An application of truth functions in formalized diagnostics*

By A. ÁdÁm

To Professor Pál Erdős on his sixtieth birthday

§ 1.

In what follows, we shall prove some results concerning truth functions (in $\S \S 2-4$) and apply them to the following problem (in §§5-6). There is a set S of objects and there are $n+1$ subsets $Z, X_{1}, X_{2}, \ldots, X_{n}$ of S. Let an object $s(\in S)$ be chosen arbitrarily. We are not able to decide immediately whether or not s belongs to Z; we may observe, however, the validity of any of the n relations $s \in X_{i}$ and we can infer to the truth of $s \in Z$ if all the relations $s \in X_{1}, s \in X_{2}, \ldots, s \in X_{n}$ are checked. We are interested in deciding, whether $s \in Z$ holds or not, in such a manner that a possibly small number of the relations $s \in X_{i}$ should be examined (successively, in a straightforward ordering).

§ 2.

Let $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be an n-ary truth function. The $\operatorname{rank} \varrho(f)$ is the number of places where f takes the value \uparrow (true); of course, f takes the value \downarrow (false) at $2^{n}-\varrho(f)$ places. The entropy $\eta(f)$ is defined by

$$
\eta(f)=\min \left(\varrho(f), 2^{n}-\varrho(f)\right)
$$

We have $\eta(f) \doteq \eta(f) \leqq 2^{n-1}$; furthermore, $\eta(f)=0$ exactly if f is constant.
Let \mathfrak{H} be an elementary conjunction over the set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. The number of variables occuring in \mathfrak{H} is called the length $l(\mathfrak{H})$ of \mathfrak{A}.

Suppose that \mathfrak{H} contains (precisely) the variables $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{l}}(l=l(\mathfrak{H})(\geqq 1))$. We denote by $x_{j_{1}}, x_{j_{9}}, \ldots, x_{j_{n-1}}$ the elements of the set

$$
\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}-\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{1}}\right\}
$$

[^0]Let $f_{\mathfrak{2 l}}\left(x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{n-1}}\right)$ be defined as the function resulting from f if constants are substituted for each of $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{1}}$ such that \mathfrak{A} takes the value \uparrow with the substitutions prescribed. It is obvious that $\varrho\left(f_{x_{i}}\right)+\varrho\left(f_{\bar{x}_{i}}\right)=\varrho(f)$. If \mathfrak{H} and \mathfrak{B} are elementary conjunctions (over $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$) without any variable in common, then clearly $f_{\mathfrak{g} \& \mathfrak{B}}=\left(f_{\mathfrak{A l}}\right)_{\mathfrak{B}}$.

For a truth function f and a variable x_{i} of it, let the number $\lambda\left(f, x_{i}\right)$ and $\mu\left(f, x_{i}\right)$ be defined by

$$
\begin{aligned}
& \lambda\left(f, x_{i}\right)=\min \left(\eta\left(f_{x_{i}}\right), \eta\left(f_{\bar{x}_{i}}\right)\right), \\
& \mu\left(f, x_{i}\right)=\max \left(\eta\left(f_{x_{i}}\right), \eta\left(f_{\bar{x}_{i}}\right)\right) .
\end{aligned}
$$

It is evident that

$$
\lambda\left(f, x_{i}\right)+\mu\left(f, x_{i}\right)=\eta\left(f_{x_{i}}\right)+\eta\left(f_{\bar{x}_{i}}\right)
$$

and that $\lambda\left(f, x_{i}\right)$ is the smallest of the four ranks

$$
\varrho\left(f_{x_{i}}\right), \quad \varrho\left(f_{x_{i}}\right), \quad \varrho\left(f_{\bar{x}_{i}}\right), \quad \varrho\left(f_{\bar{x}_{i}}\right) .^{1}
$$

Proposition 1. We have

$$
\lambda\left(f, x_{i}\right) \leqq \frac{\eta(f)}{2}
$$

Proof.
Case 1: $\eta(f)=\varrho(f)$. Then

$$
\varrho\left(f_{x_{i}}\right)+\varrho\left(f_{\hat{x}_{i}}\right)=\varrho(f) \leqq 2^{n-1}
$$

hence

$$
\min \left(\varrho\left(f_{x_{i}}\right), \varrho\left(f_{\bar{x}_{i}}\right)\right) \leqq \frac{\varrho(f)}{2} \leqq 2^{n-2}
$$

This implies the conclusion evidently.
Case 2: $\eta(f)=2^{n}-\varrho(f)(=\varrho(\bar{f}))$. The inference is analogous to Case 1 (with f instead of f).

