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1. Introduction 

Science has now reached a turning-point in its development at which it is 
becoming increasingly urgent for us to achieve a systematization and reduction 
to some common denominator of the vast body of knowledge that has been accumu-
lated in its various disciplines. The need is to construct a unifying theory with the 
capacity to override the barriers which at present divide and compartmentalize 
specialist investigations in order that we may be able to free the disciplines to-
interact with and reinforce one another. While unification on this scale necessarily 
entails raising the level of abstraction of the theories with which each discipline 
works, the language and concepts of this higher, more general level must retain 
the precision and explicitness in their interrelations that are found at their lower 
level. These are the objectives and constraints which a General Systems Theory 
(GST) must fulfil. 

More exactly, the features that a General Systems Theory must display are the 
following: 

— it must give a method in which the structural and functional aspects of the 
system* form a dialectical unity; 

— it should be extendable in order to cater for any new aspects that may emerge 
in the future; 

— it should be general only to the extent that it does not lose the property 
of reversibility, that is, of applicability to the disciplines on which it is founded; 

— it should provide not only an approach but also a method of analysis whereby 
a sufficient body of knowledge can be acquired to permit intervention in the system 
(e.g. to control it); 

— it should provide a mathematical apparatus which enables only the investi-
gation and analysis but also the synthesis of systems. 

For the time being there is no theory that completely satisfies all these require-
ments, a deficiency, which means that on many occasions only verbal methods are 
at our disposal. A verbal theory of systems too — essentially an initial stage of the 

* The basic ideas of Systems Theory are assumed to be known already and so they are not 
defined here; the particular terminology with which they are expressed is not of importance for the 
present purposes. 
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GST — can give considerable help in the analysis of systems (biological, economic, 
social, etc.), provided it satisfies certain logical conditions to be discussed later. 
Nevertheless there are already certain systems theories, oriented to particular 
branches of science which satisfy the requirements of the last two points and among 
these cybernetics has achieved the most significant results. Indeed on the strength 
of this some branches of cybernetics (e.g. information theory, automata theory) 
have proclaimed themselves the base of the GST, though they give only some as-
pects of the GST, and their applicability depends upon the concrete problem. In 
problem solving, it is essential to select the level of abstraction adequate to the 
problem. 

Let us consider these ideas more closely: 
The interpretations of GST, the various specific systems theories (SST) corres-

pond to the different types of system (and not to the different types of theoretical 
apparatus). 

Theories of biological, psychological, economic, technical systems etc. are 
instances of Specific Systems Theories. Within a given SST — depending on the 
apparatus applied — different aspects can be distinguished, for instance, aspects 
of information theory, automata theory, control theory, etc. Independently of this, 
it is possible to distinguish various levels of abstraction within an SST. This concept 
can be illustrated in the following way. 

On the highest level of abstraction we are restricted to the study of the relations 
between the system and its environment, the system being regarded as a single 
indifferentiated unit or a black box. On the second level the system may be broken 
down to its immediate component parts, that is, the system is analysed as the ensemble 
of its immediate subsystems. On the lower levels the system is seen in a more and 
more detailed analysis down to an apparently arbitrary degree of refinement, to 
whatever number of levels of abstractions we wish. The selected level of abstraction 
can said to be adequate to the task, if it allows to solve the problem with the minimum 
effort (i.e. without having to go into unnecessary details). Naturally we can speak 
of the adequacy of the level of abstractions only if the aspect selected is appropriate. 
The concepts of level and aspect are orthogonal to one other; that is to say, any 
level may be combined with any aspect.* To sum up, the main tasks that must be 
in developing and applying a GST are: 

— elaboration of a mathematical base that allows the GST to satisfy the above 
four points; 

— the elaboration of a method of applying the GST on the appropriate level 
of abstraction. 

To these ends it is necessary first to create the logical foundations a) for establish-
ing the GST; b) for applying the GST. 

After the logical foundations have been laid it will become possible to create 
the theory itself. The logical foundations can of course only provide guide-lines 
for the creation of the theory, but then it is hardly conceivable that the GST could 
be built up in a single step. 

Properly based logical foundations are necessary to ensure that the set of 

* Selection of the adequate level and aspect is inseparable from the process of problem solving 
(optimalization). In its course the level and the aspect are modified alternately, until the ensemble 
of the two suits the given purpose. 
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SST-s is such that the GST which is built on it forms a dialectical unity with the 
SST-s themselves. 

The aim of the present work is to clarify the logical foundations needed to 
establish the GST, taking Curry's book [1] as a starting point. The logical foundations 
for the application of the GST will be dealt with in a subsequent paper. 

2. The language 

As in building a theory the first steps are taken with the aid of natural language, 
it is necessary to start with the analysis of the natural language. After the basic 
definitions have been set out we can go on to examine the relation of language to 
the sphere of phenomena and then the manner in which a formal language can be 
produced. 

From the semantical point of view any language, including a natural language, 
is produced by the combination of nouns*, statements and functors (phrases). 

