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In his dissertation of 1968 [3] Verbeek proposed a generalization of the theory 
of semigroup extensions, which until that date consisted of the two nearly disjoint 
parts of Schreier- and ideal-extensions. According to Verbeek we define a semigroup 
extension as follows: 

Definition 1. Let A, S, E be semigroups and <5 a congruence on E. The pair 
(E, 8) is a semigroup extension of A by S, iff E/5 si S and there is a subsemigroup 
A' of E, isomorphic to A, which is a ¿-class. 

In the rest of this paper we shall often say that some semigroup E is an extension 
of A by S in the sense that there is a congruence <5, such that (E, 5) is a semigroup 
extension of A by S. 

Schreier- and ideal-extensions are semigroup extensions according to this 
definition. Verbeek proved that there is an extension of A by S, iff S contains an 
idempotent element. Thus for finite S there is always an extension of arbitrary 
A by S. The idempotent concerned is the image of A' in S and is called the extension 
idempotent. 

For ideal-extensions the homomorphism 5nat induced by 8 is a very special 
one: it is a bijection of E\A'. Generalization of this idea led Verbeek to the concept 
of union-extensions: 

Definition 2. Let A and S be semigroups, (E, 8) a semigroup extension of 
A by S. (E, <S) is a union-extension of A by S, iff the restriction of 8 to E\A' is 
the identity relation, where A' is as in definition 1. 

As for ideal-extensions for finite A and S the set of all union-extensions (up to 
isomorphism) may be obtained in a rather simple way. 

Theorem i . (Verbeek). Let A, S be disjoint semigroups, z£ S an idempotent 
element. For E=A U S~, where S~ — S\{i}, define an associative multiplication 
* such that the following conditions hold for all a,b£A, s, t£S~ 

a* b = ab, (1) 

a* s { = is if is yi i, 
£A if is = i, (2) 
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s * / j 

=si if s i ^ 
£A if si = 

=st if st 
€A if st = 

(3) 

(4) 

Then ((£, *), <5) is a union-extension of A by 5 for 

<5=/4X/4U{(*,;c)|;ceS-}. 

Moreover, any union-extension (£", <5') of A by S is isomorphic to one constructed 
in this way, where i is the extension idempotent. 

Theorem 1 indicates a combinatorial method of computing the set of all union-
extensions of A by S (disjoint) with extension idempotent / as follows. For A and 
S both finite, given by their Cayley-tables TA and Ts, consider column ct and 
row r; of i in S; the entry t^ belonging to ii will be replaced by A; the rest of ct 
and will be copied times to obtain a full table again; then, wherever it appears, 
i will be replaced by a cross indicating that the corresponding position is unknown; 
call the resulting partial table TA-S: 

Example 
Y'A a b T s 

s t. i It V T A ' S  
s t a b u V 

a a b s t i s s s s t + i s s s 

b b b t i t t t t t + t t t t t 
i s t i i i a s t a b. + + 
u s t i u i b s t b b + + 
V s t i i V u s t + u + 

V s t + + + V 

One obtains all union-extensions of A by 5 with extension idempotent i by 
replacing the crosses in T^ 5 by elements of A in all possible ways, such that the 
resulting table will be associative. Of course, this purely combinatorial method 
would soon lead to enormous computing time. 

A solution to this problem is indicated by Verbeek's discussion of the compo-
sition of S with respect to / and by his theorems on the existence of union-extensions 
of A by S, when S has some special composition. The set of all possible compositions 
of semigroups has been described in parts by Verbeek [3, 4] and fully by van Leeuwen; 
unfortunately, he published his results in an abstract [2] only up to now. 

We took a quite different and a rather naive way for computing the set of 
all union-extensions of A by S with extension idempotent /; all the same the computing 
time needed is very well below the time for the purely combinatorial method, at 
least when the number of extensions is small compared to the number of tables 
to be checked. 

For x, y 6 A U S~ let x*y be undefined in TA,S. This entry of TA,S is considered 
as an unknown ux y over A. Then by associativity one has a set G of equations 
over with unknowns ux, over A such that exactly the solutions of G are 
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the allowable ways of replacing the crosses in TA,S. We classify the equations 
according to their forms as follows: 

G i = {x*uy>z = U*,y*z} x, z£ A, G6 ~ {Ux,uy, , — M « * , y , z } > 

g2 - {x*uy<z = u x y , z ) xeA, G, = = 

G3 = K ,yt = ux>y*z} z£A, Gs 

<?4 = {x*UytZ = M « * , y , z } x£A, g9 = {.ux,yz = w*y,z}-

G5 = : 
= U*,y*z} z£A, 

It is the aim of the following method for solving G to successively narrow 
the domains of the unknowns and thus to avoid unnecessary trials. 

We denote the domain of the unknown u by D(u). In the computer programme 
the set of the D(u) is realized by an «X |/4|-integer-array DOM, where n is the 
number of unknowns, such that 

JO if a$D(u), 
DOM„ 

_ JO if a 
iu-a = { 1 if a £D(u). 

To enable an easy test, whether G has been solved, we put \D(u)\ = DOMu a 
a ( A 

in another array, which of course will be changed whenever DOM is changed. 
In the beginning all the D(u) are A, i.e. DOMua = 1 for all u and all a£A. 

