Notes on maximal congruence relations, automata and related topics

By H. Andréka*, S. Horváth**, I. Németi*

Abstract

The paper starts from the fact that if r_{0} is an equivalence relation on a free semigroup \mathbf{A}, then (uniquely) exists a greatest right compatible refinement of r_{0} (see e.g. [3, chapter 9] and [4, 1. §]).

In Part 1, the authors generalize the above question and investigate it in the case when \mathbf{A} is an arbitrary semigroup. They present a constructive proof for one of the concerning theorems (Theorem 1^{\prime}) e.g. they show that if r_{0} is an equivalence relation on \mathbf{A}, then the relation

$$
r_{m} \stackrel{\text { def }}{=}\left\{\langle x, y\rangle \mid\langle x, y\rangle \in r_{0} \wedge(\forall a, b)\left[a, b \in \mathbf{A} \Rightarrow\left(\langle a x, a y\rangle,\langle x b, y b\rangle,\langle a x b, a y b\rangle \in r_{0}\right)\right]\right\}
$$

is the greatest congruent refinement of r_{0} in the sense that whenever r_{1} is a congruence relation on \mathbf{A} and $r_{1} \subset r_{0}$, then $r_{1} \subset r_{m}$.

In an interesting way, it turns out that in the definition of r_{m}, requiring $\langle a x b, a y b\rangle \in r_{0}$ too (in addition to $\langle a x, a y\rangle,\langle x b, y b\rangle \in r_{0}$), is not superfluous: generally it does not follow from the other two.

The most general theorem of Part 1 is proved by using lattice-theoretical considerations (Theorem 1).

In Part 2, it is proved (Theorems 2 and 2^{\prime}) that a partial reverse of Theorem 1 is equivalent to \mathbf{A} having some sort of the special "quasi-trivial" structure (Definition 1).

In part 3, we represent every equivalence class of initially connected Moore automata, the elements of which induce the same automaton mapping. \bar{f}, by the function f, derived from f by putting for every $w \in X^{*}$ (X is the input alphabet)

$$
f(w) \xlongequal{\text { def } " t h e ~ l a s t ~ l e t t e r ~ o f ~} f(w) \text { ". }
$$

These functions f we simply call automata. We draw a short parallel between the notion of an automaton f and the classical notion of a Moore automaton. During this the theorems of Part 1 prove to be directly applicable to the automata f, and in this way classical results concerning Moore automata can be deduced (e.g. the Corollary of Statement 1).

As a generalization of the fact that the semigroup of a finite Moore automaton is also finite, we prove (Statement 2) that if r is a right congruence relation of finite
index, on a semigroup A, then r can always be refined into a congruence relation of finite index.

In connection with the general investigation of the semigroup of the so-called semigroup-machine $\langle\mathbf{A}, \mathbf{A}, \delta\rangle$, where \mathbf{A} is an arbitrary semigroup and ($\forall a, b \in \mathbf{A}$) $\delta(a, b) \stackrel{\text { def }}{=} a b$; we introduce the "congruence relations of right uniformity, left uniformity and uniformity" (Def. 8).

At the end of Part 3, we prove that the possibility of simulating an automaton f by an automaton g, depends essentially on the semigroups of f and g, and is independent of their input alphabets which may be different.

1. Maximal compatible refinements of equivalence relations; generalizations

In this paper by the word relation we shall always mean a binary relation r over some nonvoid set \mathbf{A} i.e.

$$
r \subset \mathbf{A} \times \mathbf{A}=\mathbf{A}^{2}
$$

If we define an associative binary operation " 0 " on A, we have the semigroup $\langle\mathbf{A}, 0\rangle$. For the sake of simplicity, we shall refer to \mathbf{A} as a semigroup simply by the same letter \mathbf{A}, instead of $\langle\mathbf{A}, \circ\rangle$ and instead of $x \circ y$ we shall write $x y$. If an equivalence relation r on A has the property

$$
\begin{equation*}
(\forall x, y, u, w)[(\langle x, y\rangle \in r \wedge\langle u, w\rangle \in r) \Rightarrow\langle x u, y w\rangle \in r], \tag{1.1}
\end{equation*}
$$

we call it a congruence relation on A (as a semigroup). If we regard only "one half" of (1.1), namely

$$
\begin{equation*}
(\forall x, y, u)[(\langle x, y\rangle \in r \wedge u \in \mathbf{A}) \Rightarrow\langle x u, y u\rangle \in r] \tag{1.2}
\end{equation*}
$$

or

$$
\begin{equation*}
(\forall x, y, u)[(\langle x, y\rangle \subseteq r \wedge u \in \mathbf{A}) \Rightarrow\langle u x, u y\rangle \in r], \tag{1.3}
\end{equation*}
$$

then we call r a right or left congruence relation respectively. Of course, a congruence relation is at the same time a right congruence relation as well as a left one. Conversely, because of the transitivity of r (as an equivalence relation)

Hence

$$
(\forall r)[((1.2) \wedge(1.3)) \Rightarrow(1.1)]
$$

$$
(\forall r)[((1.2) \wedge(1.3)) \Leftrightarrow(1.1)]
$$

i.e. r is a congruence relation iff

$$
\begin{equation*}
(\forall x, y, u)[(\langle x, y\rangle \in r \wedge u \in A) \Rightarrow(\langle x u, y u\rangle,\langle u x, u y\rangle \in r)] \tag{i.4}
\end{equation*}
$$

We shall always use (1.4) instead of (1.1).
The following notations will also prove useful

$$
\mathscr{C} \mathbf{A} \stackrel{\text { def }}{=}\{r \mid r \text { is an equivalence relation on } \mathbf{A}\}
$$

$\mathscr{R} \mathbf{A} \stackrel{\text { def }}{=}\{r \mid r$ is a reflexive relation on $\mathbf{A}\}$,
$\mathscr{S} \mathbf{A} \stackrel{\text { def }}{=}\{r \mid r$ is a symmetric relation on $\mathbf{A}\}$,
$\mathscr{T} \mathbf{A} \stackrel{\text { def }}{=}\{r \mid r$ is a transitive relation on $\mathbf{A}\}$,

$$
\begin{gathered}
\mathscr{T} \mathscr{P} \mathbf{A} \stackrel{\text { def }}{=} \mathscr{T} \mathbf{A} \cap \mathscr{S} \mathbf{A}, \\
\mathscr{T} \mathscr{R} \mathbf{A} \stackrel{\text { def }}{=} \mathscr{T} \cap \mathscr{R} \mathbf{A}, \\
\mathscr{S} \mathscr{R} \mathbf{A} \stackrel{\text { def }}{=} \mathscr{S} \mathbf{A} \cap \mathscr{R} \mathbf{A}, \\
\mathscr{C}_{\Omega} \mathbf{A} \stackrel{\text { def }}{=}\{r \mid r \text { is a congruence relation on } \mathbf{A}\}, \\
\mathscr{C}_{\Omega R} \mathbf{A} \stackrel{\text { def }}{=}\{r \mid r \text { is a right congruence relation on } \mathbf{A}\}, \\
\mathscr{C}_{\Omega L} \mathbf{A} \stackrel{\text { def }}{=}\{r \mid r \text { is a left congruence relation on } \mathbf{A}\} .
\end{gathered}
$$

Of course, by definition, $\mathscr{C} \mathbf{A}=\mathscr{R} \mathbf{A} \cap \mathscr{S} \mathbf{A} \cap \mathscr{T} \mathbf{A}$ and by the equivalence of (1.1) and (1.4)

$$
\mathscr{C}_{\Omega} \mathbf{A}=\mathscr{C}_{\Omega R} \mathbf{A} \cap \mathscr{C}_{\Omega L} \mathbf{A}
$$

Further notations

$$
\pi \mathbf{X} \xlongequal{\text { def }}\{\mathbf{Y} \mid \mathbf{Y} \subset \mathbf{X}\}
$$

(here and all along the symbol " \subset " may stand for " $=$ " too),

$$
1_{\mathbf{X}} \xlongequal{\text { def }}\{\langle z, z\rangle \mid z \in \mathbf{X}\}
$$

If $r \subset \mathbf{A}^{2}$ and n is a natural number, the n-th power of r we define as

$$
\begin{gathered}
r^{n} \stackrel{\text { def }}{=}\left\{\langle x, y\rangle \mid\left(\exists z_{0}, z_{1}, \ldots, z_{n}\right)\left[\left(z_{0}, z_{1}, \ldots, z_{n} \in A\right) \wedge\right.\right. \\
\left.\left.\wedge z_{0}=x \wedge z_{n}=y \wedge\left(\left\langle z_{0}, z_{1}\right\rangle, \ldots,\left\langle z_{n-1}, z_{n}\right\rangle \in r\right)\right]\right\}
\end{gathered}
$$

and the transitive closure of r is

$$
\begin{equation*}
\hat{r} \xlongequal{\text { def }} \bigcup_{i=1}^{\infty} r^{i} . \tag{1.5}
\end{equation*}
$$

As is well known, for any set $\mathbf{X}, \pi \mathbf{X}$ forms a complete lattice with respect to the partial ordering \subset.