The set of nouns will be denoted N, the set of statements E. Both sets are induc-
tive classes** and their definitions — see later — are given by a grammar employing 
the auxiliary concept of functors. 

Functors. Transformers with one or more arguments. The argument may be: 
noun, statement, functor. The value of the functor (result) may be: noun, statement, 
functor. 

Generally all combinations are possible, which means that nine main functor-
types can be distinguished. It is conceivable that a specification defining the inductive 
class (AO of the objects (nouns) uses all nine functor types. In the specification of 
N the concepts of "statement" and "functor" are auxiliary ideas. 

The set E (i.e. the set of statements to be generated from the nouns and functors) 
is called the language. The aggregate of the (inductive) laws defining set E is called 
the grammar (for instance the set of nouns and functors together with the rules 
for their combination). 

The sphere of phenomena ( / ) is taken here to mean the entirety of research 
objects. We start from the supposition that the properties of the individual objects 
to be analysed are recognised in the course of their interaction with other objects. 

Let be / a space (set). The relation between the elements of J and the elements 
of N the set of some nouns gives the representation of the objects in the sphere of 
phenomena in language: for short we shall call this the J-*N representation. 

Let us look at a basic property of this representation. Let us constitute the 
product set JXN and map it on the closed interval [0, 1]. ¡i\ JXN-*[0, 1]. The value 
n(j, n) will be called the measure of validity of the j—n relation. In other words, 
the value n(j, n) specifies the degree to which noun n is congruent with the pheno-
menon j. 

Set TV is a precise representation of the sphere of phenomena only if the function 
fi has the values 0 or 1. It is called an imprecise representation if fx takes away value 
between 0 and 1. 

* Noun denotes an expression specifying some object and corresponds to the linguistic concept 
noun-phrase. (Note that a noun may be composed of more than one word.) 

** A definition of the inductive class is given later. 
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An imprecise function ¡i can be made to correspond to a precise function nk 
by giving the threshold value 1, where /ik is defined as fik (J, n)=l<=>n(j, ri)^k. 
Accordingly, any precise representation may be coordinated to imprecise repre-
sentation by giving the threshold limit k. 

The precise function is called the kernel of the imprecise function ¡x, and 
its representation is called the precise kernel of the original imprecise representation. 

Note: if N proves to be precise then the J-*N relationship can also be repre-
sented as a relation. 

The precision of the J -*N representation depends upon the extent to which 
the structure of objects in the sphere of phenomena (J) corresponds to, or how 
homomorphic* it is to with the structure of the set N which is determined by the 
grammar. 

As already explained, the set N and a grammar G together define a set of ex-
pressions (E), called the language. The relationship between the elements of J and 
E comprises the linguistic representation of the sphere of phenomena, in short 
the J--E representation. 

Note, that if N happens to be imprecise, so too will E**. This is also true in 
a more general way: as it was shown, E is built on N, but we shall see later that 
a certain T is built on E, on T, and so on. 

It therefore holds for this arbitrarily long series that if any of its terms becomes 
imprecise, the imprecision will be transferred to all terms that are constructed directly 
or indirectly upon the term in question. More exactly, the imprecision will not be 
transferred, provided only the precise parts (kernels) are employed in construction. 

The language E is a means of describing our experiences connected with the 
phenomenal sphere. 

The criterion of truth of a statement e£E is found in the sphere of phenomena. 
Let us map the set E by the function y in to the closed interval [0, 1] of the numerical 
axis, y: £•—[0, 1]. y{e) is now the measure of truth of the statement e. 

It should be noted that the value y(e) can also be interpreted as the aproba-
bility of the statement being true. The measure of validity ¿u in contrast does not 
admit such an interpretation. Values of the function y lying between 0 and 1 will 
have significance in complete theories (in the Godel), when we are unable to de-
monstrate or refute certain statements but can render them probable (and likewise 
their consequences) by repeated heuristic attempts. If, for instance a true but in-
demonstrable statement is in question, the mesure of truth of that statement con-
verges to 1. 

A subset (L) of the set E to the elements of which values of the function y have 
been given is called a description. 

The description L is said to be precise if none of the y values pertaining to its 
elements lies between 0 and 1. Similarly to the imprecise /i function, an imprecise 
function y can be coordinated with a precise function yk by giving a threshold 
value k. TThe function yx gives the kernel of the description (Lx). If L is precise, 
then L = L1. 

* See later. 
** The grammar also may be imprecise, as when we have a sentence the grammatical correctness 

of which lies between zero and one [2]: if G is imprecise, then plainly E will be imprecise too. 
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3. The theory and its interpretation 

The results of completed observations can be recorded by the aid of some 
description L. However, L is not capable of predicting an event that will be observed 
in the future, based on the results of the completed observations. In order to permit 
predictions we must introduce the concept of rules of inference. 

Rules of inference serve to produce from given true statements new, true 
statements. 

