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1. Introduction 

The construction of timetable by means of a computer is the subject of numerous 
publications. In all these papers two similar problems are investigated:. 

(1) constructing a school timetable, 
(2) constructing a timetable for university department. 

In the first case there are given three sets: a set of classes, a set of teachers and 
a set of time periods: One lesson can be interpreted as a meeting of a teacher and 
a class for one period. The problem is to schedule all lessons so that no teacher 
and no class has two or more different lessons at the same hour. Moreover, we 
must also take into consideration the problem of the so-called preassignments, 
it means that lessons are not available at every period of time. 

The second case is more complicated. We shall indicate below three requirements 
which will be the subject of further investigations. 

(a) University department consists of- years, sections groups etc. which can 
have certain common jobs. 

(b) One lecture can last more than one time period. 
(c) Every lecture must take place in a given room; therefore apart from sets 

just defined there is given a fourth set, a set of rooms. 
In the present paper we shall give a condition necessary and sufficient for 

existence of university timetable and an algorithm of constructing of it. We shall 
use some basic notions of the theory of graphs such as; an independent set, a chro-
matic number or a colouring of a graph whose definitions the reader can find in [1]. 

2. Two definitions of timetable 

For the first time the timetable problem was defined by Gotlieb. [2] as follows. 
Let T— {;,} (i=n) be the set of teachers, C={cj} (J—n) the set of classes and 

H = {h^ (&=/>) the set of time periods. 
Let us consider two matrices: A = {a;j} where atj is an integer point-

ing out how many times a teacher tt must meet with a class Cj and B— {bijk} (i^m, 
j^n, k^p) where element bijk is 1 if teacher tt can meet class Cj at hour hk and 6 
in the opposite case. A pair (A, B) defines the set of all requirements. 
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Definition 1. The matrix S={siJk} k^p) fulfilling the conditions: 

(1) (2) 

2 sUk = au (3) If si]k = 1 then bijk =1 (4) 
*=i 

fo r arbitrary iSm, j^n, k^p is called a timetable for the requirements (A, B). 
Gotlieb describes in his paper an algorithm of constructing the timetable 

S for given requirements (A, B). The method used by him is based on theorem 
of P. Hall [3] on distinct representatives of subsets. Unfortunatly this algorithm 
-does not answer the questions whether timetable exists and whether solutions 
attained are all which satisfy conditions (1)—(4). 

In order to introduce our method of reducing the timetable problem to the 
-colouring of graph we must change a little the definition of timetable. In 2. I we 
shall show that this new definition is an extension of the first one. 

Now, let £={/,-} (i=q) be the set of all lessons. With every (i=q) we 
associate the set g ^ H , of time periods at which lesson lt is admissible. The inter-
ference condition between lessons is described by the relation qciLXL fulfilled 
if the lessons can not be scheduled at the same our. 

Definition 2. A sequence x=(h1, ..., hq) of elements of / / will be called a time-
table for the family <j = {g,-} (i=q) and the relation q iff 

h'tgi i = l g (5) 

if IjQlj then h'^hJ I, jSq. (6) 

In fact, these conditions say that if lesson is scheduled at hour If then from 
-(5) ¡i is admissible at /2' and from (6) lessons never interfere. 

Now we shall show that definition 1 can be replaced by the other. 
2. 1. For arbitrary requirements (A, B> there exist set L, family G and relation 

.q so that there is a one-to-one correspondence between timetables 5 and x. 

Proof. For the given matrix A we can easily define L as a set of corresponding 
T?airs (t;, Cj). The relation q is given by the following equivalence: 

{U, Cj)Q(tu, cw)=(/=«) A ( j = vv). 
Next 

gij = {fik:biJk = 1} 

is a set of time periods admissible for (th Cj). By a direct verification we see that 
•equivalence 

Sijk = l=l>k€gij 

-determines demanded correspondence. 
Let us observe that definition 2 is an essential extension of the first one. In this 

-definition we can take into account the condition of type (a) and many others not 
.mentioned here, by appropriate determination of q. SO, if two lessons /¡, lj for 
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some reason or other cannot be scheduled at the same hour we put ltglj, and ¡¡glj 
if this is not the case. 

