-

On minimal R-complete systems of finite automata
" By P. DOMOsI

To the memory of Professor L. Kalmar

From papers by F. GECSEG (see [1], [2]) it is known, that there exist neither
finite homomorphically, nor minimal isomorphically R-complete systems of finite
automata. In the book by F. GECSEG and 1. PeAK [3] it is mentioned as an unsolved
problem whether or not there exists a minimal homomorphically R-complete system
of finite automata.

In this paper we prove that the answer to this problem is in the affirmative.
Namely, it is shown that there exists a minimal homomorphically R-complete system
of finite automata. Moreover, we prove that there exists a homomorphically R-
complete system of finite automata which does not contain any minimal subsystem.

Before proving our statements, we introduce some notions and notafions. Take
an arbitrary, finite partially ordered set R=(1, 2, . 8 ny of indices, and for every
i (=1,2, ...,n) let an automaton A;=A;(X;, 4;, Y d;, 4;)) be given. Suppose that
for an automaton A=A(X, 4, Y, 6, A) with state set A Ay XAy X ... X 4, the functions
"o A1><A2>< XAXX X KX X XX, W Ay X AgX .. XA, X X—~Y are given.

Then A= ]] A[X, Y, ¢, Y] is called aloop-free or R-product of the automata A,, A,,

ooy Ay if the conditions &((ay, gy, ...» @), X)=(81(ay, X1); 85(az, Xa), -..> 6,(an> X)),
A((al, gy oor @), X)=VY(ay, G, ..., a,, x) hold for arbitrary (ay, a,, ..., a,,)EA and
x€X, where (xi, Xp, ..., X )—(p(al, ayy ..., a,, X); moreover ¢(a,, a2, vy Gy X)=
=(@1(ay, a2, -.., Gy, X), ¢2(a1, Qs ..., Gy, x), ves @n(ay, a5, ..., a,, x)) holds as well,
where ¢; (i=1, 2, ..., n) is independent of states having indices not less (in the original
definition not greater) than 7 under the partial ordering R. The functions ¢ and ¥ of
the R- product are called feedback function and output function, respectively.

If in the considered R-product A the set R is completely ordered, then A is called
a quasi-superposition of A, A,, ..., A,.

Let A;=A,(X3, 4y, Y,,01,74) and A,=A,(X,, 4,, Yz, ds, 45) be arbitrary

automata, where Y, S X,. Then a quasi-superposition A= ]] A[Xy, Y,, 0, ¥] of Ay

and A,, where ¢ (a;, ay, x)=(x, 4, (a,, X)), l//(al, a, X)= iz(az, X (ay, x)) are for any
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a,€4,, a,€ A, and x€ X,, is said to be the superposition of A, by A,. The superposition
can naturally be generalized for an arbitrary finite system of automata A;=
=A;(X;, 4;, Y3, 600, 4) (=12, ...,n) with Y;=X;,, (j=1,2, ..., n—1).

A system U of finite automata is called homomorphically (isomorphically)
R-complete, if for every given finite automaton A there exists a finite R- product B of
automata from 2, such that an 4-subautomaton of B can be mapped A-homomorphi-
cally (4-isomorphically) onto A. U is a minimal (homomorphically or isomorphically)
R-complete system if for arbitrary CEU the system U/KC) is not (homomorphlcally
or isomorphically) R-complete.

Then the following theorem holds*).

Theorem 1. There exists a minimal homomorphically R-complete system of finite
automata.

Proof. Denote by I' a system of finite automata, where the elements of I' are’
pair-wise not isomorphic, and simultaneously for every finite automaton A there
exists an element B of I', such that A is isomorphic to B. It can easily be seen,
that I' is enumerable. Take an arrangement I'=(A;(X;, 4;, Y;, 6;, A)]i=1,2, ...)
of the (enumerable) set I.