A rule of inference r is a n + 1 place relation defined on the set £ ( f c £ " + 1 ) by 
means of which a new, true statement can be obtained from n true statements; 
that is, r: En-*E or (ex,e2, ...,e„)-^e. The set of rules of inference is denoted by R. 

Where there is imprecision after applying the rule of inference, the measure 
of truth of the inferred statement is obtained from the measure of truth of the 
initial statements. 

The possibility also exists — at least in principle — of obtaining a precise 
inferential statement from a large but finite number of imprecise statements. 

Definition 1. We define a theory as a description (TQ E) and a set of rules 
of inference (R) whereby T is closed under R; that is ( V r £ R ) r ( T " ) ^ T . For the 
sake of simplicity T will be called a theory, though the existence of some R is to be 
understood the same time. 

T is said to be consistent if T^E. 
If T i s based on an imprecise description then it is called an imprecise theory.* 

It is evident that the above task can be solved by a carefully selected T theory. 
However there is a need for a communication between some sphere of phenomena 

and the theory appropriate for its analysis, on the one hand for theoretical pre-
diction of experimental results and, on the other hand for development of the 
theory based on the experimental results. 

Definition 2. A theory T is said to be extendable within the language E, if there 
is some KQE for which 7"' = 7"IJ K is consistent and is closed under the rules of 
inference 

T ' E & (Vr € R)r(T'"r) Q r . 

If the theory is to be extended through extension of the language E, means must 
be provided for, ensuring the extendability of the measure of truth. 

Definition 3. A description Lx is said to be an interpretation of the theory 
T2 if there exists a mapping i: E2^E1 such that Lx c £ j and T2(zE2 but no stipulation 
is made that E2 should differ from Ex nor that i should be defined for every element 
of E2. 

The interpretation is complete if it is everywhere defined in E2. The interpretation 
is valid, if Ly 3 i{T2). The interpretation is adequate, if L1Qi(T2). 

• T h e condition of consistence for imprecise theories is (V7€ 7")y(0 + y(~10 = l- In general 
every condition defined on T is true in the case of imprecision provided the condition holds for 
Tk with an arbitrary k. Note that, in predicate calculus, the definition of consistence ( 7 V E) is 
equivalent to the following condition 7<=>lr$ T [1, 3]. 
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If the interpretation is valid and Lx is a theory, then T2 can also be regarded 
as an extension of L^. 

Note: A theory may be have more than one interpretation. 
Any theory T may be formalized by formalizing the language E (the statement 

of which are now obtained with the aid of formal objects and predicates in such 
a way that formal objects or statements are substituted for the arguments of the 
predicates) and the formal notation of the rules R. Nevertheless, no particular 
use can be made of this formalization unless T forms an inductive class, that is, 
unless the set cannot be generated finitely by means of R. 

Definition 4. A theory T is said to be deductive if it contains such a finite subset 
A from which any element of T can be derived by a finite number of repeated 
applications of the rules R. T is then said to be generated by A with the aid of R, 
and the set A is called the set of axioms of the theory. 

If T is deductive and extendable, then an extension of T always follows from 
the extension of A. (This of course refers only to extensions within the language E.) 

When a deductive theory is formalized, the product is a formal theory. 
In the following we present the concepts needed in the definition of a formal 

theory. 
An inductive class is an enumerable set (E) which is defined by an algorithm.* 

This algorithm is called the (constructive) specification of the inductive class E. 
By this we mean that e is an element of E, iff there exists a finite n such that e will 
be produced by the algorithm in n steps. 

In detail: By an inductive class we mean an inductively defined set. By an 
inductive definition we mean the listing of a finite number of laws and statements' 
by a finite number of applications of which any element of the set can be formed. 

a) Thus we can list a finite number of statements 

e.g., a,b,c£ 

a, /8 6 A2 

b,c,P£ As 

b) We can also list a finite number of rules. We shall do this in terms of 
variables X and Y. (In using the rules anything can be substituted for the variables.) 

X, XYX€Ax 

xe At & Y£ A2=> YYX€ A3 

X, Y€ As XY£ As 

c) We can specify the set to be defined e.g., I=ABf]A3. 
Thus, for instance, bccbccb£T. 

* By algorithm a constructive procedure in the Hilbertien sense is meant, that is, a specifica-
tion which unambigously defines the series of transformations to be executed on some objects. 
This series of transformations may be either finite or indefinite, but the specification must naturally 
always be finite. The execution of a single transformation is called a step, and the stipulation is 
made that the transformations should be realizable. 
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Note: This is usually called a closure condition; the elements defined above 
for instance are the elements of the set / only if they are elements of As and A3. 

Definition 5. The minimum base of a language is defined as the finite set of 
some symbols from which the language can be generated. By a string we mean 
a series of the elements of a base (a string is therefore a series of symbols). 

Definition 6. The number of the base elements included in the string x is termed 
the string length and will be denoted by A string of zero length is denoted by L 

Let A, B and X be a set of strings of symbols. By a language we mean a set 
or strings on which the following operations hold true: 

1. AB={ab\a<i A, b i B} 

2. X - ^ X X " 1 

X° =f{;.} 

Note: If no set of strings is involved then X" represent a Cartesian product. 

