 6 A, then 

/ R A ( X ) = (WS)X= W(sx)= wfRA(x), WFRA(x)=fRA(x), 

independently of w, i.e. fRA(x)£A2R and 

/ J A ( / S A W ) = wfRA(x)=fRA(x), 

f r o m which we conclude, that in (2.13) 

( « ( A A ) C A 2 S ) A ( / ! A \ ® < J R A ) = W „ A ) ) ( 2 . 1 4 ) 

i.e. A is right quasi-trivial. 
(ii) M = # n i A . The argument is analogous to tha t of case (i). 

(iii) M = < ^ i j A . T h e left counterpar t of (2.7) being 

(Va, b, x)\a, b, A=>(xa = xZ>V({xa, xb}a{a, 6}))], (2.15) 

we get in a similar way as in case (i), that in case (iii) — using condition (1.4) among 
others — (2.2) is equivalent to (2.7) A(2.15), i.e. 

(Va, b, x) [a, b,x£ A^((ax = bx\J({ax, bx) c {a, b}))A 

A (xa = xbV ({xa, xb) c {a, 6})))]. (2.16) 

There are two distinct (disjoint) subcases of case (iii) 

(ot) (Va, 6)[(a, b£AAa b)=^aba {a, b}], 

09) (3a, b)[a, b£AAa^bAab${a, b}] (i.e. 1(a)) . 

(a) Fix a, b for which, say, let 

ab=a (a,6<EA, a^b). (2.17) 
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If c${a, b), then as now case (a) is valid, 

cb£{c,b} (2.18) 
and on the basis of (2.7) and (2.17) 

cb£{a,c}. (2.19) 

As a ^ b , f rom (2.18) and (2.19) follows 

cb=c. (2.20) 

Further (2.7), (2.17) and (2.20) give that 

bb£{a,b}Abb£{c,b} 
i.e. because of a ^ c , 

bb=b. 

From the above we can conclude that 

(VJC)[X€A =>xb=x]. ( 2 . 2 1 ) 
Now let 

y ^ b ^ x ^ y . (2.22) 

On the basis of (2.15), (2.21) and (2.22) 

(xy = xby({xy, xb} c {y, b}))A(xb = x$ {y, b}) i.e. 
xy=x (x^y). (2.23) 

F rom (2.23), quite in a similar way as starting f rom (2.17), we can deduce that 
(2.21) is true for y in place of b. And finally, as y(^b) was arbitrary, we get 

(VM, W)[U, w£ A =>- uw= u]. ( 2 -24 ) 

If at the beginning in (2.17) we alter ab=a into ab=b, then the final result 
will be 

(VW, W)[U, W£A => uw= w], (2.25) 
(P) We can start with 

{a, b, c£A)A(a^b9ic^a)Aab = c. (2.26) 
From (2.15) and (2.26) 

(aa = ab\J({aa, ab} a {a, b}))A(ab = c<t {a, b}), 
from which 

aa=c. (2.27) 

Similarly, by means of (2.7) and (2.26), we get 
bb= c. 
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To determine ac, using (2.15), (2.26) and (2.27), we can write 

(ac = ab\J({ac, ab} c {c, b}j)A(ac = aa\f({ac, aa} c {c, a}))A 

A ab = cAaa = cAia^b^c^a) 
i.e. 

ac=c.' (2.28) 
Likewise 

bc=ca=cb—c. 

For ba, using (2.7), (2.26) and (2.27) 

(ba = aa} c {6, a}))A(oa = c<£ {b, a}) 
and from this 

ba=c. (2.29) 

At last, starting from (2.15), (2.26) and cb=ca=c, in the same way as leading 
to (2.28), we have 

cc=c. (2.30) 
Summing up (2.26) to (2.30) 

Qix,y)[(x,yt{a,b,c))=>xy=c\. ' (2.31) 

If z£ A— {a, b, c}, then in the same fashion as in (2.29) we have 

zb=za=c. 

Analogously to deducing (2.31), we conclude, that 

(Vw, w)[(k, w 6 {z, b, c}) uw= c] (2.32) 
and 

(V u, w) [(«, w t {z, a, c}) => uw= c] 

and similarly, if A— {z, a, b, c}, then 

wz=zw=ww=c. (2.33) 

Summarizing (2.31), (2.32) and (2.33) 

( V . r . j ^ K A =*xy=c]. (2.34) 

As (2.24), (2.25) and (2.34) correspond to (2.1) (i), (2.1) (ii) and (2.1) (iii) re-
spectively, we are ready. 