To compare requirements (A, B) to these described by G and q we shall 
consider an example due to Cisma and Gotlieb [4]. 

In their example n—m—p=7>, A = {au} J=3) where ais = 1 and the 
matrix B is following: 

1 1 0 1 0 1 O i l 
b1Jk = 0 1 1 b2jk = 1 1 1 bm=l 1 0 

1 0 1 1 1 0 1 1 0 

For these requirements Hall's conditions are fulfilled but a timetable S does 
not exist. 

In the new definition the set L contains all pairs {tu cj) /S3 , y'=3. Subsets 
g,j are following: " ' 

gn={hi,h2} g12={h2,h3} g13={huh3} 

g21^{h1,h3}g22 = {h1,h2,h3}g23={h1,h3} 

= {K, h3} gS2 ={h,h2} g33={hx, h2,h3} 

then G—{gll3 g12, g13, g21, g2Z, g23, g31, g32, g-33}. The relation q can be displayed 
as a matrix: 

h h h h h ¡s U h h 
h 0 1 1 1 0 0 1 0 0 
/, 1 0 1 0 1 0 0 1 0 
/3 1 1 0 0 0 1 0 0 1 

h 1 0 0 0 1 1 1 0 0 
e = /5 0 1 0 1 0 1 0 1 0 

7g 0 0 1 1 1 0 0 0 1 
/7 1 0 0 1 0 0 0 1 1 
h 0 1 0 0 1 0 1 0 1 
/9 0 0 1 0 0 1 1 1 0 

where qu = 1 = /; olj (see also figures 1 and 2). 

3. Graph of a timetable 

We denote by F the set {i1, ...,l^,h1,...,hp} and by nczFXF the binary 
relation defined as follows: 

hnlj^hQlj (7) 

¡¡nkj^hjigi h¡7ili = Ijthj (8) 

. h,izhj = frj (9) 

4 Acta Cybernetica 
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The graph E =(F, n) where F is a set of vertices and n a set of edges will be 
called the graph of a timetable. Since a relation n is symmetric and antireflexive 
then there exists the unique chromatic number of graph E. • 

Now we can establish the main result of the present paragraph. 
3. 1. A timetable x=(h1, ..., f?) exists iff a chromatic number of graph E={F,n) 

is equal to the number of elements of H(E is ^-chromatic). 

Proof. Let x=(h1,..., hf) be a timetable fulfilling (5) and (6) and let Dk = 
= {hk}{J {li: hk=h1} (k=l, ...,p). We shall show that the sets D1, ..., Dp form 
a family of independent sets which covers the graph E. 

Really, if-/,, Ij6Dk then h i =h j =h k and from (6) (/,$/,). Next if l ^ D k then 
hk=ti and from (5) hk £ By (7). —i (/¡TT/,) and by (8) ~~i (¡¡nh^ so Dfc are independent. 
Since for every /, exists Dk such that /,£Dk, sets D1,...,DP cover the graph E, it means 
E is at least /^-chromatic. On the other hand the chromatic number of E cannot 
be less than p, because there is a complete subgraph of the order p containing all 
vertices hk (k =1, ...,p). • • '' 

Thus necessity is proved. 
Now, let the family Di, ..., Dp denote a covering of graph E. As allDfc (k=\;...,p) 

are independent and every hk must belong to some Dk we can associate with every 
Dk one element hk. 

Now for every /, (7=1, ...,q) we choose an arbitrary hk such that /¡€Z>ft. 
If H stands for this hk then a sequence x={h1, ..., A9) is a timetable. 

In fact, /„ h'eD1 so -i(h'nli) and by (8) h'Zgi. If for some /„ lj (i^j) ti=h} 

then /,, lj belong to the same Dk, it means ~i (1^1 j) and by (7) ~~l (/,qIJ). 
It ends the proof of sufficiency. 
Immediatly from 3. 1. we have 
3. 2. There is an effective procedure of constructing for arbitrary ^-colouring 

of graph E a timetable x if it exists. 
The constructing procedure was given in the proof of sufficiency in 3. 1. 
So far as can be seen 3. 1 establishes the condition necessary and sufficient 

for the existence of timetable. In 4. it will be shown how to obtain all ^-colourings of 
graph E and due to 3. 2 we shall be able to obtain all sequences satisfying (5) and (6). 