3. r ^ U ^ ^ ' U l U f U . . . 
1 = 0 

If X is a base, then X* is the set of strings definable on the base X. 

4. The formal theory 

Let introduce the following concepts: 

Definition 7. The set of abstract objects is denoted by O. The inductive class 
of strings defined on some base K is (OczK*). 

Set of predicates (Fez G*). This is an inductive class of strings defines on a base 
G, on which some mapping r : F—N is defined where N is the set of natural numbers. 
An r(q>) value allocated to some predicate (pdF is called the order of the predicate 
(also denoted rv). 

Note: KOG = 0. 

Set of statements (E) 
E=Wi{№)r*\q>ZF} 

E.g., q>OuOt,...,Or9ZE 

Definition 8. A formal theory consists of the following components: 

a) Inductive class of abstract objects (O). 
b) Inductive class of predicates (F). 
c) Set of statements (E). (This is produced from the first two.) 
d) Inductive class of true statements ( T Q E ) . 

To get T the following are needed: 1) A finite subset of T, called the set of 
axioms (A). 2) A set of rules of inference (R), giving together with A the inductive 
definition of T. 
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The set E is called a formal language. (It is on this that the theory T is defined.) 
The specification of the inductive class E is called the grammar. The grammar 
consists of the specification of the inductive classes O and F and of the laws of 
substitution for the arguments of the predicates. 

Quite obviously the properties of the verbal theories defined so far (for instance, 
extensibility, imprecision, etc.) refer by definition to formal theories too. 

In formalizing a verbal theory T v , a formal theory T P is sought of which T v 

is a valid, adequate interpretation. 
From the foregoing it follows that, since every theory can be formed as the 

valid, adequate interpretation of a deductive extensible theory, every theory can be 
formalized in the above sense. 

The function y is defined also to the set EF, thus the imprecision of the formal 
theory T F can be handled similarly to the precision of the verbal theory T v . For 
this purpose the rules of inference must be defined accordingly. Since a formal theory 
in the above form is a syntactic system, it is necessary to define the precision of the 
syntax and the concept of an imprecise syntax. A simple example of this is given 
by Zadeh [2]. 

Let us see how a natural language E v can be formalized, in other words, how 
a formal language E F can be made to correspond to a language E v in such a way 
that the correspondence between the statements should be bijective and also iso-
morphic. The establishment of these conditions will be symbolized by E v = E F . 
In many cases it is sufficient that the relation be homomorphic, for which we use 
the notation E V ^ E F . 

Let us now look at what is meant by homomorphic and isomorphic corres-
pondence. Let E and E ' be two formal languages to which belong the factors 
O , O ' ; F , F ' , etc. 

Definition 9. The mapping i: E - > - E ' is said to be homomorphic (denoted 
/': E ^ E ' ) if the mappings* i: 0 - + 0 ' and i: F - * F ' — with regard to the structure 
of the inductive classes — are homomorphisms,** and the condition i ((p01...0„) = 
= / » / ( 0 , ) , . . . ,i(On) holds. 

The relation is isomorphic if its inverse is also homomorphic: i.e. E ^ E ' o 
• o E ^ E ' & E ' ^ E . Where imprecision is encounted it is necessary to define the 
measure of homomorphism. 

It should be remembered that, while the grammar of some formal language 
E f consists of an inductive class of abstract objects ( O ) and an inductive class of 
predicates (F ) , the grammar of a natural language E v consists of the inductive 
class of nouns ( N ) and the inductive class of functors. 

A formal language E P can be made to correspond to the language E v be the 
following two steps: 

* The mappings i: O-* O', etc. are taken to mean those correspondences between objects, 
etc. forming the base of the correspondence between the sentences /: E—E'. 

** The mapping i: O-+O' is homomorphic if, when forming the elements of the sets there is 
no difference between making an inductive step first followed by interpretation and making the 
interpretation before the corresponding step. For instance let Ol, 0 2 , ... On £ O and o)Ol ... £)„€£?, 
where O is one of the inductive steps used in the definition. If i{mOit ... On) = i(co)i(01) ... ;'(On) 
is satisfied generally, then the correspondence is homomorphic. 
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1. By making the inductive class O congruent with the inductive class N. The 
measure of isomorphism between the sets of N and O with respect to the inductive 
definition gives the precision of the congruence. (It is conceivable that all the functor 
types of the language to be defined have to be considered when O is defined.) 

2. By making the set of predicates congruent with the potentialities ensuing 
from the use of functors (singly, combined or repeated) in obtaining statements 
from objects.* If arbitrary combinations of the functors are allowed in the language 
being formalized, then the set of predicates will be an inductive class. 

If the formal language EF proves to be a properly selected formalization of the 
language Ev, then it is possible to find for a verbal theory Tv<zEv a consistent 
theory TFcEF in such a way that Tv is valid, adequate interpretation of the formal 
theory TF. 