We say that x_{i} is a variable of type α (or, for the sake of brevity, an α-variable) of the function f if

$$
\lambda\left(f, x_{i}\right) \geqq \eta(f)-2^{n-2}
$$

In case

$$
\lambda\left(f, x_{i}\right)<\eta(f)-2^{n-2}
$$

we call x_{i} a variable of type β (or a β-variable). If $\eta(f) \leqq 2^{n-2}$, then each variable is of type $\alpha^{2}{ }^{2}$

[^1]Proposition 2. If x_{i} is an α-variable of f, then

Proof.

$$
\eta\left(f_{x_{i}}\right)+\eta\left(f_{\bar{x}_{i}}\right)=\eta(f)
$$

Case 1: $\eta(f)=\varrho(f)$ and $\varrho\left(f_{x_{i}}\right) \leqq \varrho\left(f_{\breve{x}_{i}}\right)$. Then
consequently,

$$
2 \varrho\left(f_{x_{i}}\right) \leqq \varrho\left(f_{x_{i}}\right)+\varrho\left(f_{\bar{x}_{i}}\right)=\varrho(f)=\eta(f) \leqq 2^{n-1}
$$

$$
2^{n-2} \geqq \varrho\left(f_{x_{i}}\right)=\eta\left(f_{x_{i}}\right)
$$

Thus

$$
\varrho\left(f_{\bar{x}_{i}}\right)=\varrho(f)-\varrho\left(f_{x_{i}}\right) \leqq \eta(f)-\lambda\left(f, x_{i}\right) \leqq 2^{n-2}
$$

hence $\eta\left(f_{\bar{x}_{i}}\right)=\varrho\left(f_{\bar{x}_{i}}\right)$. By summarizing our considerations, we have

$$
\eta\left(f_{x_{i}}\right)+\eta\left(f_{\bar{x}_{i}}\right)=\varrho\left(f_{x_{i}}\right)+\varrho\left(f_{\bar{x}_{i}}\right)=\varrho(f)=\eta(f)
$$

We shall now mention the conditions of the remaining three cases; in any of them, the statement can be verified by an analogous inference.

Case 2: $\eta(f)=\varrho(f)$ and $\varrho\left(f_{\vec{x}_{i}}\right) \leqq \varrho\left(f_{x_{i}}\right)$.
Case 3: $\eta(f)=\varrho(\bar{f})$ and $\varrho\left(\bar{f}_{x_{i}}\right) \leqq \varrho\left(\bar{f}_{\bar{x}_{i}}\right)$.
Case 4: $\eta(f)=\varrho(\bar{f})$ and $\varrho\left(\bar{f}_{\bar{x}_{i}}\right) \leqq \varrho\left(\bar{f}_{x_{i}}\right)$.
Proposition 3. If x_{i} is a β-variable of f, then

$$
\mu\left(f, x_{i}\right)=\lambda\left(f, x_{i}\right)=2^{n-1}-\eta(f)
$$

Proof. Similarly to the preceding proof, we can distinguish four cases; it suffices by the analogy that we carry out the proof only when $\eta(f)=\varrho(f)$ and $\varrho\left(f_{x_{i}}\right) \leqq$ $\leqq \varrho\left(f_{\bar{x}_{i}}\right)$. The formula

$$
2^{n-2} \geqq \varrho\left(f_{x_{i}}\right)=\eta\left(f_{x_{i}}\right)
$$

is valid as in the former proof.
Our next aim is to verify indirectly that

$$
\eta\left(f_{\bar{x}_{i}}\right)=\varrho\left(f_{\bar{x}_{i}}\right)<\varrho\left(f_{\bar{x}_{i}}\right) .
$$