Step 1 consists of evaluating each of the equations in Ar1 = G 1UG 2UG 3 . An 
equation x%uy^~uxy*z in Gx leads to xD(uy z)=D(ux y)z, which, however, 
will not be valid in most cases. Clearly there is a solution uy z = w1dD(uy z), uxy= 
= w2£D(uxy)to the equation only, if 

xw1£D = D(iixy)z fl xD(uyz) 3 w2z. 
Hence we can cancel all those vvx £ D(uy .) (w2 £ D(uxy)) in DOM, for which 

xw^D (w2z(fD) and thus narrow the domains D(ux y) and D(uy z). Furthermore, 
all equations from Gg in which uxy (uy z) appears lead to restrictions; let uxy = u 
be such an equation; then D(u) will be narrowed to D(ux>y). For the equations in 
G2 or <J3 one proceeds analogously. Some special cases arise when x and (or) z 
are (one-sided) identity- or zero-elements of A; they may result in transferring the 
corresponding equation to another type Gj (e.g. to G9 if x=z is the identity-element 
of A). 

Since a change of D(u) for an unknown u might lead to consequences from 
equations which have already been evaluated, step 1 is repeated until there is no 
D(u) that can be narrowed any more. 

Performing step 1 might result in one of the following three situations; otherr 
wise we.continue with step 2. 
(1) For each u, |Z)(w)| = l. Then DOM represents the only solution of G. 
(2) For some u, |£>(M)|=0. Then G has no solution. 
(3) For some u, \D(u)\ = 1. Wherever u appears in equation e 6 A', = C4 UG5 U 
UG6U G7{JG8 as a. subscript of an unknown, it is replaced by its unique value. 
As a consequence in most cases e must be transferred to another class Gj. If by 
this procedure Kx or G9 is extended, e is evaluated and if this results in a restriction 
of some D(u) execution of step 1 is resumed; otherwise step 2 is started. 
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In step 2 combinatorics comes in. G, DOM and all other information relevant 
to the situation are saved. Then for one unknown u we assume u=a for arbitrary 
a d D(u), i.e. restrict D(u) to be {a} in DOM, and try to solve G applying step 1 
again. With G, DOM etc. restored this is repeated until D(u) is exhausted. Evidently 
in this way we compute exactly the set of solutions of G. 

Some care has to be taken with the choice of u in step 2. It is chosen in such 
a way that changing D(u) is likely to induce changes of the domains of as many 
other unknowns as possible; hence, with priority as stated, the following criteria 
are applied: 
(1) The number of unknowns u is equal to by equations in G9 (using transitivity, 
too) is maximal. 
(2) The number of equations in K2, in which u appears as a subscript, is maximal. 
(3) \D(u)| is maximal. 

The algorithm has been realized as an ALGOL 60 programme [1] and is run on 
an ELECTROLOGICA X8 computer (cycle time 2.5 /isec). 

Whereas it is evident that for the combinatorial method the time is ^0(n}A\), 
where n is the number of unknowns, it seems to be impossible to give a rather 
correct estimate for our method; it is bad, of course, when the number of union 
extensions is approximately nl^l; but in this case any method should be bad. The 

Example No. 1 2 
Table 1 

3 4 5 . 6 7 8 

|A| 3 3 4 4 5 5 6 6 
ISI 2 5 2 5 2 5 2 5 
with ideal-extensions yes no yes no yes no yes no 
unknowns 6 16 8 20 10 24 12 28 
combinations 729 >4-10 ' 65 536 >101 3 =-9-106 >5-101 6 >2-10" =-6-10" 
union-extensions 26 163 4 15 8 3 16 0 
our time 20 s 5.5 m 11 s 80s 25 s 17 s 67 s 11 s 
time for combinatorial 14 s «140 h «10 m «870 « 3 0 h * »5-10' a -300 « 3-1012 

method years years days years 

following table 1 allows a comparison of actual computing times; of course the 
figures in the last line can be considered just as hints to the approximate size, since 
they were calculated from the state of the pogramme after a short run only. The 
corresponding semigroups are listed in table 2. 

Example No. 
Table 2 

3 4 
Semigroups 

Multiplication 
tables 

The element a is the extension idempotent. 

A + 'Si •¿i + Sj Ai + Sl A, +s2 + ^s+^a Ai A, + St 

Sx ab Ss abode Ax xyz A, wxyz A3 vwxyz a4 uvwxyz 

a aa a abcaa X XXX IV wwww V vvvvv u uuwwyz 
b ab b bcabb y XXX X wxww w vvvww V uuwwyz 

c cabcc z XXX y wwyz X XXXXX w wwuuzy 
d abcda z wwzy y vvvyy X wwuuzy 
e abcae z wxyz y yyzzwu 

z zzyyuw 
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О получении с помощью вычислительной машины объединённого 
расширения конечных полугрупп 

В 1968. году Verbeek дал определение для понятия объединённого расширения полу-
групп —, как обобщение этого понятая для идеальных расширений. 

Как и для идеального расширения, мы имеем простой алгоритм для получения на вы-
числительной машине семейства объединённого расширений двух конечных полугрупп, но-
этот алгоритм требует большого количества машинного времени. Эта статья описывает 
один такой алгоритм, который в общем требует значительно меньшего времени, он реа-
лизован как программа на языке ALGOL—60. 
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