In this case, the meet and join operations are the following

$$
(\forall \mathbf{Z} \subset \pi \mathbf{X})\left\{\begin{array}{l}
\cap \mathrm{Z} z \stackrel{\text { def }}{=} \cap_{z \in \mathbf{Z}} z \tag{1.6}\\
\text { and } \\
\underset{z \in \mathbf{Z}}{\cup} z \stackrel{\text { def }}{=} \bigcup_{z \in \mathbf{Z}} z
\end{array}\right.
$$

where \cap, \cup denote the lattice-theoretical operations and \cap, \cup are the usual symbols of the set-theoretical intersection and union respectively. We agree (as usual) that

$$
\bigcap_{z \in \emptyset} z=\mathbf{X}, \quad \bigcup_{z \in \emptyset} z=\emptyset
$$

E.g. if $\mathbf{X}=\mathbf{A}^{2}, \pi \mathbf{A}^{2}$ is a complete lattice with meet operation (1.6) and join operation (1.7). However, if we replace $\pi \mathbf{A}^{2}$ with $\mathscr{T} \mathbf{A}$, we must modify the join operation of (1.7) for $\mathscr{T} \mathbf{A}$ to be a complete lattice (under the partial ordering \subset)

$$
\begin{equation*}
\underset{r \in \mathbf{Z}}{ } r \stackrel{\text { def }}{=} \underset{r \in \mathbf{Z}}{\mathbf{U}} r \stackrel{\text { def }}{=} \bigcup_{r \in \mathbf{Z}} r \tag{1.8}
\end{equation*}
$$

The reason why transitive closure (1.5) has entered is just the transitivity of the elements of $\mathscr{T} \mathbf{A}$. It can easily be checked that with the operations \cap and $L,\langle\mathscr{T} \mathbf{A}, \subset\rangle$ is indeed a complete lattice.

Using the following notation for any two lattices V and $W, V \rightarrow W=$ " W is a complete sublattice of V ", the following "directed graph" is valid

$$
\begin{equation*}
\mathscr{T} \mathbf{A} \xlongequal[\mathscr{T} \mathscr{R} \mathbf{A}]{\mathscr{T S} \mathbf{A}} \mathscr{C}_{\mathbf{A}} \mathscr{\mathscr { C }}_{\Omega \mathrm{L}} \mathbf{A} \nearrow \mathscr{C}_{\Omega R} \mathbf{A} \mathscr{C}_{\Omega} \mathbf{A} . \tag{1.9}
\end{equation*}
$$

(The relation " \rightarrow " is itself a partial ordering over the complete sublattices of any complete lattice, as it is reflexive, antisymmetric and transitive.)

The "edges" in (1.9) between $\mathscr{T} \mathbf{A}$ and $\mathscr{C} \mathbf{A}$ may be verified simply by using definitions (1.6) and (1.8), while for those between $\mathscr{C} \mathbf{A}$ and $\mathscr{C}_{\Omega} \mathbf{A}$ we must take into account (1.2), (1.3) and (1.4) also (to show that the meet and join operations always result in an appropriate - belonging to $\mathscr{C}_{\Omega R} \mathbf{A}$ etc. - relation). This is a routine calculation. $\left(\pi \mathbf{A}^{2} \rightarrow \mathscr{T} \mathbf{A}\right.$ is not true, because the join operation in $\mathscr{T} \mathbf{A}$ (see (1.8)) differs from that in $\pi \mathbf{A}^{2}$ (see (1.7))).

The common unit element of all these complete lattices is \mathbf{A}^{2}, while the zero element of $\mathscr{T} \mathscr{R} \mathbf{A}, \mathscr{C} \mathbf{A}, \mathscr{C}_{\Omega R} \mathbf{A}, \mathscr{C}_{\Omega L} \mathbf{A}$ and $\mathscr{C}_{\Omega_{2}} \mathbf{A}$ is $1_{\mathbf{A}}$, and that of $\mathscr{T} \mathbf{A}$ and $\mathscr{T} \mathscr{S} \mathbf{A}$ is \emptyset. For any two relations r, r_{1} for which $r_{1} \subset r$, we say that r_{1} is less than or equal to r, or r is greater than or equal to r_{1}, or (equivalently) r_{1} is a refinement of r.

Theorem 1. If \mathbf{A} is a semigroup and
or
(b)

$$
\begin{gather*}
r_{0} \in \mathscr{T} \mathscr{R} \mathbf{A} \quad \text { and } \quad \mathbf{M} \in\left\{\mathscr{C} \mathbf{A}, \mathscr{C}_{\Omega L} \mathbf{A}, \mathscr{C}_{\Omega R} \mathbf{A}, \mathscr{C}_{\Omega} \mathbf{A}\right\}, \tag{a}\\
r_{0} \in \mathscr{T} \mathbf{A}, \quad \pi r_{0} \cap \mathscr{S} \mathbf{A} \neq \emptyset \quad \text { and } \quad \mathbf{M}=\mathscr{T} \mathscr{S} \mathbf{A},
\end{gather*}
$$

then the set $\mathbf{H} \xlongequal{\text { def }} \mathbf{M} \cap \pi r_{0}$ has a (unique) greatest element r_{g}

$$
\begin{equation*}
\left(\exists r_{g} \in \mathbf{H}\right)(\forall r)\left[r \in \mathbf{H} \Rightarrow r \subset r_{g}\right] . \tag{1.10}
\end{equation*}
$$

Proof
(a) By the definition of $r_{0}, 1_{\mathbf{A}} \subset r_{0}$, so $\mathbf{H} \neq \emptyset$ (the case is not trivial). Being \mathbf{M} a complete lattice and $\mathbf{H} \subset \mathbf{M}$, there is in \mathbf{M} a least upper bound of \mathbf{H} (see (1.8) and (1.9))

$$
\begin{equation*}
r_{g} \stackrel{\text { def }}{=} \underset{r \in \mathbf{H}}{ } r \tag{1.11}
\end{equation*}
$$

for which $r \in \mathbf{H} \Rightarrow r \subset r_{g}$ of (1.10) holds. So we have only to prove that

$$
\begin{equation*}
r_{g} \in \pi r_{0} . \tag{1.12}
\end{equation*}
$$

Being r_{g} the transitive closure of a subset $\left(\bigcup_{r \in H} r\right)$ of r_{0} (see (1.11), (1.8) and (1.5)) and r_{0} being transitive,

$$
\begin{equation*}
r_{g} \subset r_{0} \tag{1.13}
\end{equation*}
$$

i. e. (1.12) holds.
(b) Again $\mathbf{H} \neq \emptyset$ (the case is not trivial) and by an argument, similar to that of (a), we again have (1.13) i.e. (1.12).

Now we proceed by giving a constructive proof for a special case of Theorem 1, part (a).

Theorem 1^{\prime}. If \mathbf{A} is a semigroup, $r_{0} \in \mathscr{C} \mathbf{A}, \mathbf{M} \in\left\{\mathscr{C}_{\Omega R} \mathbf{A}, \mathscr{C}_{\Omega L} \mathbf{A}, \mathscr{C}_{\Omega_{2}} \mathbf{A}\right\}$, and $\mathbf{H} \stackrel{\text { def }}{=} \mathbf{M} \cap$ $\cap \pi r_{0}$, then (1.10) holds.

Proof. First we deal with the case $\mathbf{M}=\mathscr{C}_{\Omega} \mathbf{A}$ and then point out the obvious differences for the case $\mathbf{M} \in\left\{\mathscr{C}_{\Omega R} \mathbf{A}, \mathscr{C}_{\Omega L} \mathbf{A}\right\}$.