Remark. In the proof of part (iii) and up to (2.13) in that of part (i) (analogous 
statement holds true of part (ii)) we did not make use of associativity. 

In the following we give a second proof for part (iii), on the basis of (2.13) and 
its left counterpart, without making use of property (2.14) and the left counterpart 
of it i.e. again not taking into account associativity. 

Second proof for part (iii) of Theorem 2. Let 

A = A 1 R U A 2 R ( A 1 R n A 2 R = 0) 
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the decomposition of A, defined by (2.8) and (2.9) (this decomposition exists — and 
is unique — for any semigroup A), and let 

A = A l t U A 2 L ( A l t n A 2 t = 0). 
be the left counterpart of the former decomposition. 

If one of.A1J{ and A1L is A itself, we are ready, evidently having (2.1) (i) or (2.1) (ii) 
respectively. 

If 
A1R ^ 0AA1 L V 0 (2.35) 

then 
(Vx, j ) [ ( x € A l t A j € A 1 R ) => y = xy = x] 

i.e. 
I a I R [ = l A i t l = 1» 
{e} = A 1 R = A1Z. 

and consequently 
A2R = A 2 t = A — {<>} 

(e is the — unique — identity element of A). 
Fur thermore 

( V * , - M x < E A 2 I , A j e A 2 R ) =>xy =fL/L(x)= fRx(y)] 
i.e. 

/«A=/Z.A= constant. (2.36) 

Being | A | S 3 , | / i 2 R | ( = | /12 L | )S2, SO there are x,>>eA2 R , x ^ y , for which on 
one hand ex=fRx(x)=fR\(y)=ey, while on the other hand ex=x^y=ey, which 
is a contradiction, and therefore (2.35) is impossible. Thus, let e.g. 

A2R = AAA2£, 0 

(the symmetric counterpart is quite analogous). 
F rom this immediately follows (2.36) with A2R = A 2 t = A i.e. (2.1) (iii).. 

To close Par t 2 of our paper, we formulate the following 

Theorem 2'. If A is a semigroup and |A|®3, then the following three statements 
are equivalent 

( i ) M = <<S?FLR A , _ 

r0 £ A2, H = M ( 1 nr0 and ( V rQ) [(/•„ € S"« A A (1.10)) =• r„ € 9~k\ (a) (ii) M = ^ n t A , 

(iii) M - ^ ^ A , 

(i) A is right quasi-trivial, 

(b) (ii) A is left quasi-trivial, 

(iii) A is strongly quasi-trivial 

(i) VA = V n R A , 

(c)'. (ii) <6A = <e n hk, 

(iii) e€A = ( € n A 

(i.e. (a)(x) o (b) (x ) «=> (c)(x) fo r x—\, ii, iii). 

6 Acta Cyberaetica 
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Proof. It follows f rom the proof of Theorem 2 ((a) <=> (b) is Theorem 2 itself). 

3. Some questions of the semigroups and the simulation of automata 

In this part of our paper the focus will be on automata, and we shall take 
known several widely accepted notions and notations of automata theory. 

The set of all initially connected Moore automata, having the same input alpha-
bet X and output alphabet Y, can be partitioned into equivalence classes, regard-
ing two automata equivalent iff they induce the same automaton mapping 

J'X* — (Y*—.{A)) (3.1) 

with the following property 

(V«€**)(Vw€*)Or€ Y)[J(uw) = /(«)z]A/(/1)£ Y. 

From this easily follows that 

( V ^ * ) [ l g (/(«)) = lg (z)+ 1]. 
As is known, the functions / defined in (3.1) are in one-to-one correspondence 

with the functions 
f:X* — Y (3.2) 

(if for all u£X*,f(u) is the last symbol of f(u)). 
In the following — unless otherwise stated — by the word automaton we shall 

always mean a function / of the type (3.2) and the (not necessarily finite) non-void 
sets X and Y we shall take given. 

As a generalization of right and left compatible partitions of the semigroup A, 
we formulate the following 

Definition 2. If r£t?nRA, the partition p is a right compatible partition on (the set 
of classes) A/r iff 

( V * X V Z J , Z 2 , Wlt ^ 2 ) [ ( . Y € A A ( Z 1 ; Z 2 , Wlt JV2eA/r)A 

A (Z a {*} c W1)A(Z2{x} C W2)A(ZU Z 2 ) £ p ) => (IV,, W2)EP].2 

The meaning of left compatible partition on a partition is analogous. 

Remark. "Compatible partition on a compatible partition r" is an ordinary 
compatible partition on the factor semigroup A/r. 

