On minimal R-complete systems of finite automata

By P. Dömösi

To the memory of Professor L. Kalmár

From papers by F. Gécseg (see [1], [2]) it is known, that there exist neither finite homomorphically, nor minimal isomorphically R-complete systems of finite automata. In the book by F. Gécseg and I. PeÁk [3] it is mentioned as an unsolved problem whether or not there exists a minimal homomorphically R-complete system of finite automata.

In this paper we prove that the answer to this problem is in the affirmative. Namely, it is shown that there exists a minimal homomorphically R-complete system of finite automata. Moreover, we prove that there exists a homomorphically R complete system of finite automata which does not contain any minimal subsystem.

Before proving our statements, we introduce some notions and notations. Take an arbitrary, finite partially ordered set $R=\langle 1,2, \ldots, n\rangle$ of indices, and for every $i(=1,2, \ldots, n)$ let an automaton $\mathbf{A}_{i}=\mathbf{A}_{i}\left(X_{i}, A_{i}, Y_{i}, \delta_{i}, \lambda_{i}\right)$ be given. Suppose that for an automaton $\mathbf{A}=\mathbf{A}(X, A, Y, \delta, \lambda)$ with state set $A=A_{1} \times A_{2} \times \ldots \times A_{n}$ the functions $\varphi: A_{1} \times A_{2} \times \ldots \times A_{n} \times X \rightarrow X_{1} \times X_{2} \times \ldots \times X_{n}, \psi: A_{1} \times A_{2} \times \ldots \times A_{n} \times X \rightarrow Y$ are given. Then $\mathbf{A}=\prod_{i=1}^{n} \mathbf{A}_{i}[X, Y, \varphi, \psi]$ is called a loop-free or R-product of the automata $\mathbf{A}_{1}, \mathbf{A}_{2}$, \ldots, \mathbf{A}_{n}, if the conditions $\delta\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right), x\right)=\left(\delta_{1}\left(a_{1}, x_{1}\right), \delta_{2}\left(a_{2}, x_{2}\right), \ldots, \delta_{n}\left(a_{n}, x_{n}\right)\right)$, $\lambda\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right), x\right)=\psi\left(a_{1}, a_{2}, \ldots, a_{n}, x\right)$ hold for arbitrary $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in A$ and $x \in X$, where $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\varphi\left(a_{1}, a_{2}, \ldots, a_{n}, x\right)$; moreover $\varphi\left(a_{1}, a_{2}, \ldots, a_{n}, x\right)=$ $=\left(\varphi_{1}\left(a_{1}, a_{2}, \ldots, a_{n}, x\right), \varphi_{2}\left(a_{1}, a_{2}, \ldots, a_{n}, x\right), \ldots, \varphi_{n}\left(a_{1}, a_{2}, \ldots, a_{n}, x\right)\right)$ holds as well, where $\varphi_{i}(i=1,2, \ldots, n)$ is independent of states having indices not less (in the original definition not greater) than i under the partial ordering R. The functions φ and ψ of the R - product are called feedback function and output function, respectively.

If in the considered R-product \mathbf{A} the set R is completely ordered, then \mathbf{A} is called a quasi-superposition of $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{n}$.

Let $\mathbf{A}_{1}=\mathbf{A}_{1}\left(X_{1}, A_{1}, Y_{1}, \delta_{1}, \lambda_{1}\right)$ and $\mathbf{A}_{2}=\mathbf{A}_{2}\left(X_{2}, A_{2}, Y_{2}, \delta_{2}, \lambda_{2}\right)$ be arbitrary automata, where $Y_{1} \sqsubseteq X_{2}$. Then a quasi-superposition $\mathbf{A}=\prod_{i=1}^{2} \mathbf{A}_{i}\left[X_{1}, Y_{2}, \varphi, \psi\right]$ of $\mathbf{A}_{\mathbf{1}}$ and \mathbf{A}_{2}, where $\varphi\left(a_{1}, a_{2}, x\right)=\left(x, \lambda_{1}\left(a_{1}, x\right)\right), \psi\left(a_{1}, a_{2}, x\right)=\lambda_{2}\left(a_{2}, \lambda_{1}\left(a_{1}, x\right)\right)$ are for any
$a_{1} \in A_{1}, a_{2} \in A_{2}$ and $x \in X_{1}$, is said to be the superposition of \mathbf{A}_{1} by \mathbf{A}_{2}. The superposition can naturally be generalized for an arbitrary finite system of automata $\mathbf{A}_{i}=$ $=\mathbf{A}_{i}\left(X_{i}, A_{i}, Y_{i}, \delta_{i}, \lambda_{i}\right)(i=1,2, \ldots, n)$ with $Y_{j}=X_{j+1}(j=1,2, \ldots, n-1)$.