Let
$r_{m} \xlongequal{\text { def }}\left\{\langle x, y\rangle\left\langle\langle x, y\rangle \in r_{0} \wedge(\forall a, b)\left[a, b \in \mathbf{A} \Rightarrow\left(\langle a x, a y\rangle,\langle x b, y b\rangle,\langle a x b, a y b\rangle \in r_{0}\right)\right]\right\}\right.$.
Obviously, $r_{m} \subset r_{0}$ i.e. $r_{m} \in \pi r_{0}$ and it can easily be verified that r_{m} satisfies condition (1.4), so

$$
r_{m} \in \mathscr{C}_{\Omega} \dot{A} \cap \pi r_{0}=\mathbf{H}
$$

It remained to prove (1.10) for r_{m} in place of r_{g}

$$
\begin{equation*}
(\forall r)\left[r \in \mathbf{H} \Rightarrow r \subset r_{m}\right] . \tag{1.15}
\end{equation*}
$$

By the definition of \mathbf{H}

$$
r \in \mathbf{H} \Leftrightarrow\left\{\begin{array}{ll}
\text { (i) } & r \in \mathscr{C}_{\Omega} \mathbf{A} \tag{1.16}\\
\text { and } & \\
\text { (ii) } & r \subset r_{0}
\end{array}\right\}
$$

From (i) of (1.16) follows (see (1.4)) that
$(\forall a, b, x, y \in \mathbf{A})(\forall r \in \mathbf{H})[\langle x, y\rangle \in r \Rightarrow(\langle a x, a y\rangle,\langle x b, y b\rangle,\langle a x b, a y b\rangle \in r)]$.
From (1.17), (ii) of (1.16), and (1.14) we get that

$$
(\forall x, y \in \mathbf{A})(\forall r \in \mathbf{H})\left[\langle x, y\rangle \in r \Rightarrow\langle x, y\rangle \in r_{m}\right],
$$

which is equivalent to (1.15).
If e.g. $\mathbf{M}=\mathscr{C}_{\Omega L} \mathbf{A}$, then $b,\langle x b, y b\rangle$ and $\langle a x b, a y b\rangle$ above must be deleted etc.
Remark. Condition (1.4) suggests that requiring $\langle a x b, a y b\rangle \in r_{0}$ too in (1.14) is perhaps superfluous, but this is not at all the case

Fact. In definition (1.14), condition $(\forall a, b \in \mathbf{A})\left[\langle a x b, a y b\rangle \in r_{0}\right]$ does not follow from

$$
(\forall a, b \in \mathbf{A})\left[\langle a x, a y\rangle,\langle x b, y b\rangle \in r_{0}\right] .
$$

Proof. We construct an example. Let $\mathbf{A}=\{1,2\}^{*}$ (the free monoid, generated by the set $\{1,2\}$) and
$r_{0} \stackrel{\text { def }}{=}\left\{\langle u \alpha v, w \alpha z\rangle \mid u, v, w, z \in\{1,2\} \wedge \alpha \in\{1,2\}^{*}\right\} \cup\{\langle\Lambda, \Lambda\rangle,\langle 1,1\rangle,\langle 1,2\rangle,\langle 2,1\rangle,\langle 2,2\rangle\}$, where
$\Lambda \stackrel{\text { def }}{=}$ the empty word (of any free monoid).
It can easily be seen that $r_{0} \in \mathscr{C} \mathbf{A}$, because $\langle\beta, \gamma\rangle \in r_{0}$ means that (denoting the length of the words in A by " \lg ") $\lg (\beta)=\lg (\alpha)$ and if $\lg (\beta)>2$, then removing the first and last symbols from β and γ, the remaining word will be the same.

Constructing from this r_{0} relations

$$
\left.r_{m}^{\prime} \stackrel{\text { def }}{=}\{\langle x, y\rangle\rangle\langle x, y\rangle \in r_{0} \wedge(\forall a \in A)\left[\langle a x, a y\rangle,\langle x a, y a\rangle \in r_{0}\right]\right\}
$$

and r_{m} - the latter according to (1.14) -, then by an easy calculation we get that $r_{m}^{\prime} \supset r_{m}, r_{m}^{\prime} \neq r_{m}, r_{m}^{\prime} \leqslant \mathscr{C} A, r_{m} \ddagger \mathscr{C}_{\Omega} \mathbf{A}$. Namely, $r_{m}=1_{\mathrm{A}}$ and $r_{m}^{\prime}-r_{m}=\{\langle 1,2\rangle,\langle 2,1\rangle\}$.

Remark. If \mathbf{A} is a monoid (i.e. a semigroup, having a unit element) then (1.14) becomes simpler

$$
\begin{equation*}
r_{m} \stackrel{\text { def }}{=}\left\{\left\langle x, y_{j}^{\prime}\right|(\forall a, \dot{b})\left[a, b \in \mathbf{A} \Rightarrow\langle a x b, a y b\rangle \in r_{0}\right]\right\} . \tag{1.18}
\end{equation*}
$$

2. A characterization of quasi-trivial semigroups

We shall introduce the following
Definition 1. We call the semigroup A right quasi-trivial iff $|\mathbf{A}| \geqq 3$ and there is a decomposition of $\mathbf{A}: \mathbf{A}=\mathbf{A}_{1 R} \cup \mathbf{A}_{2 R}, \mathbf{A}_{1 R} \cap \mathbf{A}_{2 R}=\emptyset$, for which there is a function $f_{R A}: \mathbf{A}_{2 R} \rightarrow \mathbf{A}_{2 R}$ (in case $A_{2 R} \neq \emptyset$) and $f_{R A} \backslash \mathscr{R}\left(f_{R A}\right)=1_{\mathscr{R}}\left(f_{R A}\right)^{1}$ and

$$
(\forall x \in \mathbf{A})(\forall y \in \mathbf{A})\left[x y=\left\{\begin{array}{ccc}
x, & \text { if } & y \in \mathbf{A}_{1 R} \\
f_{R \mathbf{R}}(y), & \text { if } & y \in \mathbf{A}_{2 R}
\end{array}\right] .\right.
$$

We analogously interpret the left quasi-trivial property. We can refer to both of right and left quasi-triviality by saying simply quasi-trivial. We call the semigroup. A strongly quasi-trivial, iff the structure of \mathbf{A} is one of the following three alternatives
(i) $(\forall x, y)[x, y \in \mathbf{A} \Rightarrow x y=x]$,
(ii) $(\forall x, y)[x, y \in \mathbf{A} \Rightarrow x y=y]$,
(iii) $(\exists c \in \mathbf{A})(\forall x, y)[x, y \in \mathbf{A} \Rightarrow x y=c]$.

Obviously, if \mathbf{A} is strongly quasi-trivial, then it is quasi-trivial also, but the converse is not true. Further, it can easily be checked that the quasi-trivial structure is associative.

As a characterization of quasi-trivial and strongly quasi-trivial semigroups, we prove the following theorem, which is a partial reverse of Theorem 1'.

Theorem 2. If \mathbf{A} is a semigroup with $|\mathbf{A}| \geqq 3, r_{0} \subset \mathbf{A}^{2}$ and $\mathbf{H} \stackrel{\text { def }}{=} \mathbf{M} \cap \pi r_{0}$, where
(i) $\mathrm{M}=\mathscr{C}_{\Omega R} \mathrm{~A}$,
(ii) $\mathbf{M}=\mathscr{C}_{\Omega L} \mathbf{A}$,
(iii) $\mathbf{M}=\mathscr{C}_{\Omega} \mathbf{A}$,
then the needful and sufficient condition of

$$
\begin{equation*}
\left(\forall r_{0}\right)\left[\left(\left(r_{0} \in \mathscr{P} \mathscr{R} \mathbf{A}\right) \wedge(1.10)\right) \Rightarrow r_{0} \in \mathscr{T} \mathbf{A}\right] \tag{2.2}
\end{equation*}
$$

[^0]is that
(i) \mathbf{A} is right quasi-trivial,
(ii) \mathbf{A} is left quasi-trivial,
(iii) \mathbf{A} is strongly quasi-trivial,
respectively.
Remark. If in (2.2) we change " $\Rightarrow r_{0} \in \mathscr{T} A$ " into " $\Rightarrow \dot{r}_{0} \in \mathscr{C} \mathbf{A}$ ", then (2.2) remains the same.

Proof. First of all, transform (2.2) into an equivalent form

$$
\begin{equation*}
\left(\forall r_{0}\right)\left[\left(\left(r_{0} \in \mathscr{S} \mathscr{R} \mathbf{A}\right) \wedge\left(r_{0} \nsubseteq \mathscr{T} \mathbf{A}\right)\right) \Rightarrow 7(1.10)\right] . \tag{2.4}
\end{equation*}
$$

If (2.4) is true, then it must hold for every r_{0} of the form

$$
\begin{gather*}
r_{0}^{\prime} \stackrel{\operatorname{def}}{=} 1_{\mathbf{A}} \cup\{\langle a, b\rangle,\langle b, a\rangle,\langle a, c\rangle,\langle c, a\rangle\}, \tag{2.5}\\
a, b, c \in \mathbf{A}, \quad a \neq b \neq c \neq a .
\end{gather*}
$$