4. Algorithm 1 

Efficient methods for graph colouring were investigated by many authors 
([5], [6]) and any of them may be used here. 

In this paragraph we shall present a simple idea of J. Wiessman [6] who 
applied boolean transformations to this problem. 

Let us consider a graph E=(F, n) for requirements given in 2. (see figure 1). 
We treat an ordered set of all vertices as a set of boolean variables. A boolean 
polynomial: 

A = ( 4 + / i ) (k+kk) (U+h) (h+hh) 

(h+hhh) ( / 7 + V 4 ) ( / 8 + 4 4 / 7 ) ft+WiW 

(¿1 + /2/7) ( / 22+ /3 /A) (ha + kUWh) 
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where every disjunction contains a negation of successive vertex and conjunction 
of negations of all precedent coincident vertices with this one, is transformed into 
the disjunctive-conjunctive normal form DC(4). 

Complements of the set of vertices which occur in successive conjunctions of 
£)C(/i) are maximal independent sets ([6]). Thus 

D i = { 4 , 4 , M ¿ > 2 = { 4 , 4 , 4 , M - D 3 = { 4 , 4 , 4 , M 

A = { 4 , 4 , M A = { / 1 , 4 , 4 , ¿1} = { 4 , 4 , ¿2} 

i > i = { 4 , 4 , 4 . ^ } A i = { 4 , 4 , M A > = { 4 > 4 , 4 > M 

-D10={4 »4,4» /'2} = { 4 » 4 » 4 , ¿3} £>12 = { 4 , 4 > 4, ¿3} 

£>13= {4,4» ¿3} ^14={4,4 ,^3} Ao={4» 4» M -

In order to obtain all /»-colourings of E let us observe that, 

4 e D 3 or 4£Z)5 or 4<ez>9 or 4ei>io, 

4€-D7 or l2£D s or 4€Z>12 or 4eZ)14 etc. 

Then a boolean polynomiaj 

/ 2 = (£» 3 +£» 5 +Z> 9 + i ) 1 0 ) (D7+Ds + D12+Du) {Di+£>2+Du+A3) 

( A + A + ^ + A S ) (D^DS + DZ+DW + DN + DU) 

(D3+D7+D9) (Ds + D7 + Dn + Du) (D2 + D3 + D9) 

(Di+Db+Di+Dw + Dl2+D15)(D1+D2 + D3 + Di+D5) 

( Z ) 6 + A + A + A + A o ) ( A 1 + A 2 + A 3 + A 4 + A 5 ) . 

transformed into the disjunctive-conjunctive normal form DC(f^) determines all 
coverings of graph E. In fact, if a conjunctive Dtl, ..., Z>i(t occurs in DC(/2)'then 
every vertex must belong to a certain DtJ (j=k). Since we search only /»-colourings 
in every step of transformation those conjunctions which have more than p elements 
must be removed. In our example there is no conjunction in DC(/2) which has 
3 elements then in virtue of 3. 1 a timetable x for these requirements does not exist: 

But if the number of the edges of E is reduced by deleting an edge between 4 
and /?3,.in the polynomial _/i we obtain h3+44^1^2 instead of A3+444M4> then 
Z>14 = {/2, 4 , 4> ^3} and next in/2 there is (D3+D7+D9+Du) instead of (D3+D,+Ds). 
Thus in DC(f2) occurs the conjunction D2 D10 X>14 which gives a unique timetable 
x = (h2,h3,h1,h1,h2,h3,h3,h1,h2). 

An interesting problem arises in the case of inconsistency of requirements: 
What is a minimal number of edges whose removing decreases a chromatic number 
of graph El 

This problem is strictly connected with the notion of the critical graph which 
wa:s investigated by G. A. Dirac ([7], [8]). 

4 
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5. Multiperiod jobs 

In the case of condition (b) apart from sets L, H, G and relation q there is given 
a function n: L-+N (set of integers) the value of which «(/,) ==/?,- defines how many 
consecutive time periods /,• must last. So, nt = \ defines a single period, »¡ = 2 a double 
period etc. 