The congruence i: Er ^ Ev (giving the interpretation i: TF ^ Tv) may also be 
imprecise in which case it is necessary to define a function pi: EFXEv-*-[0, 1] where 
the value n(eF, ev) gives the measure of validity of the congruence eF—ev, eF and 
ev being statements from the theories TF and Tv (eF-*ev means that ev is the inter-
pretation of e). 

Imprecision in a formal theory TF can derive from the theory's own logical 
structure, from imprecision in the relation between TF and Tv, from the structure 
of Tv, or from imprecision in the relation Tv—J. (And if a theory TF is constructed 
of which TF is an interpretation, this chain is continued.) 

5. Simple examples of a formal theory 

I. 1. formal objects : 0= {a, b, c} 

2. predicates: let o£0, 
<Pi o, 
<PiO, 
<p3o. 

3. rules of inference: 
ç)1Ar=>- (piXb, 

(pxX&cpj^ Y^ <p2XcY, 

<p3XcY=• <p3XbcYb. 

(A'and 7 a r e used here as variables; that is, any object can be substituted for them.) 

4. axioms: 
<Pia, 

cp3aca. 

Interpretation. The object of the form abb...b corresponds to a natural number 
the value of which is the length of the series. Object c corresponds to the sign of 

* Note that this represents only a fraction of the possibilities presented by the functors. 
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equality. Predicate (pjO corresponds to the statement o is a number; <p2o denotes 
that o is a statement and <pso that o is a true statement (theorem). 

II. 1. set of formal objects O, starting object: a£0 
law of generation: X£0=>Xb£0, or in short X=>Xb. 

2. predicates: let O L O ^ Î O , 

(pOyO. 
3. rules of inference: 

<pXY=><pXbYb. 
4. axioms: 

<paa. 

Interpretation. O corresponds to the set of natural numbers, while <po1o2 
means that the number corresponding to o1 equals the number corresponding to o2 • 

6. Epitheory 

6.1. Each statement e which refers to the theory T but for which e(f T is an 
epistatement of the theory T. By an epitheorem is meant a true epistatement, and 
by the set of epistatements, an epitheory. The construction of an epitheory will be 
examined here by means of an extension of the theory. 

An extension of a theory T is a procedure involving the complete (or partial) 
execution of the following steps: 

1. Extension of language E to language E'z^E (by the addition of new state-
ments). 
a) Extension of the set of objects to the set O'ztO. 
b) Extension of the set of predicates to set F' z> F. 

2. Extension of theory T to the theory T'z>T. 
a) Extension of the set of axioms to the set A'^>A. 
b) Extension of the set of rules of inference to the set R'ZDR. 

From here onwards, after the introduction of each type of epitheory it will 
be shown how it is reducible to the concept of extension defined above. Conversely, 
all general statements made about extensions. 

In each of the above steps (in the case of imprecise theories) care must be taken 
that the measure of truth be continuable to new statements of the extended language. 
(In precise cases we are careful to ensure that the extended theory remains consistent.) 

Let us look more closely at the various possible kinds of extension. 

6.2. Inductive extension. Suppose we have several theories T1, T2, ..., T„. These 
theories — in the course of development — may become so complicated that the 
need arises to achieve some clarification on a higher abstraction level. For this 
purpose those theorie should be selected (let us say 7\ , ..., Tm) for which the 
following procedure seems to be efficiently performable. The resultant theory T 
we shall form in the way T=T1\JT2U ...UTm. Upon this we can define an 
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equivalence relation the equivalence classes pertaining to which give the elements 
of the theory T'. The theories Tt , ..., Tm are now interpretations of the theory T'. 

In carrying out this abstraction cover* could be used instead of partition,* 
but is this case special attention must be paid to the continuability of the measure 
of truth. (The above process will vary in different cases, depending on the aims 
and aspects that must be considered. For instance, contradictory aspects would be 
an increase in m, minimalization of the complexity of T' and maximalization of the 
useful information content of the specific T'-*Ti interpretations.) 

This process can be reduced to^ extension inasmuch as when we have formed 
theory T (defined in the language E=E1(J... U£m), we then extend it to a theory 
TUT' (by extension of the language to EUE') and admit appropriate statements 
(predicates with two arguments) to fix the interpretational relations T'—T1;. 

A particular case of the above is when, in looking for a more abstract theory T' 
(with the interpretation T' — T) for a single theory T, a third theory is employed. 
Instances of this sort are encountered when a theory is being developed in inter-
action with the sphere of phenomena. Through study of a certain sphere of phenomena 
we may come across new facts, and these will be indued in the theory as new 
axioms extension of type (2/6); or we may discover new objects and new ideas (1 /a); 
or we may find the need to formulate new kinds of statements (1/b); and these 
result in the extension of the language, etc. These instances all correspond to the 
case described above; for the third, auxiliary theory will be furnished by the new 
observations gained from the sphere of phenomena. 