Suppose the contrary, i.e. $\eta\left(f_{\bar{x}_{i}}\right)=\varrho\left(f_{\bar{x}_{i}}\right)$. Since x_{i} is of type β, we have

$$
2^{n-2}<\varrho(f)-\lambda\left(f, x_{i}\right)=\varrho(f)-\min \left(\varrho\left(f_{x_{i}}\right), \varrho\left(f_{\bar{x}_{i}}\right)\right)=\varrho(f)-\varrho\left(f_{x_{i}}\right),
$$

hence

$$
\varrho(f)>2^{n-2}+\varrho\left(f_{x_{i}}\right) \geqq 2^{n-1} \geqq \eta(f),
$$

this contradicts the supposition $\eta(f)=\varrho(f)$.
The proof (of the case treated in details) is completed by the deduction

Proposition 4. We have

$$
\eta\left(f_{x_{1}}\right)+\eta\left(f_{\bar{x}_{t}}\right) \leqq \eta(f)
$$

where equality or strict inequality holds according as x_{i} is an α-variable or a β-variıble, respectively.

Proof. The statement was asserted in Proposition 2 for α-variables. If x_{i} is a β-variable, then

$$
\mu\left(f, x_{i}\right)=2^{n-1}-\eta(f)+\lambda\left(f, x_{i}\right)<\eta(f)-\lambda\left(f, x_{i}\right)
$$

by Proposition 3 and the definition of β-variables.
The next assertion is an obvious consequence of Proposition 2:
Proposition 5. If both x_{i} and x_{j} are α-variables of f, then

$$
\eta\left(f_{x_{j}}\right)+\eta\left(f_{\bar{x}_{j}}\right)=\eta\left(f_{x_{j}}\right)+\eta\left(f_{\bar{x}_{j}}\right) .
$$

Proposition 6. Let x_{i}, x_{j} be two β-variables of f. If
then

$$
\lambda\left(f, x_{i}\right) \leqq \lambda\left(f, x_{i}\right)
$$

and

$$
\mu\left(f, x_{i}\right) \leqq \mu\left(f, x_{j}\right)
$$

$$
\eta\left(f_{x_{i}}\right)+\eta\left(f_{\bar{x}_{i}}\right) \leqq \eta\left(f_{x_{j}}\right)+\eta\left(f_{\bar{x}_{j}}\right)
$$

Furthermore, the strict inequality in the hypothesis implies strict inequalities in the conclusion.

Proof. By Proposition 3, we have

$$
\mu\left(f, x_{i}\right)=2^{n-1}-\eta(f)+\lambda\left(f, x_{i}\right) \leqq 2^{n-1}-\eta(f)+\lambda\left(f, x_{j}\right)=\mu\left(f, x_{j}\right)
$$

thus also

$$
\eta\left(f_{x_{i}}\right)+\eta\left(f_{\bar{x}_{i}}\right)=\lambda\left(f, x_{i}\right)+\mu\left(f, x_{i}\right) \leqq \lambda\left(f, x_{j}\right)+\mu\left(f, x_{j}\right)=\eta\left(f_{x_{j}}\right)+\eta\left(f_{\bar{x}_{j}}\right) .
$$

It is clear that all of these deductions remain valid with $<$ (instead of \leqq) if $\lambda\left(f, x_{i}\right)<$ $<\lambda\left(f, x_{j}\right)$ is supposed.

Proposition 7. Let x_{i} be an α-variable and x_{j} be a β-variable of f. Then
and

$$
\lambda\left(f, x_{i}\right)>\lambda\left(f, x_{j}\right)
$$

$$
\eta\left(f_{x_{i}}\right)+\eta\left(f_{\bar{x}_{i}}\right)>\eta\left(f_{x_{j}}\right)+\eta\left(f_{\bar{x}_{j}}\right)
$$

Proof. The first inequality follows at once by comparing the definition of α-variables to that of β-variables; the second one is implied by Proposition 4.

§ 3.