Definition 3. Given a set Z and we call the function 

nat r: Z r - Z / r (3.3) 

which has the following property 

(VX) [ A - ( E Z ^ X T (nat/•)(*)], 
the natural mapping belonging to the partition r. 

2 If a binary operation, written as multiplication is defined on a set S, and T, U c S , then 
T-u = TU= {/«|ie TA«eU}. 
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The composition (consecutive application) of two functions / and g we write 
in the form 

g o f ( g o f ) ( x ) ^ f ( g ( x ) ] . (3.4) 

Definition 4. Given a semigroup A, rdt?QR A and the set Y, we call the function 
k:A/r-*Y right compatible-free (in short RCF) iff 

(Mq, i)[(/c = (nat q)os)^q= l A / r ] 

where q is a right compatible partition on A/r and s:(A/r)/q — Y (s is uniquely defined 
by q) (see Definition 2, Definition 3, (3.3) and (3.4)). 

The meaning of left compatible-free (LCF) is analogous. Iff above r A and 
q (A/r), we call the function k homomorph-free (in short HF). 

For any function f we define the following equivalence relation 

/ ° = {(x, y)\(x, y)di2>(f)/\f(x) =/(_>>)}. (3.5) 

Now we are ready to prove the following 

Statement 1. Given a function / : A — Y where A is a semigroup, the decompo-
sition 

/ = . ( n a t r ) o A : (where r ^ € A ) 

(exists and) is unique if at least one of the following conditions holds 

(0 and k is RCF, 

(ii) r e ^ m A and k is LCF, 

(iii) r ^ a A and it is H F 

(see (3.3), (3.4) and Definition 4). 
Proof 

(i) Let r be the greatest ("roughest") right compatible refinement of / ° (see 
(3.5)) which exists (and is unique) on the basis of Theorem V. If / = (nat r ) o k ' 
is another decomposition, for which r^r, then according to Theorem V, rczr and 
there is a right compatible partition q ̂  1 A/r on Air (see Definition 2), for which 
k' = (nat q) o k" (for some k") i.e. k' is not RCF. 

(ii) Quite analogous to case (i). 
(iii) The argument needs only slight and obvious modifications on that of 

case (i). 
Definition 5. We supply r and k (which we have introduced in Statement 1) 

with subscripts R, L and C according to cases (i), (ii) and (iii) in Statement 1 respec-
tively and write 

(i) f = (nat rRf) o kRf, nat r R f ~ R f , 

(ii) / = (nat rLf) o kLf, nat rLf = Lf, 

(iii) / = ( n a t r c / ) o f c c / , n a t r c / = C r . 

6« 
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We call R f , L f and Cf the greatest right compatible, the greatest left compatible 
and the greatest homomorphic component of (or contained in) f , respectively, while 
rCi we call the congruence relation of f . 

Remark. As a consequence of Theorem 1', for any f(:A-*Y) 

r c / c r R f c f ° and rCf<zrLf<zf°. (3.6) 

Corollary of Statement 1, part (i). For any equivalence class K of initially con-
nected Moore automata , the elements of which induce the same au tomaton mapping 
/ ( s e e (3.1)) there is a (unique) au tomaton A in K, which is the s ta te-homomorphic 
image of all members in K. 

Proof I t easily follows f r o m (3.1), (3.2) and par t (i) of Statement 1) (cf. [3, 
Chapter 9], [4, 4. §], [6, § 1.11] and [7, § 3.1]). 

Definition 6. For an a u t o m a t o n / , the factor-semigroup 

Sf = X*/rCf 

we call the semigroup (characteristic semigroup) of f? 

The usual way of defining the semigroups of au tomata is found in the following 

Definition 7. If M— (Q, X, 5) is an au tomaton without output (with state-set Q, 
input alphabet X and next-state function <5), the semigroup of M is 

S(M) = X*!Q(M), (3.7) 

where Q(M) is the congruence relation of M and 

e(M)^{(x,y)\x,yiX*i\(yq)[q<iQ=>qx = qy}}. (3.8) 

(It can easily be checked using (1.4) that indeed q(M) ^QX*.) 

Remarks 
• (a) On the basis of Theorem 1' (see (1.14) and the end of the proof of Theorem V, 

and (1.18) in the Remark at the end of Par t 1) using the notations of Definition 5 

rRf= {(x,y)\x,y£X*h(yd)[a£X*^f(xa)=f(ya)]}, 

rLI = {<*, y € * * A (V a) [a € 'X* => f(ax) = f(ay)}}, (3.9) 

res = .{<*> y)\*> y€X*W<>, b)W, b£X*Af(axb) = f(ayb)}}. 