(Note that the definition of inductive extension comprehends such general 
epitheorems as, for instance, Godel's incompleteness theorem.) 

A distinction can be made between algorithmic and heuristic inductive state-
ments. 

Algorithmic extension. The possibility of being able to accomplish a precise 
extension without studying the phenomenal world is demonstrated by Myhill's 
theorem [4], according to which there exists an algorithm (constructive procedure) 
by which for every theory T that incomplete in the Godel sense** there can be found 
an extended theory T' such that 7 t T' and E'=E and 7 V T'. Extensions of this 
sort (i.e. those which produce precise theorems) are called algorithmic extensions. 

Heuristic extension. If the theory T is incomplete, then the truth or falsity 
of a statement, in a case where this cannot be decided, can be made more probable 
by converging to it with a series of heuristic attempts. The probability of the state-
ment in question being true will become the new measure of truth [5]. In this way 
the theory will be extended, though at the same time the extended theory will 
necessarily be imprecise. 

* Both partition and cover mean the breaking down of some set into subsets. The difference 
between them is that whereas a partition must resolve into disjunct classes, in the case of cover 
this stipulation is not made. More specifically, let the partition of the set A be P={P1, P2,..., P„] 
and the cover of A be K={K], K2, ..., K„). This means A^-P^J ...\JP„ and A=K±\J ...\JKn, 
but while ¡Vy=>-Pini>j =0 , this is not specified for K. On the other hand, all specifications serving 
to preserve the structure of the relations, operations, etc. defined on the set hold just as rigorously 
for K as for P. (See also later under homomorphic interpretation.) 

** I.e. In the sense of Godel's incompleteness theorem. 
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6.3. Deductive extension. The above process works in reverse in the following 
case. Consider theory T, the interpretations of which are the theories 7 \ , ..., Tm. 
As our definition of the resulting theory T we take t = J U TiU.. . U Tm\J { r - T j , 
,..., T-<-Tm are statements describing the interpretations}. In theory T the objects 
of T are variables which display a range of interpretation Tx U.. . U Tm. 

If we are now presented with a new problem, we must first decide whether 
it is necessary or not to extend the scope of interpretation r 1 U. . .U7 ' m in order 
to be able to solve the problem. If extension is unnecessary, then the theory Tcan be 
utilized unchanged to solve the problem. Where this is not possible, then we can 
make use of theory f if to obtain a solution such a theory Tm+1 is needed which, 
although differing from all the above theories, can be produced as the interpreta-
tion of f . 

Tm+1 is created by extending theory f in such a way that the extended theory 
will be flJ Tm+l (including the statements describing the interpretational relations 
T—Tm+j). For this we need a language EUEm+1. In the creation of this language 
the generative rules of the original inductive classes must be extended to the new 
objects and predicates. (For a more detailed treatment of the interrelations of the 
inductive classes, see the later section on homomorphic interpretation.) 

To sum up: In inductive extension the theory T (more precisely the concepts 
of the theory; that is, the set of objects and the set of predicates) is broken down 
to equivalence classes, and for the identification of the equivalence classes new, 
more abstract concepts (objects and predicates) are introduced. Lastly, the rules 
of substitution are determined (the way in which an element of an equivalence 
class can be substituted for the abstract concept denoting that class). 

By inductive extension we form a new theory T', the interpretation of which 
is the original theory T (both are of course parts of some theory f—TUT'U...) 
— though it is also possible only to extended the original theory T* (The latter 
generally implies a simplification, since in most cases | r | = x0**; in other words, 
the size of T does not grow with extension, but the axioms and inferences are 
simplified by virtue of the more general relations.) 

In deductive extension we proced in the reverse manner: the cardinality (not 
the number) of the equivalence classes which correspond to some more abstract 
concepts is increased. (Here, too, it is possible to produce a new theory or extend 
the old one.) 

7. The effect of extension on the measure of truth 

As we have seen, the continuability of the measure of truth is a fundamental 
point. One way of providing for this continuability is to try to make the new inter-
pretations homomorphic in the following sense: 

Definition 10. An interpretation /: T—T" is homomorphic if provid-
ing its base is homomorphic. (It is especially important to ensure homomorphism 
when cover is used instead of partition in the abstraction.) 

* In the development of a theory (or theories) the latter procedure corresponds to a continuous, 
the former to a jump, stage. These occur alternately, the path to the jump stage being prepared for 
by the continuous. 

** So (aleph-zero) is the usual symbol for the cardinality of the set of natural numbers. 
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By the precision of a theory T we mean the relation of cardinality between its 
nucleus and periphery (imprecise part). 

Let 
M={t\y{t)=\,tiT} 

P = T\M 

P \M\ 

\M\ + \P\ 

where "p" is the measure of the theory's precision. In accordance with the above, 
extensions can be ranged in three main classes. 

Let the original theory be T and the extended theory 7". Then: 
Definition 11. a) An extension is proportional if p=p'. (We then say that 

the theories T and T' resemble one other); b) An extension achieves an advance 
in precision if p<p'\ c) An extension loses precision if />>/>'. 