(Evidently, for any such $r_{0}^{\prime}, r_{0}^{\prime} \in \mathscr{P} \mathscr{R} \mathbf{A}$ and $r_{0}^{\prime} \ddagger \mathscr{T} \mathbf{A}$.)
(i) $\mathbf{M}=\mathscr{C}_{\Omega R} \mathbf{A}$. If one of the two equivalence relations

$$
r_{b} \stackrel{\text { def }}{=} 1_{\mathbf{A}} \cup\{\langle a, b\rangle,\langle b, a\rangle\}\left(\subset r_{0}^{\prime}\right)
$$

and

$$
r_{c} \stackrel{\text { def }}{=} 1_{\mathbf{A}} \cup\{\langle a, c\rangle,\langle c, a\rangle\}\left(\subset r_{0}^{\prime}\right)
$$

is not a right congruence relation, then (2.4) does not hold for $r_{0}=r_{0}^{\prime}$. (Because if e.g. $r_{b} \notin \mathscr{C}_{\Omega R} \mathbf{A}$ and $r_{c} \in \mathscr{C}_{\Omega R} \mathbf{A}$, then taking $r_{g}=r_{c}$, (1.10) will hold; and if also $r_{c} \notin \mathscr{C}_{\Omega R} \mathbf{A}$, then $r_{g}=1_{\mathrm{A}}$ will satisfy (1.10).) On the other hand, if $r_{b}, r_{c} \in \mathscr{C}_{\Omega R} \mathbf{A}$, then $\sup (\mathbf{H})$, by virtue of its belonging to $\mathscr{T} \mathbf{A}$, must contain $\langle b, c\rangle$ (as $\langle b, a\rangle,\langle a, c\rangle \in r_{0}^{\prime}$) therefore in this case $\sup (\mathbf{H}) \in \mathbf{H}$, i.e. (2.4) holds. This argument is valid for any r_{0}^{\prime} of the type (2.5), so an equivalent transcription of (2.4) is the following

$$
\begin{equation*}
(\forall a, b)\left[(a, b \in A) \Rightarrow\left(1_{\mathbf{A}} \cup\{\langle a, b\rangle,\langle b, a\}) \in \mathscr{C}_{\Omega R} \mathbf{A}\right] .\right. \tag{2.6}
\end{equation*}
$$

Using criterion (1.2), (2.6) is further equivalent to

$$
\begin{equation*}
(\forall a, b, x)[(a, b, x \in A) \Rightarrow(a x=b x \vee(\{a x, b x\} \subset\{a, b\}))] \tag{2.7}
\end{equation*}
$$

Now we shall deduce (2.3) (i) from (2.7) (the converse is obvious: if \mathbf{A} is right quasi-trivial, then (2.7) holds). Indeed, define the subset. $A_{1 R}$ of A so

$$
\begin{equation*}
\mathbf{A}_{i R} \stackrel{\text { def }}{=}\{x \mid x \in \mathbf{A} \wedge(\forall y)[y \in \mathbf{A} \Rightarrow y x=y]\} \tag{2.8}
\end{equation*}
$$

(obviously, $\mathbf{A}_{1 R}$ may be empty), and let

$$
\begin{equation*}
\mathbf{A}_{2 R} \stackrel{\text { def }}{=} \mathbf{A}-\mathbf{A}_{1 R} . \tag{2.9}
\end{equation*}
$$

Fix an arbitrary

$$
x \in \mathbf{A}_{2 R} \quad \text { (if } \mathbf{A}_{2 R} \neq \emptyset \text {). }
$$

By the definition of $\mathbf{A}_{2 R}$, there is a $y \in \mathbf{A}$, for which

$$
\begin{equation*}
y x \neq y, \quad \text { say } \quad y x=z \tag{2.10}
\end{equation*}
$$

Then because of $|\mathbf{A}| \geqq 3$, there is a $u \in \mathbf{A}, u \neq \boldsymbol{y}, u \neq z$. According to (2.7)

$$
(z=) y x=u x \vee(\{y x, u x\} \subset\{y, u\})
$$

As $z \neq y$ (see (2.10)) and, by its choosing, $z \neq u, y x=z \notin\{y, u\}$, so

$$
\begin{equation*}
(\forall u)[(u \neq y \wedge u \neq z) \Rightarrow u x=z] . \tag{2.11}
\end{equation*}
$$

Let us now examine $z x$. On the basis of (2.7), if $u \neq y$ and $u \neq z$

$$
\begin{equation*}
(z x=y x \vee(\{z x, y x\} \subset\{z, y\})) \wedge(z x=u x \vee(\{z x, u x\} \subset\{z, u\}) \tag{2.12}
\end{equation*}
$$

As $y x=u x=z-$ from (2.10) and (2.11) -, (2.12) is not other than
i.e.

$$
z x=z \vee(\{z x, z\} \subset(\{z, y\} \cap\{z, u\})(=\{z\}))
$$

$$
z x=z .
$$

Summing up, if $x \in \mathbf{A}_{2 R}$, then the value of $w x$. does not depend on w

$$
\begin{equation*}
\left(\exists f_{R \mathbf{A}}: \mathbf{A}_{2 R} \rightarrow \mathbf{A}\right)(\forall w, x)\left[\left(w \in \mathbf{A} \wedge x \in \mathbf{A}_{2 R}\right) \Rightarrow w x=f_{R \mathbf{A}}(x)\right] . \tag{2.13}
\end{equation*}
$$

Taking now into consideration that the structure of \mathbf{A} is associative; if $x \in \mathbf{A}_{\mathbf{2 R}}$ and $w, s \in \mathbf{A}$, then

$$
f_{R \mathrm{~A}}(x)=(w s) x=w(s x)=w f_{R \mathrm{~A}}(x), \quad w f_{R \mathrm{~A}}(x)=f_{R \mathrm{~A}}(x),
$$

independently of w, i.e. $f_{R \mathrm{~A}}(x) \in \mathbf{A}_{2 R}$ and

$$
f_{R \mathbf{A}}\left(f_{R \mathbf{A}}(x)\right)=w f_{\mathrm{RA}}(x)=f_{R \mathrm{~A}}(x)
$$

from which we conclude, that in (2.13)

$$
\begin{equation*}
\left(\mathscr{R}\left(f_{R A}\right) \subset \mathbf{A}_{2 R}\right) \wedge\left(f_{R A} \mid \mathscr{R}\left(f_{R A}\right)=1_{\mathscr{R}\left(f_{R A}\right)}\right) \tag{2.14}
\end{equation*}
$$

i.e. \mathbf{A} is right quasi-trivial.
(ii) $\mathbf{M}=\mathscr{C}_{\Omega L} \mathbf{A}$. The argument is analogous to that of case (i).
(iii) $\mathbf{M}=\mathscr{C}_{\Omega} \mathbf{A}$.The left counterpart of (2.7) being

$$
\begin{equation*}
(\forall a, b, x)[a, b, x \in \mathbf{A} \Rightarrow(x a=x b \vee(\{x a, x b\} \subset\{a, b\}))], \tag{2.15}
\end{equation*}
$$

we get in a similar way as in case (i), that in case (iii) - using condition (1.4) among others - (2.2) is equivalent to (2.7) $\wedge(2.15)$, i.e.

$$
\begin{gather*}
(\forall a, b, x)[a, b, x \in \mathbf{A} \Rightarrow((a x=b x \vee(\{a x, b x\} \subset\{a, b\})) \wedge \\
\wedge(x a=x b \vee(\{x a, x b\} \subset\{a, b\})))] . \tag{2.16}
\end{gather*}
$$

There are two distinct (disjoint) subcases of case (iii)

$$
\begin{array}{ll}
\text { (} \alpha) & (\forall a, b)[(a, b \in \mathbf{A} \wedge a \neq b) \Rightarrow a b \subset\{a, b\}], \\
\text { (} \beta \text {) } \quad & (\exists a, b)[a, b \in \mathbf{A} \wedge a \neq b \wedge a b \notin\{a, b\}] \quad \text { (i.e. }\urcorner(\alpha)) .
\end{array}
$$

(α) Fix a, b for which, say, let

$$
\begin{equation*}
a b=a \quad(a, b \in \mathbf{A}, a \neq b) . \tag{2.17}
\end{equation*}
$$

If $c \notin\{a, b\}$, then as now case (α) is valid,

$$
\begin{equation*}
c b \in\{c, b\} \tag{2.18}
\end{equation*}
$$

and on the basis of (2.7) and (2.17)

$$
\begin{equation*}
c b \in\{a, c\} . \tag{2.19}
\end{equation*}
$$

As $a \neq b$, from (2.18) and (2.19) follows

$$
\begin{equation*}
c b=c . \tag{2.20}
\end{equation*}
$$

Further (2.7), (2.17) and (2.20) give that

$$
b b \in\{a, b\} \wedge b b \in\{c, b\}
$$

i.e. because of $a \neq c$;

$$
b b=b
$$

From the above we can conclude that

$$
\begin{equation*}
(\forall x)[x \in \mathbf{A} \Rightarrow x b=x] . \tag{2.21}
\end{equation*}
$$

Now let

$$
\begin{equation*}
y \neq b \neq x \neq y \tag{2.22}
\end{equation*}
$$

On the basis of (2.15), (2.21) and (2.22)

$$
(x y=x b \vee(\{x y, x b\} \subset\{y, b\})) \wedge(x b=x \notin\{y, b\})
$$

i.e.