We define the critical variables of a truth function f by the subsequent two rules (I), (II):
(I) If every variable of f is of type α, then all the variables are critical.
(II) Suppose that f has at least one β-variable. We call a variable x_{i} critical exactly when
for each variable x_{j} of f.

$$
\lambda\left(f, x_{i}\right) \leqq \lambda\left(f, x_{j}\right)
$$

Proposition 8. Any n-ary function ($n \geqq 1$) has at least one critical variable. Let x_{i} be a critical variable, we have

$$
\eta\left(f_{x_{i}}\right)+\eta\left(f_{\bar{x}_{i}}\right) \leqq \eta\left(f_{x_{j}}\right)+\eta\left(f_{\bar{x}_{j}}\right)
$$

for an arbitrary variable x_{j} of f; furthermore, equality holds in this formula precisely if x_{j} is also critical. If f has at least one β-variable, then all the critical variables are of type β.

Proof. If f has α-variables only, then our statements are valid by Proposition 5.
Assume that there exists a β-variable of f. Let x_{i} be a critical variable. Proposition 7 implies that x_{i} is of type β.

Consider an arbitrary other variable x_{j}. If $\lambda\left(f, x_{i}\right)=\lambda\left(f, x_{j}\right)$, then x_{j} is critical, it is of type β and Proposition 6 guarantees

$$
\eta\left(f_{x_{i}}\right)+\eta\left(f_{\bar{x}_{i}}\right)=\eta\left(f_{x_{j}}\right)+\eta\left(f_{\bar{x}_{j}}\right) .
$$

If $\lambda\left(f, x_{i}\right)<\lambda\left(f, x_{j}\right)$, then

$$
\eta\left(f_{x_{i}}\right)+\eta\left(f_{\bar{x}_{t}}\right)<\eta\left(f_{x_{j}}\right)+\eta\left(f_{\bar{x}_{j}}\right)
$$

follows from Proposition 7 or Proposition 6 (according as x_{j} is an α-yariable or a β-variable).

§ 4.

In this section, we shall give a method for determining the rank of a truth function f supposing that f is given in some disjunctive normal form. It is required that the reader is familiar with the "principle of inclusion and exclusion". ${ }^{3}$

If \mathfrak{A} is an elementary conjunction over the set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ (considered as an n-ary function), then obviously $\varrho(\mathfrak{H})=2^{n-l(\mathfrak{H})}$.

Let $\mathfrak{H}_{1}, \mathfrak{N}_{2}, \ldots, \mathfrak{M}_{j}$ be elementary conjunctions ($j \geqq 1$). Suppose that there exists no variable x_{i} such that x_{i} occurs in non-negated form in some \mathfrak{N}_{h} and negated in an $\mathfrak{M}_{h^{\prime}}$ (where $1 \leqq h \leqq j$ and $\left.1 \leqq h^{\prime} \leqq j\right) .{ }^{4}$ Let $l\left(\mathfrak{N}_{1} \& \mathfrak{V}_{2} \& \ldots \& \mathfrak{Y}_{j}\right)$ be defined as the number of distinct variables occurring in $\mathfrak{H}_{1} \& \mathfrak{H}_{2} \& \ldots \& \mathfrak{H}_{j}$ (i.e. as $l(\mathfrak{B})$ where \mathfrak{B} is the elementary conjunction resulted by the reduction of $\mathfrak{H}_{1} \& \mathfrak{N}_{2} \& \ldots \& \mathfrak{H}_{j}$). Since $\mathfrak{U}_{1} \& \mathfrak{U}_{2} \& \ldots \& \mathfrak{U}_{j}$ is \uparrow exactly when each of $\mathfrak{U}_{1}, \mathfrak{V}_{2}, \ldots, \mathfrak{X I}_{j}$ is \uparrow, we have

$$
\varrho\left(\mathfrak{U}_{1} \& \mathfrak{U}_{2} \& \ldots \& \mathfrak{M r}_{j}\right)=2^{n-l\left(\mathscr{N}_{1} \& \mathscr{U}_{2} \& \ldots \& \mathscr{N}_{j}\right)}
$$