A system \mathfrak{A} of finite automata is called homomorphically (isomorphically) R-complete, if for every given finite automaton \mathbf{A} there exists a finite R-product \mathbf{B} of automata from \mathfrak{M}, such that an A-subautomaton of \mathbf{B} can be mapped A-homomorphically (A-isomorphically) onto $\mathbf{A} . \mathfrak{U}$ is a minimal (homomorphically or isomorphically) R-complete system if for arbitrary $\mathbf{C} \in \mathfrak{H}$ the system $\mathfrak{H} /\langle\mathbf{C}\rangle$ is not (homomorphically or isomorphically) R-complete.

Then the following theorem holds(*).
Theorem 1. There exists a minimal homomorphically R-complete system of finite automata.

Proof. Denote by Γ a system of finite automata, where the elements of Γ are pair-wise not isomorphic, and simultaneously for every finite automaton \mathbf{A} there exists an element \mathbf{B} of Γ, such that \mathbf{A} is isomorphic to \mathbf{B}. It can easily be seen, that Γ is enumerable. Take an arrangement $\Gamma=\left\langle\mathbf{A}_{i}\left(X_{i}, A_{i}, Y_{i}, \delta_{i}^{\prime}, \lambda_{i}^{\prime}\right) \mid i=1,2, \ldots\right\rangle$ of the (enumerable) set Γ.

Let $p_{0}, p_{1}, \ldots, p_{n}, \ldots$ be an infinite sequence of prim numbers, where $p_{0} \geqq 2$, $p_{1}>p_{0}$, and for every further $p_{j}(j=2,3, \ldots), p_{j}>p_{j-1}+p_{0} \cdot p_{1} \cdot \ldots \cdot p_{j-2} \cdot \vec{A}_{j-1}$ holds.

Give the elements of automaton-system $\Delta=\left\langle\mathbf{B}_{0}, \mathbf{B}_{1}, \ldots, \mathbf{B}_{n}, \ldots\right\rangle$ as follows: $\mathbf{B}_{0}=\mathbf{B}_{0}\left(X_{0}, D_{0}, Y_{0}, \delta_{0}, \lambda_{0}\right)$ is an arbitrary automaton, such that $D_{0}=\left\langle 1,2, \ldots, p_{0}\right\rangle$, furthermore for any pair $u \in D_{0}, x \in X_{0}$

$$
\delta_{0}(u, x)=\left\{\begin{array}{l}
u+1, \quad \text { if } 1 \leqq u<p \\
1, \quad \text { if } \quad u=p_{0}
\end{array}\right.
$$

For every further $\mathbf{B}_{i}(i=1,2, \ldots)$ let $\mathbf{B}_{i}=\mathbf{B}_{i}\left(C_{i} \times X_{i}, D_{i} \cup C_{i} \times A_{i}, Y_{i}^{\prime}, \delta_{i}, \lambda_{i}\right)$ be, where Y_{i}^{\prime} is an arbitrary nonempty and finite set,

$$
\begin{align*}
C_{i} & =\left\langle 1,2, \ldots, p_{0} \cdot p_{1} \cdot \ldots \cdot p_{i-1}\right\rangle, \tag{1}\\
D_{i} & =\left\langle 1,2, \ldots, p_{i}\right\rangle, \tag{2}
\end{align*}
$$

and $\lambda_{i}:\left(D_{i} \cup C_{i} \times A_{i}\right) \times C_{i} \times X_{i} \rightarrow Y_{i}^{\prime}$ is arbitrary function, moreover for every triple $s \in D_{i},(u, a) \in C_{i} \times A_{i},(r, x) \in C_{i} \times X_{i}$

$$
\delta_{i}(s,(r, x))=\left\{\begin{array}{l}
s+1, \quad \text { if } \quad 1 \leqq s<p_{i} \tag{3}\\
1, \quad \text { if } \quad s=p_{i}
\end{array}\right.
$$