$$
\begin{equation*}
x y=x \quad(x \neq y) . \tag{2.23}
\end{equation*}
$$

From (2.23), quite in a similar way as starting from (2.17), we can deduce that (2.21) is true for y in place of b. And finally, as $y(\neq b)$ was arbitrary, we get

$$
\begin{equation*}
(\forall u, w)[u, w \in \mathbf{A} \Rightarrow u w=u] . \tag{2.24}
\end{equation*}
$$

If at the beginning in (2.17) we alter $a b=a$ into $a b=b$, then the final result will be

$$
\begin{equation*}
(\forall u, w)[u, w \in A \Rightarrow u w=w] . \tag{2.25}
\end{equation*}
$$

(β) We can start with

$$
\begin{equation*}
(a, b, c \in A) \wedge(a \neq b \neq c \neq a) \wedge a b=c . \tag{2.26}
\end{equation*}
$$

From (2.15) and (2.26)
from which

$$
(a a=a b \vee(\{a a, a b\} \subset\{a, b\})) \wedge(a b=c \notin\{a, b\}),
$$

$$
\begin{equation*}
a a=c . \tag{2.27}
\end{equation*}
$$

Similarly, by means of (2.7) and (2.26), we get

$$
b b=c .
$$

To determine $a c$, using (2.15), (2.26) and (2.27), we can write

$$
\begin{gathered}
(a c=a b \vee(\{a c, a b\} \subset\{c, b\})) \wedge(a c=a a \vee(\{a c, a a\} \subset\{c, a\})) \wedge \\
\wedge a b=c \wedge a a=c \wedge(a \neq b \neq c \neq a)
\end{gathered}
$$

i.e.

$$
\begin{equation*}
a c=c . \tag{2.28}
\end{equation*}
$$

Likewise

$$
b c=c a=c b=c
$$

For $b a$, using (2.7), (2.26) and (2.27)

$$
(b a=a a \vee(\{b a, a a\} \subset\{b, a\})) \wedge(a a=c \notin\{b, a\})
$$

and from this

$$
\begin{equation*}
b a=c . \tag{2.29}
\end{equation*}
$$

At last, starting from (2.15), (2.26) and $c b=c a=c$, in the same way as leading to (2.28), we have

$$
\begin{equation*}
c c=c \tag{2.30}
\end{equation*}
$$

Summing up (2.26) to (2.30)

$$
\begin{equation*}
(\forall x, y)[(x, y \in\{a, b, c\}) \Rightarrow x y=c] . \tag{2.31}
\end{equation*}
$$

If $z \in \mathbf{A}-\{a, b, c\}$, then in the same fashion as in (2.29) we have

$$
z b=z a=c .
$$

Analogously to deducing (2.31); we conclude, that

$$
\begin{equation*}
(\forall u, w)[(u, w \in\{z, b, c\}) \Rightarrow u w=c] \tag{2.32}
\end{equation*}
$$

and

$$
(\forall u, w)[(u, w \in\{z, a, c\}) \Rightarrow u w=c]
$$

and similarly, if $\boldsymbol{w} \in \mathbf{A}-\{z, a, b, c\}$, then

$$
\begin{equation*}
w z=z w=w w=c . \tag{2.33}
\end{equation*}
$$

Summarizing (2.31), (2.32) and (2.33)

$$
\begin{equation*}
(\forall x, y)[x, y \in \mathbf{A} \Rightarrow x y=c] . \tag{2.34}
\end{equation*}
$$

As (2.24), (2.25) and (2.34) correspond to (2.1) (i), (2.1) (ii) and (2.1) (iii) respectively, we are ready.

Remark. In the proof of part (iii) and up to (2.13) in that of part (i) (analogous statement holds true of part (ii)) we did not make use of associativity.

In the following we give a second proof for part (iii), on the basis of (2.13) and its left counterpart, without making use of property (2.14) and the left counterpart of it i.e. again not taking into account associativity.

Second proof for part (iii) of Theorem 2. Let

$$
\mathbf{A}=\mathbf{A}_{1 R} \cup \mathbf{A}_{2 R}\left(\mathbf{A}_{1 R} \cap \mathbf{A}_{2 R}=\emptyset\right)
$$

the decomposition of \mathbf{A}, defined by (2.8) and (2.9) (this decomposition exists - and is unique - for any semigroup \mathbf{A}), and let

$$
\mathbf{A}=\mathbf{A}_{1 L} \cup \mathbf{A}_{2 L}\left(\mathbf{A}_{1 L} \cap \mathbf{A}_{2 L}=\emptyset\right)
$$

be the left counterpart of the former decomposition.
If one of $\mathbf{A}_{1 R}$ and $\mathbf{A}_{1 L}$ is \mathbf{A} itself, we are ready, evidently having (2.1) (i) or (2.1) (ii) respectively.

If

$$
\begin{equation*}
\mathbf{A}_{1 R} \neq \emptyset \wedge \mathbf{A}_{1 L} \neq \emptyset \tag{2.35}
\end{equation*}
$$

then

$$
(\forall x, y)\left[\left(x \in \mathbf{A}_{1 L} \wedge y \in \mathbf{A}_{1 R}\right) \Rightarrow y=x y=x\right]
$$

i.e.

$$
\begin{aligned}
& \left|\mathbf{A}_{1 R}\right|=\left|\mathbf{A}_{1 L}\right|=1, \\
& \{e\} \stackrel{\text { def }}{=} \mathbf{A}_{1 R}=\mathbf{A}_{1 L}
\end{aligned}
$$

and consequently

$$
\mathbf{A}_{2 R}=\mathbf{A}_{2 L}=\mathbf{A}-\{e\}
$$

(e is the - unique - identity element of \mathbf{A}).
Furthermore

$$
(\forall x ; y)\left[\left(x \in \mathbf{A}_{2 L} \wedge y \in \mathbf{A}_{2 R}\right) \Rightarrow x y \doteq f_{L \mathbf{A}}(x)=f_{R \mathbf{A}}(y)\right]
$$

i.e.

$$
\begin{equation*}
f_{R A}=f_{L A}=\text { constant. } \tag{2.36}
\end{equation*}
$$

Being $|\mathbf{A}| \geqq 3,\left|A_{2 R}\right|\left(=\left|\dot{A}_{2 L}\right|\right) \geqq 2$, so there are $x, y \in \mathbf{A}_{2 R}, x \neq y$, for which on one hand $e x=f_{R A}(x)=f_{R A}(y)=e y$, while on the other hand $e x=x \neq y=e y$, which is a contradiction, and therefore (2.35) is impossible. Thus, let e.g.

$$
\mathbf{A}_{2 R}=\mathbf{A} \wedge \mathbf{A}_{2 L} \neq \emptyset
$$

(the symmetric counterpart is quite analogous).
From this immediately follows (2.36) with $\mathbf{A}_{2 R}=\mathbf{A}_{2 L}=\mathbf{A}$ i.e. (2.1) (iii).
To close Part 2 of our paper, we formulate the following
Theorem 2^{\prime}. If A is a semigroup and $|\mathbf{A}| \geqq 3$, then the following three statements are equivalent
(a)
(i) $\mathbf{M}=\mathscr{C}_{\Omega R} \mathbf{A}$,
$\left.\begin{array}{l}\text { (ii) } \mathbf{M}=\mathscr{C}_{\Omega L} \mathbf{A}, \\ \text { (iii) } \mathbf{M}=\mathscr{C}_{\Omega} \mathbf{A},\end{array}\right\} r_{0} \in \mathbf{A}^{2}, \mathbf{H} \xlongequal{\text { def }} \mathbf{M} \cap \pi r_{0}$ and $\left(\forall r_{0}\right)\left[\left(r_{0} \in \mathscr{S} \mathscr{R} \mathbf{A} \wedge(1.10)\right) \Rightarrow r_{0} \in \mathscr{T} \mathbf{A}\right]$
(iii) $\mathbf{M}=\mathscr{C}_{\Omega} \mathbf{A}$,
(ii) \mathbf{A} is left quasi-trivial,
(iii) \mathbf{A} is strongly quasi-trivial,
(c) $\left\{\begin{aligned} \text { (i) } \mathscr{C} \mathbf{A} & =\mathscr{C}_{\Omega R} \mathbf{A} \\ \text { (ii) } & \mathscr{C} \mathbf{A} \\ \text { (ii) } & \mathscr{C}_{\Omega L} \mathbf{A} \\ \mathscr{A} & =\mathscr{C}_{\Omega} \mathbf{A}\end{aligned}\right\}$.
(i.e. $(a)(x) \Leftrightarrow(b)(x) \Leftrightarrow(c)(x)$ for $x=\mathrm{i}$, ii, iii).