If we want an extension to remain proportional and not to include steps achieving 
greater precision, then it must not contain steps resulting in greater imprecision 
either. It is not allowed, for instance, to use hypotheses during the extension. More 
exactly, theory T is incomplete, in Godel's sense, if the language E(E^) T) includes 
statements such that, though they are not theorems of T, if T were to be (axiomati-
cally) extended with them, a consistent theory would be generated.* If, during the 
extension, such a statement becomes a theorem of the new theory T', then we say 
that "hypotheses have been used" during the extension. 

With regard to proportional extension it will be remembered that in defining 
interpretations no stipulation was made that the correspondance i: T0 — 7\ should 
be defined everywhere in T. It should therefore be possible to define i with respect 
to only the nucleus of T and thereby obtain, by deductive extension, a precise theory 
7i from the imprecise theory T. The same can be said of inductive extension, with 
the difference that here we can utilize the fact that the range of i may also be a subset 
of T1; i.e. we do not have to make the condition i(T) = T1. 

8. The structure of the Systems Theory (ST) 

8.1. The ST is a set of many theories between which connections and interac-
tions of the sort described for an epitheory are possible. 

The most abstract part of Systems Theory is General Systems Theory (GST), 
the interpretations of which are the SST-s (Specific Systems Theories). The SST-s 
are theories oriented to the individual types of systems (biological, technical, and 
so on). This two-level classification (GST and SST) is only a rough approximation 
of the real situation, however. The GST is steadily developing, newer and more 
abstract levels appear (in the case of inductive extension a whole new theory may 
be generated), new SST-s are thrown up as new interpretations of the GST; at the 
same time the articulation of the ST grows more refined, and new levels appear 
between GST and the SST-s. Nevertheless in the present study all the intermediate 

* These are called statements insoluble in T. 

7 Acta Cybernetica II/3 



274 T. Gergely and I. Németi 

levels are oncluded either in the GST, or in the SST category, and only these two 
are distinguished. 

Since all the SST-s are homomorphic interpretations of the GST, it is sufficient 
to analyse in detail the structure of a single SST; the GST and all the other SST-s 
will be of similar construction. 

Any SST can be partitioned into analytical aspects (A A) and — independently — 
into analytical levels (AL). These two kinds of partitioning are orthogonal to each 
other and their joint application is a basic step in using a SST. 

An AL is grounded either on a theory or a subtheory. Such a base may be 
provided by an abstract theory, like information theory, or part of a theory, or even 
just a statement. An instance is the analysis of a computing centre in terms of some 
specific parameter (e.g. income or reliability). This theory or subtheory is called 
the base of the aspect (BA). 

As already mentioned in the introduction, the analytical aspects differ from 
each other in the point of view from which they examine the given type of systems, 
and consequently in what kind of apparatus they utilize. For instance, there are 
information theoretical, automata theoretical, control theoretical, and energetical 
aspects. (A comparative analysis of some of these is provided by Kukhtenko [6].) 

The AL-s differ from each other in the detail of the analysis of the given system 
type; that is, how small are the subsystems that are analysed functionally only 
(like a black box) and how large those that are analysed structurally as well. 

Let as look more closely at the development of some interdisciplinary theory. 
Consider a variety of theories 7\ , T2, ..., Tn dealing with different system 

types (different phenomenal spheres). (These will correspond later to the SST-s.) 
If we want to base an interdisciplinary theory on these theories, we must form 
a theory f=T1UT2U...UT„; then, by extending this theory in an inductive 
way, we can create a theory 7" the interpretations of which are the theories 
7i , JT2, ...*. First of all it is necessary to choose the analytical aspects. To do this 
we shall need to utilize some new subtheories (which are independent of T), 
such as information theory, automata theory, etc. If the information theory, for 
instance, is represented by T{nf, the information theoretical aspect will have 
the form tf\T-mi. The analytical aspect obtained are then broken down to the 
level of the theories 7\ , T2, ... and used to form the classification needed for the 
abstraction. 

In contrast to the aspects, the analytical levels are obtained as the result of the 
reverse process. As was mentioned in connection with deductive interpretation, 
the solving of new problems often requires new interpretations. Such interpretations 
are the AL-S, the choice of which is determined by the depth of analysis necessary 
for the solution of the problem. Consequently, the AL-s arise during the search 
for adequate interpretations of the problems. 

Let us investigate in detail the process of forming the analytical aspects (AA-s) 
and analytical levels (AL-s). This question, it will be noted, belongs more to the 
application of the ST than to its construction. 

* In the case of Systems Theory, 7",, T%, ... correspond to SST,, SST2, ... and T' corresponds 
to the GST. 
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8.2. Formation of the AA. This process will be analysed using the example of 
the biological ST. Let us take some SST, say Biological Systems Theory (further 
on BST), and let us search for its information theoretical aspect. (This implies, of 
course that the information theory (IT) is given too.) The process starts with the 
deductive extension of the information theory, and we must look for a homo-
morphic and valid interpretation i: IT-»BST.* For this purpose a suitable exten-
sion of the BST is needed; this will, in fact, be made in the course of looking for 
the interpretation. 