$\delta_{i}((u, a),(r, x))=\left\{\begin{array}{l}\left(u+1, \delta_{i}^{\prime}(a, x)\right), \quad \text { if } r=u \quad \text { and } 1 \leqq u<p_{0} \cdot p_{1} \cdot \ldots \cdot p_{i-1}, \\ \left(1, \delta_{i}^{\prime}(a, x)\right), \quad \text { if } r=u \quad \text { and } \quad u=p_{0} \cdot p_{1} \cdot \ldots \cdot p_{i-1}, \\ 1\left(\in D_{i}\right), \quad \text { if } r \neq u .\end{array}\right.$
${ }^{(*)}$ The proof of Theorem 1 is based on an idea of F. Gécseg.

First we prove that Δ is homomorphically R-complete system of finite automata.

Take an arbitrary finite automaton $\mathbf{A}=\mathbf{A}(X, A, Y, \delta, \lambda)$, and let $\left\langle\Psi_{1}, \Psi_{2}, \Psi_{3}\right\rangle$ denote an isomorphism of \mathbf{A} onto a suitable element \mathbf{A}_{i} in Γ. Let the automata $\mathbf{C}_{i}=$ $=\mathbf{C}_{i}\left(X, C_{i}, C_{i} \times X_{i}, \delta_{i}^{\prime \prime}, \lambda_{i}^{\prime \prime}\right), \quad \mathbf{B}_{i}^{\prime}=\mathbf{B}_{i}^{\prime}\left(C_{i} \times X_{i}, D_{i} \cup C_{i} \times A_{i}, Y, \delta_{i}, \lambda_{i}^{*}\right)$ be constructed in the following way:

For any $r \in C_{i}, x \in X, s \in D_{i},(u, a) \in C_{i} \times A_{i}$,

$$
\begin{gather*}
\delta_{i}^{\prime \prime}(r, x)=\left\{\begin{array}{l}
r+1, \quad \text { if } 1 \leqq r<p_{0} \cdot p_{1} \cdot \ldots \cdot p_{i-1} \\
1, \quad \text { if } \quad r=p_{0} \cdot p_{1} \cdot \ldots \cdot p_{i-1}
\end{array}\right. \tag{5}\\
\lambda_{i}^{\prime \prime}(r, x)=\left(r, \Psi_{1}(x)\right) \tag{6}
\end{gather*}
$$

let $\lambda_{i-}^{*}\left(s,\left(r, \Psi_{1}(x)\right)\right)$ be an arbitrary element in Y given unambigously,

$$
\lambda_{i}^{*}\left((u, a),\left(r, \Psi_{1}(x)\right)\right)=\left\{\begin{array}{l}
\Psi_{3}^{-1}\left(\lambda_{i}^{\prime}\left(a, \Psi_{1}(x)\right)\right), \text { if } r=u \tag{7}\\
\text { arbitrary element in } Y \text { given } \\
\text { unambigously, otherwise } .
\end{array}\right.
$$

From the above constructions it is evident that the superposition $\mathbf{C}_{\boldsymbol{i}} * \mathbf{B}_{\boldsymbol{i}}^{\prime}$ of $\mathbf{C}_{\boldsymbol{i}}$ by \mathbf{B}_{i}^{\prime} exists. On the other hand, using (4), (5) and (6), it can easily be proved that there is an A-subautomaton of $\mathbf{C}_{i} * \mathbf{B}_{i}^{\prime}$ with set of states $B=\left\langle(u, u, a) \mid u \in C_{i}, a \in A_{i}\right\rangle$.

Consider the mapping $\Psi_{2}^{\prime}: B \rightarrow A$ given as follows:
For every state $(u, u, a) \in B$ let $\Psi_{2}^{\prime}((u, u, a))=\Psi_{2}^{-1}(a)$. From constructions (4)-(7) it can be seen that Ψ_{2}^{\prime} is an A-homomorphism of the A-subautomaton of $\mathbf{C}_{i} * \mathbf{B}_{i}^{\prime}$ with set of states B onto A. On the other hand, using (2) and (3), it is not difficult to prove that \mathbf{C}_{i} can be represented as an A-subautomaton of a quasi-superposition of automata $\mathbf{B}_{0}, \mathbf{B}_{1}, \ldots, \mathbf{B}_{i-1}$. So in consequence of construction \mathbf{B}_{i}^{\prime}, the superposition $\mathbf{C}_{i} * \mathbf{B}_{i}^{\prime}$ is an A-subautomaton of a quasi-superposition of $\mathbf{B}_{0}, \mathbf{B}_{1}, \ldots, \mathbf{B}_{i}$. Since \mathbf{A} is arbitrary chosen, Δ is a homomorphically R-complete system of finite automata.