(b) (3.9) is a more explicit formulation of (3.6), and further we can write 

rCf = {<x, j>>|<x, y)erR;A(Va)[aeX* => <ax, ay)£rRf\}, 

rCf= {(x,y)\(x,y)irLfA(Va)[adX* => (xa, ya)£rLf\}. i3"I0) 

* See (3.2) and our agreement following it; and Def. 5. 
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(c) F r o m the Corollary of Statement 1, Definitions 6 and 7, and equat ions (3.9) 
and (3.10), easily follows that (if A corresponds t o / ) 

S ( I ) = S / (3.11) 
and 

Q(A) = rCf. (3.12) 

(d) If the state-set Q (of A) is finite, then we can even deduce f r o m equat ions 
(3.7) to (3.12) that в ( Л ) is finite too. More generally, in the language of semigroups 

Statement 2. If A is a semigroup, r 6 (£n R A and \A/r | < t h e n there exists 
an г' с r and r' for which \Alr' | < (Analogous statement is t rue of r f/^{iLA.) 

Proof. Let (like (3.10)) 

r'^{(x,y)\(x,y)irh(\ja)[a<iA=>(ax,ay)<ir]}, . (3.13) 

f rom which we can see at once using (1.4) tha t г ' ( a n d evidently r ' c r ) . To 
prove the finiteness of A/r', we rewrite (3.13) in the following way 

гГ={(х,у)\(х,у)£гА(Уа,Ь)[(а,Ь)ег^(ах,Ьу)£г]}. (3.14) 

(3.14) => (3.13) is obvious. (3.14) can be obtained f rom (3.13) by taking into account 
that r fr£nRA, so (a, b)£r => (ay, by) £ r and being r g 2Г A, ((ax, ay) £ r/\(ay, by) €r)=> 
=> (ax, by) € r. Now, with each element x £ A, we can associate a funct ion 

(<px: A/r -•- A/ r )Л( V С) [ C £ A/r =>C{x} с (px(C)] (3.15) 

(this was hinted by F. Gecseg). With the funct ions of (3.15), an equivalent f o r m of 
(3.14) is 

= P ^ -

By the definition of the funct ions cp* (see (3.15)) 

: A/r-» A/r} = F, 

so r' can be obtained f rom r by splitting each class in A/r into not more t h a n | F | 
subclasses and therefore 

|A/r'l = |A/r | • | F | . (3.16) 
Taking 

' A/r' m < 

then | F | = r n m and f rom (3.16) we get 
' \Ajr'\ s i m-rnm = w m + 1 < o o . (3.17) 

Remarks 
(a) (3.17) is also valid for rrCs of any cardinality, but only has practical 

significance. . ' 
(b) Several authors declare that "any semigroup is isomorphic to the semi-

group of an au toma ton" (in the sense of Definition 7), but this is wrong: we m u s t ' 
say "any monoid" instead of "any semigroup" and so the statement will a l ready 
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be true. This easily follows f rom (3.7) and (3.8), or more generally f rom the simple 
fac t : every factor-semigroup of a monoid is again a monoid. The mistake in the 
" p r o o f " of the former defective assertion, which uses the so-called semigroup ma-
chine 

M A = (A, A, <5), ( V ^ ) ^ ! , ^ ) ^ ^ ] 

(where A is any semigroup) is that even if A has no identity element, A* does have, 
when applying (3.8) to Ma- We cannot even be sure of 

S ( M a ) = A , (3.18) 

(for any semigroup A, A i = A, if A is a monoid and if not, then A i = " the monoid 
which we get by attaching to A an external unit element"), because if A is not a 
monoid, then it can well have right uniform elements. The notion of right un i fo rm 
elements we introduce in the following 

Definition 8. In the semigroup A, the elements c and c' are said right uniform iff 

(Mx)[x£A => xc=xc'] 

and the relation of right uniformity in the semigroup A we denote with uR(A). 
The meaning of left uniformity is analogous and the notat ion for the correspond-

ing relation is aL(A). At last, the relation ¿¿(A) = u.R(A) CluL(A) we call the relation 
of uniformity on A. 

Remark. Evidently u.R(A), aL(A), « . ( A ) A . As an example, suppose A is 
right (left) quasi-trivial (see Def. 1), then tt„(A) = AfR U/K°A M A ) = Af L U / & ) (see 
(3.5)). In this case u(A)^1a iff. A 1 R = 0 ( A l t = 0 ) and /*°A= 1A ( /L°A= 1A), so there 
exist A's for which U.r(A)^U(A) («. t(A)=«.(A)). 