Proof. It follows from the proof of Theorem $2((a) \Leftrightarrow(b)$ is Theorem 2 itself $)$.

3. Some questions of the semigroups and the simulation of automata

In this part of our paper the focus will be on automata, and we shall take known several widely accepted notions and notations of automata theory.

The set of all initially connected Moore automata, having the same input alphabet X and output alphabet Y, can be partitioned into equivalence classes, regarding two automata equivalent iff they induce the same automaton mapping

$$
\begin{equation*}
\bar{f}: X^{*} \rightarrow\left(Y^{*}-\{A\}\right) \tag{3.1}
\end{equation*}
$$

with the following property

$$
\left(\forall u \in X^{*}\right)(\forall w \in X)(\exists z \in Y)\left[\bar{f}\left(u w^{\prime}\right)=\bar{f}(u) z\right] \wedge f(A) \in Y .
$$

From this easily follows that

$$
\left(\forall u \in X^{*}\right)[\lg (\bar{f}(u))=\lg (z)+1] .
$$

As is known, the functions \bar{f} defined in (3.1) are in one-to-one correspondence with the functions

$$
\begin{equation*}
f: X^{*} \rightarrow Y \tag{3.2}
\end{equation*}
$$

(if for all $u \in X^{*}, f(u)$ is the last symbol of $\bar{f}(u)$).
In the following - unless otherwise stated - by the word automaton we shall always mean a function f of the type (3.2) and the (not necessarily finite) non-void sets X and Y we shall take given.

As a generalization of right and left compatible partitions of the semigroup \mathbf{A}, we formulate the following

Definition 2. If $r \in \mathscr{C}_{\Omega R} \mathbf{A}$, the partition p is a right compatible partition on (the set of classes) \mathbf{A} / r iff

$$
\begin{gathered}
(\forall x)\left(\forall Z_{1}, Z_{2}, W_{1}, W_{2}\right)\left[\left(x \in \mathbf{A} \wedge\left(Z_{1}, Z_{2}, W_{1}, W_{2} \in \mathbf{A} / r\right) \wedge\right.\right. \\
\left.\left.\wedge\left(Z_{1}\{x\} \subset W_{1}\right) \wedge\left(Z_{2}\{x\} \subset W_{2}\right) \wedge\left\langle Z_{1}, Z_{2}\right\rangle \in p\right) \Rightarrow\left\langle W_{1}, W_{2}\right\rangle \in p\right] .^{2}
\end{gathered}
$$

The meaning of left compatible partition on a partition is analogous.
Remark. "Compatible partition on a compatible partition r " is an ordinary compatible partition on the factor semigroup \mathbf{A} / r.

Definition 3. Given a set \mathbf{Z} and $r \in \mathscr{C} \mathbf{Z}$, we call the function

$$
\begin{equation*}
\text { nat } r: \mathbf{Z} \rightarrow \mathbf{Z} / r \tag{3.3}
\end{equation*}
$$

which has the following property

$$
(\forall x)[x \in Z \Rightarrow x \in(\operatorname{nat} r)(x)],
$$

the natural mapping belonging to the partition r.

[^1]The composition (consecutive application) of two functions f and g we write in the form

$$
\begin{equation*}
g \circ f,(g \circ f)(x) \stackrel{\text { def }}{=} f(g(x)) \tag{3.4}
\end{equation*}
$$

Definition 4. Given a semigroup $\mathbf{A}, r \in \mathscr{C}_{\Omega R} \mathbf{A}$ and the set Y, we call the function $k: \mathbf{A} / r \rightarrow Y$ right compatible-free (in short RCF) iff

$$
(\forall q, s)\left[(k=(\text { nat } q) \circ s) \Rightarrow q=1_{\mathrm{A} / r}\right]
$$

where q is a right compatible partition on \mathbf{A} / r and $s:(\mathbf{A} / r) / q \rightarrow Y(s$ is uniquely defined by q) (see Definition 2, Definition 3, (3.3) and (3.4)).

The meaning of left compatible-free (LCF) is analogous. Iff above $r \in \mathscr{C}_{\Omega} A$ and $q \in \mathscr{C}_{\Omega}(\mathbf{A} / r)$, we call the function k homomorph-free (in short HF).

For any function f, we define the following equivalence relation

$$
\begin{equation*}
f^{0} \stackrel{\text { def }}{=}\{\langle x, y\rangle \mid\langle x, y\rangle \in \mathscr{D}(f) \wedge f(x)=f(y)\} . \tag{3.5}
\end{equation*}
$$

Now we are ready to prove the following
Statement 1. Given a function $f: \mathbf{A} \rightarrow Y$ where \mathbf{A} is a semigroup, the decomposition

$$
f=(\text { nat } r) \circ k \quad \text { (where } r \in \mathscr{C} \mathbf{A})
$$

(exists and) is unique if at least one of the following conditions holds
(i) $r \in \mathscr{C}_{\Omega R} \mathbf{A}$ and k is RCF,
(ii) $r \in \mathscr{C}_{\Omega L} \mathbf{A}$ and k is LCF,
(iii) $r \in \mathscr{C}_{\Omega} \mathbf{A}$ and k is $\mathbf{H F}$
(see (3.3), (3.4) and Definition 4).

Proof

(i) Let r be the greatest ("roughest") right compatible refinement of f^{0} (see (3.5)) which exists (and is unique) on the basis of Theorem 1^{\prime}. If $f=$ (nat $\left.\bar{r}\right) \circ k^{\prime}$ is another decomposition, for which $\bar{r} \neq r$, then according to Theorem $1^{\prime}, \bar{r} \subset r$ and there is a right compatible partition $q \neq 1_{\mathrm{A} / \mathrm{r}}$ on \mathbf{A} / r (see Definition 2), for which $k^{\prime}=\left(\right.$ nat q) $\circ k^{\prime \prime}$ (for some $k^{\prime \prime}$) i.e. k^{\prime} is not RCF.
(ii) Quite analogous to case (i).
(iii) The argument needs only slight and obvious modifications on that of case (i).

Definition 5. We supply r and k (which we have introduced in Statement 1) with subscripts R, L and C according to cases (i), (ii) and (iii) in Statement 1 respectively and write
(i) $f=\left(\right.$ nat $\left.r_{R f}\right) \circ k_{R f}$, nat $r_{R f} \xlongequal{\text { def }} R_{f}$,
(ii) $f=\left(\right.$ nat $\left.\boldsymbol{r}_{L f}\right) \circ \dot{k_{L f}}$, nat $r_{L f} \stackrel{\text { def }}{=} L_{\dot{f}}$,
(iii) $f=\left(\right.$ nat $\left.r_{C f}\right) \circ k_{C f}$, nat $r_{C f} \stackrel{\text { def }}{=} C_{f}$.

We call R_{f}, L_{f} and C_{f} the greatest right compatible, the greatest left compatible and the greatest homomorphic component of (or contained in) f, respectively, while $r_{c_{f}}$ we call the congruence relation of f.

Remark. As a consequence of Theorem 1^{\prime}, for any $f(: A \rightarrow Y)$

$$
\begin{equation*}
r_{C f} \subset r_{R f} \subset f^{0} \quad \text { and } \quad r_{c f} \subset r_{L f} \subset f^{0} \tag{3.6}
\end{equation*}
$$

Corollary of Statement 1, part (i). For any equivalence class K of initially connected Moore automata, the elements of which induce the same automaton mapping f (see (3.1)) there is a (unique) automaton \bar{A} in K, which is the state-homomorphic image of all members in K.

Proof. It easily follows from (3.1), (3.2) and part (i) of Statement 1) (cf. [3, Chapter 9], [4, 4. §], [6, § 1.11] and [7, § 3.1]).

Definition 6. For an automaton f, the factor-semigroup

$$
\mathbf{S}_{\boldsymbol{f}} \stackrel{\text { def }}{=} X^{*} / r_{\boldsymbol{C}}
$$

we call the semigroup (characteristic semigroup) of $f .^{3}$
The usual way of defining the semigroups of automata is found in the following
Definition 7. If $M=\langle Q, X, \delta\rangle$ is an automaton without output (with state-set Q, input alphabet X and next-state function δ), the semigroup of M is

$$
\begin{equation*}
\mathbf{S}(M) \stackrel{\operatorname{def}}{=} X^{*} / \varrho(M) \tag{3.7}
\end{equation*}
$$

where $\varrho(M)$ is the congruence relation of M and

$$
\begin{equation*}
\varrho(M) \stackrel{\text { def }}{=}\left\{\langle x, y\rangle \mid x, y \in X^{*} \wedge(\forall q)[q \in Q \Rightarrow q x=q y]\right\} \tag{3.8}
\end{equation*}
$$

(It can easily be checked using (1.4) that indeed $\varrho(M) \in \mathscr{C}_{\Omega} X^{*}$.)