whenever $l\left(\mathfrak{H}_{1} \& \mathfrak{U}_{2} \& \ldots \& \mathfrak{N}_{n}\right)$ is defined. ${ }^{5}$
Proposition 9. If $\mathfrak{G}_{1} \vee \mathfrak{A}_{2} \vee \ldots \vee \mathfrak{H}_{k}$ is a disjunctive normal form representing the function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, then we have

$$
\begin{aligned}
& -\ldots+(-1)^{j-1} \Sigma 2^{n-1\left(\mathscr{\varkappa}_{i_{1}} \& \mathfrak{I}_{t_{2}} \& \ldots \& \mathscr{I}_{i_{j}}\right)}+\ldots \\
& \ldots+(-1)^{k-1} \Sigma 2^{n-l\left(\mu_{1} \& 1_{2} \& \ldots \& \mu_{k}\right)},
\end{aligned}
$$

[^2]where the j th summation is extended to all such j-tuples $\left(i_{1}, i_{2}, \ldots, i_{j}\right)$ for which $1 \leqq i_{1}<$ $<i_{2}<\ldots<i_{j} \leqq k$ and $l\left(\mathfrak{A}_{i_{1}} \& \mathfrak{M}_{i_{2}} \& \ldots \& \mathfrak{H}_{i_{j}}\right)$ is defined.

Proof. Let the principle of inclusion and exclusion be applied under such circumstantes that the basic set H is the definition domain of f and, for each $i(1 \leqq i \leqq k)$, H_{i} is the set of places at which \mathfrak{Y}_{i} takes the value \uparrow.

§ 5.

Now we return to our original problem (exposed in §1). We introduce some notations. For any i, let X_{i}^{*} be the difference set $S-X_{i}(1 \leqq i \leqq n)$. Any set

$$
Y=Y_{1} \cap Y_{2} \cap \ldots \cap Y_{n}
$$

is called an atom, where Y_{i} is either X_{i} or X_{i}^{*}. There exist 2^{n} atoms (some of them may be empty), any object $s(\in S)$ belongs to exactly one atom.

Postulate. If Y is an arbitrary atom, then either $Y \subseteq Z$ or $Y \cap Z=0$.
Next we define the characteristic (truth) function of the system $\left\{Z, X_{1}, X_{2}, \ldots\right.$ $\left.\ldots, X_{n}\right\}$. Let a full elementary conjunction \mathfrak{A} over $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be given. We assign to \mathfrak{H} the atom $\sigma(\mathfrak{H})$ determined in such a way that $Y_{i}=X_{i}$ or $Y_{i}=X_{i}^{*}$ according as x_{i} occurs in \mathfrak{H} without or with negation $(1 \leqq i \leqq n)$. The function value is defined by what follows:

$$
f(\mathfrak{H})=\left\{\begin{array}{lll}
\downarrow & \text { if } & \sigma(\mathfrak{N}) \subseteq Z \\
\downarrow & \text { if } & \sigma(\mathfrak{H}) \cap Z=0
\end{array}\right.
$$

(When $\sigma(\mathfrak{A l})$ is void, then $f(\mathfrak{A l})$ is defined arbitrarily. The postulate guarantees that $f(\mathfrak{H})$ is defined at each place \mathfrak{H}.)

Algorithm. Step 1. (a) We consider the characteristic function f of the set system $\left\{Z, X_{1}, X_{2}, \ldots, X_{n}\right\}$, we form $\eta(f)$ and the minimum of the n values $\lambda\left(f, x_{i}\right)$ (by comparing the $4 n$ numbers $\varrho\left(f_{x_{i}}\right), \varrho\left(f_{\bar{x}_{i}}\right), \varrho\left(\bar{f}_{x_{i}}\right), \varrho\left(f_{\bar{x}_{t}}\right)$, by using Proposition 9).
(b) If this minimum reaches $\eta(f)-2^{n-2}$, then we choose an arbitrary variable x_{i} of f. If the minimum is smaller than $\eta(f)-2^{n-2}$, then we choose such a variable x_{i} which yields the minimal value of $\lambda\left(f, x_{i}\right)$.
(c) We check whether or not s is contained in X_{i}. If $s \in X_{i}$, then we shall perform Step 2 with $f_{x_{i}}$. If $s \notin X_{i}$, then Step 2 will be executed with $f_{\tilde{x}_{i}}$.