The interpretation eventually reached will permit us to make conclusions in 
the scope of the BST by means of information theory, though the manipulation is 
obviously likely to be extremely difficult. The difficulties can be surmounted by the 
creation of a congruence relation** / - 1 o / over the BST. 

The congruence classes defined in this manner will form a theory, because 
the mapping i is homomorphic. The new theory is symbolized by r ' = BST /(/_ 1oi) 
to. Theory T' (the biological information theory) is isomorphic to IT and can be 
interpreted for the BST in a homomorphic way. 

Generalizing to the formation of the aspects of an optional SST in accordance 
with some BA, the above process can be interpreted as a deductive extension of the 
memory BA SST in which the rules of deduction (drawing of a valid interpretation 
i) and the language (provision of a classification SST/(z'_1o/)) have been extended.*** 

8.3. Formation of an AL. Let us investigate the application of a theory (T) 
to solving a problem (p), which will be a statement of some language. (We are 
not concerned at the moment with selecting an adequate theory T for the given 
problem; this will be discussed later.) 

We introduce the following notation: 

T~> p~(3T' <gT)T ^ T"hp £T". 

* It is generally not possible to prescribe that an interpretation be adequate as well, but the 
adequacy will be prescribed for the minimum subtheory of the BST in which the problem can 
still be solved. 

** By operation o is meant a function composition, e.g. (fog) (x)=g(f(x)). A congruence 
relation is an equivalence relation compatible with the operation. In other words, a relation is 
a congruence relation, if it can be formed as the component of a homomorphism and its inverse; 
that is, if there exists a homomorphism h to the relation r such that r — h'1 oh. 

*** In other words, the factor theory 7" = SST/ ( ;"'oi ) is a partition on the SST. The set of 
objects (O') of theory T' is a partition of the objects of the SST. Therefore, to each object of 7" 
can be added an arbitrary number (say n) of fixed variables (x,, ..., x„) the range of which exactly 
covers the subclass of the objects of the SST pertaining to the given object. Applying the X conversion 
of Church [7]'to these variables, an unambiguous correspondance is gained between theory T' 
and the SST: e = ).(Xl, ...,x„)oe\ where e€SST and e'iT. 

To examine this in more detail: Let F' stand for the set of predicates of 7". For every 
o£0' we form a word algebra WF- ( o U , ..., x„}). Since every word algebra is free over the 
generator set, and the union of free algebras is free over the union of generator sets, the map-
ping i: o\J{x1, ..., x„}-<-0 unambiguously defines the homomorphism sought. Here O is the object 
set of SST. 

The theory T' is applicable in the BST because the selected interpretation was homomorphic 
and thus a congruence partition compatible with the relations was obtained. Ensuring this homo-
morphism is a basic task in forming the AL's. 

A well-know example of an application that has been unsuccessful is biological thermody-
namics; a successful example would be biological information theory [8]. 

7» 
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If Tz>p, then we say that problem p is embeddable in theory T. Let T be a sub-
algebra of the a algebra of some universe J, and let p£J. T" is now a subalgebra 
of T. To solve p we must look for the minimal subalgebra (T") of T in which 
p can still be solved (p 6 T"); this T" is called the level of the theory adequate to 
problem p. It is easy to see that this level will not be "homogeneous"; that is, the 
classes of the minimal partition of the selected subalgebra a will not be of equal 
cardinality.* If the theory T" which is adequate to the problem necessitates decisions 
which cannot be made within the theory T**, then the problem can be solved by 
the theory T only after this has been extended. In other words, T must be exten-
ded to such an algebra o of the universe J as has a subalgebra adequate to p. 

Say the problem is discovering the mechanism of metabolism in the human 
body. On this universe we can define certain subalgebras a : e.g. anabolism, cata-
bolism, chemical relations, etc. If the individual organs are described on the anabolic 
level, the union of the set of algebras we obtain will solve the problem, but it will 
not be minimal (e.g. we know that anabolic processes taking place in the liver 
differ from those in the muscles). On the other hand, if the solution of the problem 
is analysed at the level of chemical reactions, then the number of classes gained 
in the partition (i.e. the number of concepts) will be a minimum. This means that 
if such chemical laws are chosen as are common to the metabolism of the liver, 
muscles, etc., then the concepts that are obtained will be able to describe the whole 
metabolic process, e.g. the synthesis of starch and dextrose. 
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* The minimal partition of an algebra a is taken to mean the infimum (or greatest lower 
bound) of the partitions generating the algebra. 

** Let k be the most detailed partition formed by theory T on the universe (i.e. k is the greatest 
lower bound of the partitions generating T) and let k" be one of the partitions generating T". 
It follows that the decisions of T" can be generated in T provided k"^k. 