We denote by (hk, n) a time interval beginning at hk and lasting n time periods. 
It means that 

(h ,n)={hk ,hk + 1 , . . . , V n - i } 

provided that hk,hk+1 k=\, ...,p — 1 are consecutive periods. 
Now, for requirements with function n we must introduce a new definition 

of timetable. 

Definition 3. A sequence x=(h1, ..., hfl) will be called a timetable for require-
ments with function n iff 

(ti, n^cgi i= 1, ..., q (10) 

If ¡¡Qlj then (ti, «¡) fl (hJ, tij)=0 (empty set). (11) 
These two condition correspond with (5) and (6) where one time period /¡; is 

changed by a whole interval (ti, «,). 
5. 1. A timetable x=(h1, ..., h") exists iff there is a covering D={D1, ..., Dp} 

of graph E=(F, k) such that Dk, k — 1, ...,p are independent sets and 

hk£Dkk=\,...,p (12) 

for every /=1, ..., q exists ki^p—ni +1 such that (13) 
(¡¡+/1,-1 

/,•£ f) Dj(li belongs to the successive independent sets) 

Proof. Let x=(hx, ..., h") be a timetable and let Dk = {hk} 1J {/ ;:hk6(ti, n>/}. 
The proof, of independence of Dk is analogous as in 3. 1. The condition (12) is 
immediate. Let kt stand for an index of ti in the set H. Thus /,-£Dk. H Dk. + x f l . . . 
... D.D*i+n._i which proves the condition (13). 

Let us assume that independent sets Dx, ..., Dp satisfy (12) and (13). We can 
define a timetable x as a sequence (hkv hk2, ..., hkq). For hkd(hki, «,} by (12) hkC Dk 
and by (13) ¡¡£Dk which is equivalent (hknl). From (8) n(hknl¡) iff hk^gt thus 
{hk,ni)<^gi. In order to prove (11) let us assume that (hk., «,-)n (hkj, Hj)^ 0 . 
It means that for hk£(hkl, ni)f)(hkj, nj) in virtue of (9) and (13) /, £ Dk, lj £ Dk. 
Thus /¡, I} belong to the same Dk which implies —i (/; £?/,•). 

6. Algorithm 2 

The theorem 5. 1 establishes the condition necessary and sufficient for the 
existence of a timetable with multiperiod jobs. First, so as in algorithm 1 all maximal 
independent sets D—{Dj} of graph E must be achieved. 

The second part of procedure we exemplify by colouring the graph from figure 2. 
This graph we obtain from the graph displayed on figure 1 by adding one vertex /j4, 
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live edges /j4 /7x , ht h2, /;4 h3, /?4 /9 and removing one edge / i 3 / 6 . The function 
n is determined in this exampleasfollows:/j2 = «6=H7 = 2, /ii = M3=M4= :w5=H8=rt9 —1. 

The family of maximal independent sets for this graph is increased by five sets 

A s = {4, 4 > 4, M Ao = {4, 4> Ih}-
Since 77i=l the vertex 4 satisfies condition 4.6 A U A U A U A i U A e U A7-

Next, for the vertex 4 «—2, so 

4 e (£>7 n D12) U ( A n DU) u ( A n D12) U ( A n DU) U (D12 n AS) u (D14 n A«) 
Similarly for 4 and 4- In the analogous way as in algorithm 1 we verify that 

a boolean polynomial: 

/3 = ( A + A + A + Ao+ Ae+ A7 ) ( A A 2 + A A 4 + A A 2 + A A 4 + A 2 A 8 + A 4 A 8 ) 

( A + A + A 1 + A 3 + A 9 + A 0 ) ( A + A + A 2 + A 3 ) ( A + A + A + 
+ Ao + A 1 + A5+-Die + Ao) ( A A + A A + D , D L T + D9DU+DUD„ + A4 As) 
( D 6 A i + A A 4 + A A i + A A 4 + A i A a + A 1 A 9 + A 4 A s + A 4 A 9 ) ( A + A + 
+ A + A7 + A0) ( A + A + A + A 0 + A 2 + A5) ( A + A + A + A + A ) 
( A + A + A + A + A O ) (A1+A2+A3+A4+A5) ( A 6 + A 7 + A 8 + A 9 + A 0 ) 

transformed into the disjunctive-conjunctive normal form gives all coverings 
which satisfy (12), (13). In this case we obtain only one covering containing 4 elements: 
A A o A4 A s and x= (h 2 , h3, , /îx , h2, h3, h3, hu h2). 