Step $m(\geqq 2)$. (a) We have produced an $(n-m+1)$-ary function f_{91} in Step $m-1$. If $f_{\mathfrak{A}}$ is constantly \uparrow, then $s \in Z$ and the algorithm is finished. If $f_{\mathscr{1}}$ is constantly \downarrow, then $s \notin Z$ and the algorithm is also finished. If $f_{g I}$ is non-constant, then we consider $\eta\left(f_{\mathfrak{g}}\right)$ and the minimum of the $n-m+1$ values $\lambda\left(f, x_{j_{i}}\right)$ (analogously to the part (a) of Step 1).
(b) If this minimum reaches $\eta(\mathcal{P})-2^{n-m-1}$, then we choose an arbitrary variable $x_{j_{i}}$ of $f_{\mathscr{G}}$. If the minimum is smaller than $\eta\left(f_{\mathfrak{Z}}\right)-2^{n-m-1}$, then we choose such a variable $x_{j_{i}}$ which yields the minimal value of $\lambda\left(f_{\mathrm{GI}}, x_{j_{i}}\right)$.
(c) We check whether or not s is contained in $X_{j_{i}}$. If $s \in X_{j_{i}}$, then Step $m+1$ will be performed with $f_{\text {VI\& }_{i_{i}}}$. If $s \notin X_{i_{j}}$, then we shall execute Step $m+1$ with $f_{\text {2r }_{\delta_{x_{i}}}}$.

§ 6.

This section is devoted to justifying the algorithm. We shall deal with our basic problem (see § 1 and $\S 5$) under such circumstances that the postulate (in § 5) is valid and we know the characteristic function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ but we have no further information (e.g. it is unknown how the elements of S are distributed into the atoms) at beginning the procedure.

It is evident that the algorithm is completed after at most n steps.
The entropy $\eta(f)$ can be viewed as a measure of the uncertainty whether f takes one or other truth value at a randomly chosen place of its domain. Hence we consider $\eta(f)$ as the measure of uncertainty of whether $s \in Z$ or $s \notin Z$ is fulfilled.

We try to proceed towards smaller entropies, as far as possible, by checking the validity of appropriate relations $s \in X_{i}$ successively. In order to do this, it seems (by Propositions 4,8) the best strategy to obtain the minimal $\eta\left(f_{218 x_{t}}\right)+\eta\left(f_{91 \varepsilon_{\bar{x}_{i}}}\right)$ in each step, i.e. to continue the process with a critical variable of the function $f_{\mathfrak{R}}$ (where \mathfrak{A} characterizes the informations being at our disposal after the earlier steps), with respect to that the formulae $s \in X_{i}$ and $s \nsubseteq X_{i}$ are assumed equiprobable.

§ 7.

The investigations described in the previous parts of the paper seem to admit some generalizations. In this final section, I mention four possibilities of generalizing them (which can be combined with each other). The subsequent list was compiled together with Dr. Gy. Pollák.
($\overline{1}$) More than one membership relations $s \in Z_{1}, s \in Z_{2}, \ldots, s \in Z_{w}$ should be determined simultaneously (i.e. by the same sequence of observations of whether or not $s \in X_{i}$).
(2) For any atom Y, we know only the probability $P(s \in Z)$ of that $s(\in Y)$ belongs to Z (possibly lying between 0 and 1), consequently, f is a stochastic truth function (in sense of [1]). We try to achieve that

$$
|2 P(s \in Z)-1|
$$

should be significant (i.e. larger than a given number $1-\varepsilon$).
(3) For any atom Y, we know the probability of the event that $s(\in S)$ is contained in Y (this probability may differ from $1 / 2^{\prime \prime}$). (The precise goal is also to be determined.)
(4) There is assigned a number (called weight) to each X_{i} (interpreted as the difficulty of checking of whether or not $s \in X_{i}$), our aim is to minimize the sum of weights of the observations performed (instead of minimizing the number of observations).