Remarks

(a) On the basis of Theorem 1^{\prime} (see (1.14) and the end of the proof of Theorem 1^{\prime}, and (1.18) in the Remark at the end of Part 1) using the notations of Definition 5

$$
\begin{align*}
r_{R f} & =\left\{\langle x, y\rangle \mid x, y \in X^{*} \wedge(\forall a)\left[a \in X^{*} \Rightarrow f(x a)=f(y a)\right]\right\} \\
r_{L f} & =\left\{\langle x, y\rangle \mid x, y \in X^{*} \wedge(\forall a)\left[a \in X^{*} \Rightarrow f(a x)=f(a y)\right]\right\} \tag{3.9}\\
r_{C f} & =\left\{\langle x, y\rangle \mid x, y \in X^{*} \wedge(\forall a, b)\left[a, b \in X^{*} \wedge f(a x b)=f(a y b)\right]\right\} .
\end{align*}
$$

(b) (3.9) is a more explicit formulation of (3.6), and further wie can witite

$$
\begin{align*}
& r_{C f}=\left\{\langle x, y\rangle \mid\langle x, y\rangle \in r_{R f} \wedge(\forall a)\left[a \in X^{*} \Rightarrow\langle a x, a y\rangle \in r_{R f}\right]\right\} \\
& r_{c f}=\left\{\langle x, y\rangle\left\langle\langle x, y\rangle \in r_{L f} \wedge(\forall a)\left[a \in X^{*} \Rightarrow\langle x a, y a\rangle \in r_{L f}\right]\right\}\right. \tag{3.10}
\end{align*}
$$

[^2](c) From the Corollary of Statement 1, Definitions 6 and 7, and equations (3.9) and (3.10), easily follows that (if A corresponds to f)
\[

$$
\begin{equation*}
\mathbf{S}(\bar{A})=\mathbf{S}_{f} \tag{3.11}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\varrho(\bar{A})=r_{C_{f}} \tag{3.12}
\end{equation*}
$$

(d) If the state-set Q (of \bar{A}) is finite, then we can even deduce from equations (3.7) to (3.12) that $S(\bar{A})$ is finite too. More generally, in the language of semigroups

Statement 2. If \mathbf{A} is a semigroup, $r \in \mathscr{C}_{\Omega R} \mathbf{A}$ and $|\mathbf{A} / r|<\infty$, then there exists an $r^{\prime} \subset r$ and $r^{\prime} \in \mathscr{C}_{\Omega} \mathbf{A}$, for which $\left|\mathbf{A} / r^{\prime}\right|<\infty_{0}$. (Analogous statement is true of $r \in \mathscr{C} \mathscr{C}_{\Omega L} \mathbf{A}$.)

Proof. Let (like (3.10))

$$
\begin{equation*}
r^{\prime} \stackrel{\text { def }}{=}\{\langle x, y\rangle\langle\langle x, y\rangle \in r \wedge(\forall a)[a \in \mathbf{A} \Rightarrow\langle a x, a y\rangle \in r]\} \tag{3.13}
\end{equation*}
$$

from which we can see at once using (1.4) that $r^{\prime} \in \mathscr{C}_{\Omega} \mathbf{A}$ (and evidently $r^{\prime} \subset r$). To prove the finiteness of A / r^{\prime}, we rewrite (3.13) in the following way

$$
\begin{equation*}
r^{\prime} \stackrel{\text { def }}{=}\{\langle x, y\rangle \mid\langle x, y\rangle \in r \wedge(\forall a, b)[\langle a, b\rangle \in r \Rightarrow\langle a x, b y\rangle \in r]\} . \tag{3.14}
\end{equation*}
$$

(3.14) \Rightarrow (3.13) is obvious. (3.14) can be obtained from (3.13) by taking into account that $r \in \mathscr{C}_{\Omega R} \mathbf{A}$, so $\langle a, b\rangle \in r \Rightarrow\langle a y, b y\rangle \in r$ and being $r \in \mathscr{T} \mathbf{A},(\langle a x, a y\rangle \in r \wedge\langle a y, b y\rangle \in r) \Rightarrow$ $\Rightarrow\langle a x, b y\rangle \in r$. Now, with each element $x \in \mathbf{A}$, we can associate a function

$$
\begin{equation*}
\left(\varphi_{x}: \mathbf{A} / r \rightarrow \mathbf{A} / r\right) \wedge(\forall C)\left[C \in \mathbf{A} / r \Rightarrow C\{x\} \subset \varphi_{x}(C)\right] \tag{3.15}
\end{equation*}
$$

(this was hinted by F. Gécseg). With the functions of (3.15), an equivalent form of (3.14) is

$$
r^{\prime} \stackrel{\text { def }}{=}\left\{\langle x, y\rangle \mid\langle x, y\rangle \in r \wedge \varphi_{x}=\varphi_{y}\right\} .
$$

By the definition of the functions φ_{x} (see (3.15))

$$
\left\{\varphi_{x} \mid x \in \mathbf{A}\right\} \subset\{\varphi \mid \varphi: \mathbf{A} / r \rightarrow \mathbf{A} / r\} \stackrel{\text { def }}{=} F
$$

so r^{\prime} can be obtained from r by splitting each class in \mathbf{A} / r into not more than $|F|$ subclasses and therefore

$$
\begin{equation*}
\left|\mathbf{A} / r^{\prime}\right| \leqq|\mathbf{A} / r| \cdot|F| \tag{3.16}
\end{equation*}
$$

Taking

$$
|\mathbf{A} / r| \stackrel{\text { def }}{=} m<\infty,
$$

then $|F|=m^{m}$ and from (3.16) we get

$$
\begin{equation*}
\left|\mathbf{A} / r^{\prime}\right| \leqq m \cdot m^{m}=m^{m+1}<\infty . \tag{3.17}
\end{equation*}
$$

Remarks

(a) (3.17) is also valid for m 's of any cardinality, but only $m<\infty$ has practical significance.
(b) Several authors declare that "any semigroup is isomorphic to the semigroup of an automaton" (in the sense of Definition 7), but this is wrong: we must say "any monoid" instead of "any semigroup" and so the statement will already
be true. This easily follows from (3.7) and (3.8), or more generally from the simple fact: every factor-semigroup of a monoid is again a monoid. The mistake in the "proof" of the former defective assertion, which uses the so-called semigroup machine

$$
M_{\mathbf{A}} \stackrel{\text { def }}{=}\langle\mathbf{A}, \mathbf{A}, \delta), \quad\left(\forall s_{1}, s_{2}\right)\left[\delta\left(s_{1}, s_{2}\right) \stackrel{\text { def }}{=} s_{1} s_{2}\right]
$$

(where \mathbf{A} is any semigroup) is that even if \mathbf{A} has no identity element, \mathbf{A}^{*} does have, when applying (3.8) to M_{A}. We cannot even be sure of

$$
\begin{equation*}
\mathbf{S}\left(M_{\mathrm{A}}\right)=\mathbf{A}_{\mathbf{I}} \tag{3.18}
\end{equation*}
$$

(for any semigroup $\mathbf{A}, \mathbf{A}_{1} \stackrel{\text { def }}{=} \mathbf{A}$, if \mathbf{A} is a monoid and if not, then $\mathbf{A}_{\mathbf{1}}=$ "the monoid which we get by attaching to \mathbf{A} an external unit element"), because if \mathbf{A} is not a monoid, then it can well have right uniform elements. The notion of right uniform elements we introduce in the following

Definition 8. In the semigroup A, the elements c and c^{\prime} are said right uniform iff

$$
(\forall x)\left[x \in A \Rightarrow x c=x c^{\prime}\right]
$$

and the relation of right uniformity in the semigroup \mathbf{A} we denote with $u_{R}(\mathbf{A})$.
The meaning of left uniformity is analogous and the notation for the corresponding relation is $\mu_{L}(\mathbf{A})$. At last, the relation $u(\mathbf{A}) \stackrel{\text { def }}{=} u_{R}(\mathbf{A}) \cap u_{L}(\mathbf{A})$ we call the relation of uniformity on \mathbf{A}.

Remark. Evidently $u_{R}(\mathbf{A}), u_{L}(\mathbf{A}), u(\mathbf{A}) \in \mathscr{C}_{\Omega} \mathbf{A}$. As an example, suppose \mathbf{A} is right (left) quasi-trivial (see Def. 1), then $u_{R}(\mathbf{A})=\mathbf{A}_{1 R}^{2} \cup f_{R A}^{0}\left(\mu_{L}(\mathbf{A})=\mathbf{A}_{1 L}^{2} \cup f_{L A}^{0}\right)$ (see (3.5)). In this case $u(\mathbf{A}) \neq 1_{\mathbf{A}}$ iff. $\mathbf{A}_{1 R}=\emptyset\left(\mathbf{A}_{1 L}=\emptyset\right)$ and $f_{R A}^{0}=1_{\mathrm{A}}\left(f_{L \mathbf{A}}^{0}=1_{\mathrm{A}}\right)$, so there exist A's for which $\boldsymbol{u}_{\boldsymbol{R}}(\mathbf{A}) \neq \boldsymbol{u}(\mathbf{A})\left(\mu_{L}(\mathbf{A})=u(\mathbf{A})\right)$.