Let us prove that Δ is minimal, i.e. in case of any $\mathbf{B}_{i} \in \Delta$ the system $\Delta \backslash\left\langle\mathbf{B}_{i}\right\rangle$ is not homomorphically R-complete. To this we shall show, that no R-product of elements in $\Delta \backslash\left\langle\mathbf{B}_{i}\right\rangle$ has any A-subautomaton which can be mapped A-homomorphically onto \mathbf{B}_{i}.

Suppose that contrary to our assumption such R-product there exists. Denote by $\left\langle\Psi_{1}, \Psi_{2}, \Psi_{3}\right\rangle$ a homomorphism of an A-subautomaton of this R-product onto \mathbf{B}_{i}, moreover, let $\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ be a state of this A-subautomaton such that $\Psi_{2}\left(\left(e_{1}, e_{2}, \ldots, e_{m}\right)\right)=s\left(\in D_{i}\right)$.

From (3) it is evident that

$$
\begin{equation*}
s \cdot q=s \Leftrightarrow p_{i}| | q \mid \quad\left(q \in F\left(C_{i} \times X_{i}\right)\right) \tag{8}
\end{equation*}
$$

Also from (3) and $\Psi_{2}\left(\left(e_{1}, e_{2}, \ldots, e_{m}\right)\right) \in D_{i}$ it can be supposed that for a suitable
element x of $C_{i} \times X_{i}$ the

$$
\begin{equation*}
\left(e_{1}, e_{2}, \ldots, e_{m}\right) \cdot x^{l}=\left(e_{1}, e_{2}, \ldots, e_{m}\right) \tag{9}
\end{equation*}
$$

holds, where l is an appropriate natural number. Thus, due to (8), $p_{i} \mid l$ also holds. Suppose that the l is minimal among all numbers satisfying (9). For every $i(=1,2, \ldots$ $\ldots, m)$ let l_{i} be a minimal natural number for which $\left(e_{1}, e_{2}, \ldots, e_{i}\right) \cdot x^{l_{i}}=\left(e_{1}, e_{2}, \ldots, e_{i}\right)$ holds, moreover, let φ_{i} be the i th function-component of the feedback function of the R-product in question. Finally, let \mathbf{M}_{i} be the i th component-automaton in our R-product.

Suppose that $\mathbf{M}_{1}=\mathbf{B}_{j}(\in \Delta)$. In this case, refering to the equalities $\varphi_{1}\left(e_{1} \cdot \varphi_{1}\left(e_{1}\right.\right.$, $\left.\left.e_{2}, \ldots, e_{m}, x\right), x\right)=\varphi_{1}\left(\left(e_{1}, e_{2}, \ldots, e_{m}\right) \cdot x, x\right)$, and (4), either $\mathbf{M}_{1}=\mathbf{B}_{0}$, or $e_{1} \cdot \varphi_{1}\left(e_{1}\right.$, $\left.e_{2}, \ldots, e_{m}, x\right) \varphi_{1}\left(\left(e_{1}, e_{2}, \ldots, e_{m}\right) \cdot x, x\right) \in D_{j}$ holds. Then, because of (3) and (4), equality (9) holds only in case $e_{1} \in D_{j}$. Hence $l_{1} \in\left\langle p_{0}, p_{1}, p_{i-1}, p_{i+1}, p_{i+2}, \ldots\right\rangle$ that is $p_{i} \nmid l_{1}$. If \mathbf{M}_{2} in the R-product is independent of $\mathbf{M}_{1}, p_{i} \nmid l_{2}$ similarly holds. Othervise there are two possible cases.
(a) The number of states in \mathbf{M}_{2} is less than that in \mathbf{B}_{i}. Hence for arbitrary input word q of \mathbf{M}_{2} the number of pairly different states from the series $e_{2}, e_{2} \cdot q, e_{2} \cdot q^{2}, \ldots$ $\ldots, e_{2} \cdot q^{s}, \ldots$ is less than p_{i} (see the construction of $\left\langle p_{0}, p_{1}, \ldots\right\rangle$). Namely, if by the effect of e_{1} and $x^{l_{1}}$ the input word q is given to \mathbf{M}_{2}, then $p_{i} \nmid l_{2}$ since $l_{2}=l_{1} t$, where t is a natural number with $t<p_{i}$.
(b) The number of states in $\mathbf{M}_{\mathbf{2}}$ is greater than that in \mathbf{B}_{i}. Suppose that by the effect of e_{1} and $x^{l_{1}}$ the input word q is given to \mathbf{M}_{2}. In this case for every natural number k by the effect of e_{1} and $x^{k \cdot l_{1}}$ the automaton \mathbf{M}_{2} in state e_{2} has the input word q^{k} and $p_{i} \nmid|q|$. Suppose that $\mathbf{M}_{2}=\mathbf{B}_{h}(\in \Delta, \mathrm{~h}>i)$ and $e_{2}=(s, a)\left(\in C_{h} \times A_{h}\right)$. Because of (1) and (4), $e_{2} \cdot q \ddagger\langle s\rangle \times A_{h}$. Therefore, by (4), for any $k\left(\geqq 1\right.$) we have $e_{2} \cdot q \notin C_{h} \times A_{h}$. Thus $e_{2} \cdot q^{k} \in D_{h}$, which, by (9) and (3), means that $e_{2} \in D_{h}$. Consequently, taking into considerations the minimality of l_{2}, by (8) we get $l_{2}=\left[l_{1}, p_{j}\right]$, where $[m, n]$ denotes the least common multiple of m and n. Therefore, $p_{i} \nmid l_{2}$ holds as well.