If for some /,• «¡>2 a correspondent boolean expression consists of all 
conjunctions which have n elements DKL, DKV ..., DKQ, such that belongs to every 
A - and hkv hki, ..., / i v a re consecutive time periods. 

Obviously, in this expression conjunctions in which time periods belong to 
two different days or contain a lunch break must be omited. 

In the extension of timetable problem taking into account the condition (c) 
there is given a set ./?={/•;} j^s of rooms. As in the case of lectures with every r} 
we associate a set f j^zH, time periods at which room rj is available. Moreover, there 
are rooms not fitting to every lecture. This condition is described by a relation 
a a L X R fulfilled if lecture 4 can take place in room rj . 

Definition 4. A pair (x, y) where x is a timetable for the set L and y is a se-
quence <r\ r2, ..., rq) rooms will be called a timetable for sets L and R iff 

A s = {4,4 > ¡h} A ? = { 4 > 4 > 4> M A s = { 4 » 4 » 4= M 

7. Room problem 

Ipr1 i=\, ...,q 

(hf,n,)c:ft i=l, ..., q 

if r'=rj then (h\ Hi)D(hj, n / ) = 0 . 

(14) 

(15) 

(16) 
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The condition (14) says that a lecture lt can take place in a room r\ (15) that 
this room is available at hours (ti, and finally (16) assures that no room is 
used simulteneously for two lectures. 

Now, if there is given a timetable x=(hx, ..., ti>) we can define a new graph 
E=(I,nx) where a set of vertices I={lu . . . , / , , rt, . . . ,r s} and the relation nx is 
following: 

f i V j S ' V j (17) 

/ ¡ V p "I ( W V I «/,'•, « ¿ c / } ) (18) 

(19) 

Of course, rj-rtJi = ¡¡Uy-rj. 
7. 1. If x is a timetable for Z, then a timetable (x, y) exists iff graph Ex is 

¿-chromatic. 

Proo/. If y=(r\ ...,r«> fulfills (14)—(16) then sets D, = {r }U {/¡: r '=r,-} 
are independent. In fact for /, € from (14) /¡cry and from (15) (ti, >h)cfj thus 
by (18) - i /¡7ixr;. On the other hand if ¡¡, lk £Dj then r'=rk=r} and by (16) 
(ti, «,•) Pi (ti, nk) = 0 which gives in virtue of (19) that ~I/.-TT^. 

Since sets Dj j= 1, ..., s are independent and cover the graph Ex, its chromatic 
number is equal s. 

Now, let a family Du ..., Ds denotes a covering of E. By (17) we can assume 
that rj£D}j= 1, ..., s. Let us define y=(r1, . . . ,rq) where r' is an arbitrary room 
belonging to the same set Dj as ¡¡. So, ~i Ijtjr* gives by (18) that /¡or' and (ti, /2 , )c/ ' . 
If (h,' n{) fl (hj, rij) yi 0 then by (19) l^Jj and /¡, ls cannot belong to the same Dk. 
This proves that r'?±rJ. 

8. Algorithm 3 

The algorithm consists of two phases. First, all timetables x by the help of 
algorithm 2 are generated. The second phase is concerned with assignment of 
rooms. In the analogous way as in 4. the problem is reduced to the colouring of the 
graph. Since two timetables (x, y) and (x, z) where y^z may be treated as equi-
valent we break the realization of Wiessman's method after an achievement of first 
colouring. If a graph E is not ¿-chromatic a timetable (x, y) for the given sequence 
x does not exist (theorem 7. 1). 

We must investigate the next sequence-x. A choice of this sequence can depend 
on desirable features of timetable such as the distribution of lectures over the days 
and the week, the maximal possibility of choice in the case of facultative jobs etc. 