A trivial example for uniform elements is the case when A is strongly quasitrivial and (2.1) (iii) is valid (Def. 1). A less trivial example is the following: take an arbitrary semigroup $\mathbf{A}_{\mathbf{0}}$ and choose a $c \in \mathbf{A}_{\mathbf{0}}$ and let $c^{\prime} \notin \mathbf{A}_{\mathbf{0}}, \mathbf{A} \xlongequal{\text { def }}=\mathbf{A}_{\mathbf{0}} \cup\left\{c^{\prime}\right\}$. If we define the operations in \mathbf{A} so

$$
\begin{aligned}
& (\forall x, y \in \mathbf{A})\left[x, y \in \mathbf{A}_{\mathbf{o}} \Rightarrow\left(x y(\text { in } \mathbf{A})=x y\left(\text { in } \mathbf{A}_{0}\right) \wedge c^{\prime} x(\text { in } \mathbf{A})=\right.\right. \\
& \left.\left.=c x\left(\text { in } \mathbf{A}_{0}\right) \wedge x c^{\prime}(\text { in } \mathbf{A})=x c\left(\text { in } \mathbf{A}_{0}\right) \wedge c^{\prime} c^{\prime}(\text { in } \mathbf{A})=c c\left(\text { in } \mathbf{A}_{0}\right)\right)\right],
\end{aligned}
$$

then $c \equiv c^{\prime}(\bmod u(\mathbf{A}))$. Of course, by this method an unbounded number of uniform elements can be achieved. (If, furthermore, we randomly select some pairs $\langle x, y\rangle$ for which $x y=c$ (in A) and change their result into c^{\prime}, then \mathbf{A} will remain a semigroup and c^{\prime} will play a more active role).

Now if \mathbf{A} has right uniform elements, then (3.18) will not hold, because when forming $\mathbf{S}\left(M_{\mathrm{A}}\right)$ according to (3.8) and (3.7), the right uniform elements of \mathbf{A} will "coincide" in $\mathbf{S}\left(M_{\mathrm{A}}\right)$. This can be expressed in the following

Fact. For any semigroup $\mathbf{A}, \mathbf{S}\left(M_{\mathrm{A}}\right) \cong\left(\mathbf{A} / u_{R}(\mathbf{A})\right)_{\mathrm{I}}$, and $\mathbf{S}\left(M_{\mathrm{A}}\right) \cong \mathbf{A}$ iff \mathbf{A} is a monoid (see Def.'s 7 and 8).

-Proof. Easy from Def.'s 7 and 8.

Now, let us come to the question of the simulation of automata by each other.

We say that the automaton f can simulate (in short: simulates) automaton f^{\prime} (both f and f^{\prime} correspond to (3.2)), iff there are suitable functions h and p, for which

$$
\begin{equation*}
f^{\prime}=h \circ f \circ p \tag{3.19}
\end{equation*}
$$

where (3.19) we interpret in the sense of (3.4). Here

$$
f: X^{*} \rightarrow Y \quad \text { and } \quad f^{\prime}: X_{1}^{*} \rightarrow Y
$$

A glance at (3.1) and (3.2) convinces us that in (3.19)

$$
h: X^{*} \simeq X_{1}^{*}
$$

(" $\cong "$ and " $\cong "$ are the usual symbols for denoting homorphic and isomorphic mappings respectively).

First we prove that the possibility of simulation depends essentially on the semigroups of the automata in question, and is independent of the input alphabet

Theorem 3. Let $f: X_{f}^{*} \rightarrow Y$ and $g: X_{g}^{*} \rightarrow Y$ two automata, $i: \mathrm{S}_{f} \cong \mathrm{~S}_{g}$ and

$$
\begin{equation*}
k_{C f}=i \circ k_{C_{g}} \tag{3.20}
\end{equation*}
$$

Then f and g can simulate each other. ${ }^{4}$
Proof. It is enough to prove, that g can simulate f. (In the following proof, the definitions, relations etc. mentioned in footnote 4, will be widely used without further explanation.)

Let
be such that

$$
\begin{equation*}
\dot{h}_{1}: X_{f} \rightarrow X_{g}^{*} \tag{3.21}
\end{equation*}
$$

$$
\begin{equation*}
\left(\forall x \in X_{f}\right)\left[h_{1}(x) \in\left(C_{f} \circ i\right)(x)\right] . \tag{3.22}
\end{equation*}
$$

From (3.21) easily follows, that h_{1} can be uniquely extended into a homomorphism

$$
h: X_{f}^{*} \rightarrow X_{g}^{*},
$$

for which automatically $h(\Lambda)=\Lambda$ (otherwise the reader is likely to know the verification of the existence and uniqueness of h, from the theory of free semigroups).

As as consequence of (3.22), it can easily be seen that

$$
\begin{equation*}
\left(\forall w \in X_{f}^{*}\right)\left[h(w) \in\left(C_{f} \circ i\right)(w)\right] . \tag{3.23}
\end{equation*}
$$

(It is usual also to require from h_{1}, that for every $x \in X_{f}, \lg \left(h_{1}(x)\right)$ is the least possible, but this is not necessary for our purposes.)
(3.23) eans that

$$
\left(\forall w \in X_{f}^{*}\right)\left[\left(h \circ C_{g}\right)(w)=\left(C_{f} \circ i\right)(w)\right]
$$

i.e.

$$
h \circ C_{g}=C_{f} \circ i .
$$

[^3]Multiplying this equation with equation

$$
k_{C g} \circ 1_{Y}=k_{C g},
$$

we get

$$
h \circ\left(C_{g} \circ k_{C_{g}}\right) \circ 1_{Y}=C_{f} \circ\left(i \circ k_{C g}\right)
$$

and taking into account (3.20)

$$
h \circ g \circ l_{Y}=f
$$

i.e. g can simulate f.

Замечания о максимальных конгруенциях, автоматах и смежных темах

Статья состоит из трех частей.
В 1 -ой части авторы занимаются следуюшим обобщением: для данной сверх некоторой полугрупшы А эквивалевтностной реляции однозначно существует уточнение по максимальной конгруенции, доказано, что вместо эквивалентности и для более обобщенных реляций однозначно существуют максимальные уточнения более общего типа, чем конгруенция.

Во 2 -ой части показывается, что некоторая возможная инвертность результатов 1 -ой части взаимнооднозначно соответствует определенной специальной операционной структуре полугрушыы \mathbf{A}.

В 3 -ей части исследуются вопросы, связанные с полугруппами автоматов Мура и их симуляцией, исходя из эквивалентностных и конгруентных реляций, выходящих из трансформаций авт омата Мура, и используя результаты 1 -ой части.

References

[1a] Cohn, P. M., Universal algebra, Harper and Row, New York, Evanston and London, 1965.
[1b] Kon, P., Un'iversalnaya alghebra (Russian edition), Mir, Moscow, 1968.
[2] Schmid, E. T., Kongruenzrelationen Algebraischer Strukturen, VEB Deutscher Verlag der Wissenschaften, Berlin, GDR, 1969.
[3] Harrison, M. A., Introduction to switching and automata theory, McGraw-Hill, New York, London, Sydney, 1965.
[4] ÁdÁm, A., Automata-leképezések, félcsoportok, automaták (in Hungarian, with English and Russian abstracts), Matematikai Lapok, Budapest, v. 19, 1968, pp. 327-343.
[5] Arbib, M. A. (editor), Algebraic theory of machines, languages and semigroups (Collection of Papers), Academic Press, New York, London, 1968.
[6] Gécseg, F., I. Peák, Algebraic theory of automata, Akadémiai Kiadó, Budapest, Hungary, 1972.
[7] Arbib, M. A., Theories of abstract automata, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1969:
(Received June 5, 1972)

[^0]: ${ }^{1}$ As usual, \mathscr{D} and \mathscr{R} stand for "domain" and "range" respectively. The symbol." 1 " is used to denote the restriction of functions.

[^1]: ${ }^{2}$ If a binary operation, written as multiplication is defined on a set S, and $T, U \subset S$, then $T \cdot U=T U \stackrel{\text { def }}{=}\{t u \mid t \in T \wedge u \in \mathbf{U}\}$.

[^2]: ${ }^{3}$ See (3.2) and our agreement following it; and Def. 5.

[^3]: ${ }^{4}$ See Def.'s 5, 6, equation (3.19) and convention (3.4).