Let py, p1, .--» Pns -.. be an infinite sequence of prim numbers, where Po=2,
P> Dy, and forevery furtherp,(; 2,3, .., pj=Pj—1+Po D1 - P2 AJ 1 holds.

Give the elements of automaton-system 4=(B,, By, ...,B,,, ...) as follows:
B,=B,(X,, Dy, Yy, dy, A¢) Is an arbitrary automaton, such that Dy={1, 2, ..., py),
furthermore for any pair u€D,, x€ X,

5o(it, x) = u+1., if 1=u<p,
1, if u=p,.

For every f:urther B;(i=1,2,...) let B;=B,(C;X X;, D;UC;x4;, Y, 5;, ) be, where
Y] is an arbitrary nonempty and finite set,

Ci = <l.'2!"'?pO'pl""'pi—1>’ (1)

D; ={1,2,....,p), , )

and 4;:(D;UC;XA4)XC; X X;—~Y/ is arbitrary function, moreover for every triple
s€D;, (u, )€ C; X A4;, (r, x)EC; X X;

s+1, if 1=s<p,,
i) = {07 d ©)
1, if s=p,
(u+1,0i(a, %)), =u and 1l =u<popy-...pi-a,
o (("’ @, (nx) ={(1,6{(a,x), if r=u and u=pyp-...-pi_1, 4

1(eDy), if r=u

) The proof of Theorem 1 is based on an idea of F. Gécseg.
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First we prove that 4 is homomorphically R-complete system of finite
automata. .

Take an arbitrary finite automaton A=A(X, 4, ¥, J, 1), and let (¥,, ¥,, ¥5)
denote an isomorphism of A onto a suitable element A; in I'. Let the automata C;=
=C,(X, C;, C;XX;, 8!, %), Bi=B{(C;XX;, D;UC;X4;,7,3d,;, ) be constructed
in the following way: B

For any r€C;, x€X, s€D;, (u, a)€C; X 4,,

62’(r,x)={r+1_’ if 1l=r<pypre... Pi_1, )
L, if r=pypye... pi_ss
2 (1, x) = (r, ¥1(x)); ' (6)

let A% (s, (r, ¥1(x))) be an arbitrary element in Y given unambigously,
y

?]3—1()"‘{ (a, q’l(X))), if F=Uu
235 ((u, @), (r, P1(x))) = { arbitrary element in Y given (M
unambigously, otherwise.

From the above constructions it is evident tiwt the superposition C;% B; bf C;
by B; exists. On the other hand, using (4), (5) and (6), it can easily be proved that
there is an A-subautomaton of C;*B; with set of states B=((u, u, a)[u€C;, ac 4;).

Consider the mapping ¥;: B—+~A4 given as follows:

For every state (u, 4, a)€ Blet ¥;((, u, a))=¥;*(a). From constructions (4)—(7)
it can be seen that ¥; is an A-homomorphism of the A-subautomaton of C;x B;
with set of states B onto A. On the other hand, using (2) and (3), it is not difficult
to prove that C, can be represented as an A-subautomaton of a quasi-superposition
of automata By, B, ..., B;_;. So in consequence of construction B;, the superposition
C;%B; is an A4-subautomaton of a quasi-superposition of By, B;, ..., B;. Since A
is arbitrary chosen, 4 is a homomorphically R-complete system of finite automata,

Let us prove that 4 is minimal, i.e. in case of any B;€4 the system AN\(B,)is not
homomorphically R-complete. To this we shall show, that no R-product of elements
in AN\¢B;) has any A-subautomaton which can be mapped A4-homomorphically
onto B;.