Let us end the presentation of methods hitherto described by an example 
considered in 6 with following room requirements: 

r2, rs, r4} 

f i = {h, lh, M /^{hiJhJhiht} 

/ 3 = { h , /'2} / 4 = {/'1, >h. h , Jh) 
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4 4 4 4 4 4 4 4 4 
rx 0 0 0 0 1 1 0 1 1 

_ r 2 0 1 1 1 0 0 0 0 1 
G ~ r3 1 1 1 1 0 1 1 0 0 

r4 1 1 0 1 1 1 0 1 0 

For the sequence x=(h2, hs, hx, hx, h2, h3, h3, h^ h2) the graph EX=(I,NX) 
(see figure 3) has eleven maximal independent sets: 

D x = { 4 , 4 . M D2={13 ,4, /j} A = { 4 > 4, M Di={h , 4, ^i} 

D-0={4,4,4, r2} D6={/5,4,4, r2} d 7 = { 4 , 4 , 4 » M 

A>={4> 4» 4, M A>={4 .4 . r3} {4.4, M 

A i = { 4 , 4 > 4. M- 'i 

Two 4-colourings are determined by the conjunction D3D5D9DU, thus there 
are two equivalent timetables 

rl> r3- r2> r\i r2i /•4)> and (x, (r2, rt, rt, rx, r3, r2, rx, r3, r4>>. 
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4 4 4 4 4 4 4 4 h hx h2 h3 

4 0 0 1 
4 1 0 0 
4 0 1 0 
4 0 1 0 
4 Q 0 0 0 
4 0 0 1 

= 4 1 0 0 
4 0 0 1 
4 0 0 0 
Ai 0 1 0 0 0 0 1 0 0 0 1 1 
¿2 0 0 1 1 0 0 0 0 0 1 0 1 
/is 1 0 0 0 0 1 0 1 0 1 1 0 

F — {4> 4> 4 5 4» 4 , 4J 4> 4> 4> /4> /23} 

Figure 1 
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k h h u h /« h 4 / 9 hi h2 h3hA 

h 0 0 1 0 
h 1 0 0 0 
k 0 1 0 0 
h 0 1 0 0 
h Q 0 0 0 0 
h • 0 0 0 0 

1 0 0 0 
h 0 0 1 0 
'9 0 0 0 1 
hi 0 1 0 0 0 0 1 0 0 0 1 1 1 
h 0 0 1 1 0 0 0 0 0 1 0 1 1 
h 1 0 0 0 0 0 0 1 0 1 1 0 1 
h 0 0 0 0 0 0 0 0 1 1 1 1 0 

{h, 4» h, h, /7, h> hi, h2,h3, AJ 

Figure 2 

/1 k /3 /4 /5 h /7 h h ri r* r3 r 4 

h 0 0 0 0 1 0 0 0 1 1 0 1 1 

. ¡2 0 0 0 0 0 1 1 0 0 0 1 1 1 
0 0 0 1 0 0 0 1 0 0 1 1 0 

/4 0 0 1 0 0 0 0 1 0 0 1 1 1 

4 1 0 0 0 0 0 0 0 1 1 0 0 1 

h 0 1 0 0 0 0 1 0 0 1 0 1 1 

= ¡7 0 1 0 0 0 1 0 0 0 0 0 1 0 

Is 0 0 1 1 0 0 0 0 0 1 0 0 1 

/9 1 0 0 0 1 0 0 0 0 1 1 0 0 

>1 1 0 0 0 1 1 0 1 1 0 1 1 1 

>2 0 1 1 1 0 0 0 0 1 1 0 1 1 

rS 1 1 1 1 0 1 1 0 0 1 1 0 1 

r* 1 1 0 1 1 1 0 1 0 1 1 1 0 

II h, /3, /4, h, I 6; h, ri, r2> r3> ri} 

Figure 3 
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Алгоритм для получения расписания университета 
и критерий согласования с требованиями 

В первой части приводим формальное определение расписания учебных занятий, в ко-
тором появляется только очень простая модель [2]. Эквивалентное определение в терминах 
раскраски графов позволяет сформулировать необходимые и достаточные условия сущест- . 
вования расписания занятий. Предлагается алгоритм построения расписания и приводится 
яример, который неразрешим комбинаторными методами (взят из [4]). 

Далее приводятся более сложные модели с учетом неравнодлительных занятий и проб-
лемой залов. Все они записаны терминами проблемы раскраски графов. Приводятся соот-
ветствующие критерии существования и алгоритмы построения расписания учебных занятий. 
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