A trivial example for uniform elements is the case when A is strongly quasi-
trivial and (2.1) (iii) is valid (Def. 1). A less trivial example is the following: take an 
arbitrary semigroup A„ and choose a c f A „ and let c' $ A 0 , A = Ac U {c'}. If we 
define the operations in A so 

(Vx, y£ A)[x, y£ A„ => (xy(in A) = xy(in A 0 )Ac 'x( in A) = 

= cx(in Ao)Axc'(in A) = xc(in A 0 ) A c V ( i n A) = cc(in A„))], 

then c=c' (mod «¿(A)). Of course, by this method an unbounded number of uni-
fo rm elements can be achieved. (If, fur thermore, we randomly select some pairs 
(x, y) for which xy= c (in A) and change their result into c', then A will remain a 
semigroup and c' will play a more active role). 

Now if A has right uniform elements, then (3.18) will not hold, because when 
forming S (M A ) according to (3.8) and (3.7), the right uniform elements of A will 
"coincide" in S(MA ) . This can be expressed in the following 

Fact. For any semigroup A, S(Ma) = (A/Ur(A))I, and S ( M A ) = A iff A is a 
monoid (see Def. 's 7 and 8). 

Proof. Easy f rom Def. 's 7 and 8. 

Now, let us come to the question of the simulation of automata by each other. 
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We say that the automaton / can simulate (in short: simulates) automaton / ' 
( b o t h / a n d f correspond to (3.2)), iff there are suitable functions h and p, for which 

/' = ho fop, (3.19) 

where (3.19) we interpret in the sense of (3.4). Here 

f:X* — Y and f':X?-+Y. 

A glance at (3.1) and (3.2) convinces us that in (3.19) 

h : X" rv Xt 

( " c ; " and " i = " are the usual symbols for denoting homorphic and isomorphic 
mappings respectively). 

First we prove that the possibility of simulation depends essentially on the 
semigroups of the automata in question, and is independent of the input alphabet 

Theorem 3. Let f : X } — Y and g: X* —• Y two automata, / : S / = S , and 

kCf = iokCg. (3.20) 

Then / a n d g can simulate each other.4 

Proof. It is enough to prove, that g can simulate / (In the following proof, the 
definitions, relations etc. mentioned in footnote 4, will be widely used without 
further explanation.) 

Let 
I h - X f - X ; (3.21) 

be such that 
( V i a ^ / i i W a C / o O W l . (3.22) 

From (3.21) easily follows, that hy can be uniquely extended into a homomor-
phism 

for which automatically h(A)= A (otherwise the reader is likely to know the verifica-
tion of the existence and uniqueness of h, f rom the theory of free semigroups). 

As as consequence of (3.22), it can easily be seen that 

( \ / w e x ; ) [ h ( w ) e ( c f o i ) ( w ) i (3 .23) 

(It is usual also to require f rom h1, that for every x £ X f , lg (/i1 (x)) is the least 
possible, but this is not necessary for our purposes.) 

(3.23) eans that 

(\fweX*)[(hoCg)(w) = (Cfoi)(w)], 
i.e. 

hoCg=Cfoi. 

4 See Def.'s 5, 6, equation (3.19) and convention (3.4). 
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Multiplying this equation with equation 

— kCg, 
we get 

ho(CgokCg)o\Y= Cfo(iolcCg) 

and taking into account (3.20) hogo\Y=f, 
i.e. g can simulate f . 

* COMPUTING CENTER OF THE HUNGARIAN "RESEARCH GROUP ON MATHEMATICAL LOGIC 
MINISTRY OF HEAVY INDUSTRIES, BUDAPEST AND THE THEORY OF AUTOMATA OF THE HUNGARIAN 

ACADEMY OF SCIENCES, SZEGED 

Замечания о максимальных конгруенциях, 
автоматах и смежных темах 

Статья состоит из трех частей. 
В 1-ой части авторы занимаются следующим обобщением: для данной сверх некоторой 

полугруппы А эквивалентностной реляции однозначно существует уточнение по максимальной 
конгруенции, доказано, что вместо эквивалентности и для более обобщенных реляций одноз-
начно существуют максимальные уточнения более общего типа, чем конгруенция. 

Во 2-ой части показывается, что некоторая возможная инвертность результатов 1-ой 
части взаимнооднозначно соответствует определенной специальной операционной структуре 
полугруппы А. 

В 3-ей части исследуются вопросы, связанные с полугруппами автоматов Мура и их 
симуляцией, исходя из эквивалентностных и конгруентных реляций, выходящих из трансфор-
маций авт омата Мура, и используя результаты 1-ой части. 
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