Suppose that contrary to our assumption such R-product there exists. Denote
by {¥,, ¥s, ¥s) a homomorphism of an 4-subautomaton of this R-product onto
B;, moreover, let (e, e;, ..., e,) be a state of this A-subautomaton such that
l112((91, €35 o5 em))=s(€Di)-

From (3) it is evident that

s.qg=sepq (gEF(CX X)) ®

Also from (3) and ¥,((ey, e, ..., €,))€D; it can be supposed that for a suitable
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element x of C;X X the
(31,62, ~-‘,em)'xl = (81,62, ~--’em) (9)

holds, where [ is an appropriate natural number. Thus, due to (8), p;|/ also holds.
Suppose that the / is minimal among all numbers satisfying (9). For every i(=1, 2, ...
..., m) let /; be a minimal natural number for which (e, e, ..., €)-x'i=(e,, €,, ..., €)
holds, moreover, let ¢; be the ith function-component of the feedback function of
the R-product in question. Finally, let M, be the i th component-automaton in our
R-product.

Suppose that M,=B;(€4). In this case, refering to the equalities ¢, (e, - ¢, (e,
€5 .05 €y x), x):(pl((el’ €25 «ves em)'x, JC), and (4), either M1=B0a or - (pl(ely
€, ..., €m, X)@1((er, 5, ..., €,) + x, x)€D; holds. Then, because of (3) and (4), equality
(9) holds only in case e;€D;. Hence LE(py, P1, Pi-1, Pi+1> Pi+as ---p thatis pAl.
If M, in the R-product is independent of M, , p,{/, similarly holds. Othervise there are
two possible cases. -

(a) The number of states in M, is less than that in B;. Hence for arbitrary input
word g of M, the number of pairly different states from the series e,, €5+ g, €5+ g2, ...
«.» @+ g%, ... is less than p; (see the construction of {py, py, ...)). Namely, if by the
effect of ¢; and x" the input word g is given to M,, then p;{l, since =1/, ¢, where
" tis a natural number with t<p;.

(b) The number of states in M, is greater than that in B;. Suppose that by the
effect of e; and x" the input word g is given to M,. In this case for every natural
number k by the effect of ¢; and x** the automaton M, in state e, has the input
word ¢* and p;f|q|. Suppose that M,=B, (€4, h=i) and e,=(s, @) (€ C, X 4,,). Because
of (1) and (4), e, - ¢ (s)X 4, Therefore, by (4), for any k(=1) we have e, - g¢ C;, X 4.
Thus e, - g*€ D, which, by (9) and (3), means that e,€ D,. Consequently, taking into
considerations the minimality of Z,, by (8) we get /=[], p;], where [m, n] denotes
the least common multiple of m and n. Therefore, p;{/, holds as well.

Repeating our procedure for the components e, ¢, ..., €,, finally we get that
pi{ . Since I=I, holds per definitionem, thus p;{I. Therefore, by (8), ¥,((ey, €,; ...
...» )¢ D;. Thus none of the A-subautomaton of the considered R-product can be
mapped A4-homomorphically onto the A-subautomaton of B; with the set of states
D;. Consequently, it also cannot be mapped A-homomorphically onto B;. Hence
the system A is minimal, which ends the proof of Theorem 1.

Finally we prove

Theorem 2. There exists a homomorphically R-complete system of finite automata
which does not contain any minimal homomorphically R-complete subsystem.

Proof. Again let I'=(A4, A,, ..., A,, ...) denoteasystem of finite automata such
that the elments of I' are pairly not isomorphic and for every finite automaton
A there exists an element B of I’ which is isomorphic to A. Now let us take the
system A=(B,,B,, ..., B,, ...) where for arbitrary i(=1, 2, ...) every automaton
A;(j=1,2, ..., i) is a subautomaton of B;.

It can easily be seen that A is homomorphically R-complete system of finite
automata. By a result of F. GECSEG [1], no finite subset of A is homomorphically
R-complete. .
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Denote by Q an infinite subset of A. It is evident that for every natural number
ithere is a j with j=i such that B;€ AN Q. Since every A;, A,, ..., A;€I is a subauto-
maton of B;, thus  is also homomorphically R-complete. It is obvious that € is not
minimal, which completes the proof of Theorem 2.
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