Repeating our procedure for the components $e_{3}, e_{4}, \ldots, e_{m}$, finally we get that $p_{i} \backslash l_{m}$. Since $l=l_{m}$ holds per definitionem, thus $\left.p_{i}\right\rceil l$. Therefore, by (8), $\Psi_{2}\left(\left(e_{1}, e_{2}, \ldots\right.\right.$ $\left.\left.\ldots, e_{m}\right)\right) \notin D_{i}$. Thus none of the A-subautomaton of the considered R-product can be mapped A-homomorphically onto the A-subautomaton of \mathbf{B}_{i} with the set of states D_{i}. Consequently, it also cannot be mapped A-homomorphically onto \mathbf{B}_{i}. Hence the system Δ is minimal, which ends the proof of Theorem 1.

Finally we prove
Theorem 2. There exists a homomorphically R-complete system of finite automata which does not contain any minimal homomorphically R-complete subsystem.

Proof. Again let $\Gamma=\left\langle\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{n}, \ldots\right\rangle$ denote a system of finite automata such that the elments of Γ are pairly not isomorphic and for every finite automaton A there exists an element \mathbf{B} of Γ which is isomorphic to \mathbf{A}. Now let us take the system $\Lambda=\left\langle\mathbf{B}_{1}, \mathbf{B}_{2}, \ldots, \mathbf{B}_{n}, \ldots\right\rangle$ where for arbitrary $i(=1,2, \ldots)$ every automaton $\mathbf{A}_{j}(j=1,2, \ldots, i)$ is a subautomaton of \mathbf{B}_{i}.

It can easily be seen that Λ is homomorphically R-complete system of finite automata. By a result of F. Gécseg [1], no finite subset of Λ is homomorphically R-complete.

Denote by Ω an infinite subset of Λ. It is evident that for every natural number i there is a j with $j \geqq i$ such that $\mathbf{B}_{j} \in \Lambda \cap \Omega$. Since every $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{j} \in \Gamma$ is a subautomaton of \mathbf{B}_{j}, thus Ω is also homomorphically R-complete. It is obvious that Ω is not minimal, which completes the proof of Theorem 2.

THE BOULDING SOCIETY OF SOUTHERN HUNGARY /DÉLÉP/ H-6721 SZEGED, HUNGARY BOCSKAI U. 10-12.

References

[1] Gécseg, F., O композиции автоматов без петель, Acta Sci. Math. (Szeged), v. 26, 1965, pp. 269-272.
[2] Gécseg, F., On complete systems of automata, Acta Sci. Math. (Szeged), v. 30, 1969, pp. 295300.
[3] Gécseg, F. \& I. Peák, Algebraic Theory of automata, Disquisitiones Matematicae, Akadémiai Kiadó, Budapest, 1972.