Одно применение функций алгебры логики в формализованной диагностике

Пусть даны подмножества $Z, X_{1}, X_{2}, \ldots, X_{n}$ некоторого множества S объектов так, что каждый атом

$$
Y=Y_{1} \cap Y_{2} \cap \ldots \cap Y_{n} .
$$

(где Y_{i} обозначает либо X_{i} либо $S-X_{\mathrm{i}}$) удовлетворяет одну из формул $Y \subseteq Z$ и $Y \cap Z=\emptyset$. Предположим, что для произвольного элемента $s(\epsilon S)$ мы можем наблюдать справедливость отношений принадлежности

$$
s \in X_{1}, \quad s \in X_{2}, \ldots, s \in X_{n}
$$

в зависимом от нас порядке.
Мы интересуемся, что принадлежность $s \in Z$ имеет ли место (где s - произвольно фиксированный элемент множества S). В случае, когда известно, какие атомы являются подмножествами множества Z и какие атомы не пересекают Z (но мы не имеем никакую информацию относительно элемента s специфически), даётся стратегия для целесообразного порядка исполнения наблюдений $s \in X_{i}$, с целью проверки или опровержения принадлежности $s \in Z$ после (по возможности) меньше чем n набллюдений типа $s \in X_{\text {; }}$.
MATHEMATICAL INSTITUTE OF THE
hungarian academy of sciences
H-1053 BUDAPEST, HUNGARY
reáltanoda u. 13-15.

References

[1] ÁdÁm, A., Über stochastische Wahrheitsfunktionen, Proc. Coll. on Information Theory (Debrecen, 1967), 1968, pp. 15-34.
[2] ÁdÀm, A., Truth functions and the problem of their realization by two-terminal graphs, Akadémiai Kiadó (Budapest), 1968.
[3] Nerto, E., Lehrbuch der Combinatorik, Teubner (Leipzig-Berlin), 1927.
[4] Riordan, J., An introduction to combinatorial analysis, Wiley (New York), 1958.
[4а] Риордан, Дж., Введение в комбинаторный анализ, Изд. ин. лит. (Москва), 1963.

[^0]: * The considerations of this paper have been contained in the lecture "On some combinatorial questions" presented on the colloquium "Infinite and finite sets" held at Keszthely, June 1973.

[^1]: ${ }^{1}$ It seems to be advantageous to consider the numbers $\lambda\left(f, x_{i}\right)$ as basic quantities in the subsequent treatment (because the λ 's can perhaps be produced in a more natural manner, than the entropies). Another possibility for treating the topics is if one omits the λ 's and defines at once the critical variables by their property to be stated in the second sentence of Proposition 8.
 ${ }^{2}$ It is trivial from this remark that there exist functions all the variables of which are of type α. In case of $n=4$ and $f=x_{1} x_{2} x_{3} \bigvee x_{1} x_{4} \vee x_{2} x_{4} \vee x_{3} x_{4}$, we have $\eta(f)=8, \lambda\left(f, x_{1}\right)=\lambda\left(f, x_{2}\right)=\lambda\left(f, x_{3}\right)=3$ and $\lambda\left(f, x_{4}\right)=1$, hence every variable of f is of type β. In case of $n=3$ and $f=x_{1} \vee \bar{x}_{2} \bar{x}_{3}$, we have $(\eta f)=3, \lambda\left(f, x_{1}\right)=0$ and $\lambda\left(f, x_{2}\right)=\lambda\left(f, x_{3}\right)=1$, thus x_{1} is a β-variable and x_{2}, x_{3} are α-variables. We have seen that the three situations, being logically possible, may really occur.

[^2]: ${ }^{3}$ See [3] (p. 282) or [4] (Chapter 3) or [2] (§ 22).
 ${ }^{4}$ If this supposition is not fulfilled, then we not define $l\left(\mathscr{H}_{1} \& \mathfrak{H}_{2} \& \ldots \& \mathfrak{U}_{j}\right)$.
 ${ }^{5}$ If it is undefined; then $\varrho\left(\mathscr{H}_{1} \& \mathfrak{H}_{2} \& \ldots \& \mathfrak{U}_{j}\right)=0$.

