On minimal *R*-complete systems of finite automata

By P. DÖMÖSI

To the memory of Professor L. Kalmár

From papers by F. Gécseg (see [1], [2]) it is known, that there exist neither finite homomorphically, nor minimal isomorphically R-complete systems of finite automata. In the book by F. GÉCSEG and I. PEÁK [3] it is mentioned as an unsolved problem whether or not there exists a minimal homomorphically R-complete system of finite automata.

In this paper we prove that the answer to this problem is in the affirmative. Namely, it is shown that there exists a minimal homomorphically *R*-complete system of finite automata. Moreover, we prove that there exists a homomorphically Rcomplete system of finite automata which does not contain any minimal subsystem.

Before proving our statements, we introduce some notions and notations. Take an arbitrary, finite partially ordered set $R = \langle 1, 2, ..., n \rangle$ of indices, and for every i (=1, 2, ..., n) let an automaton $A_i = A_i(X_i, A_i, Y_i, \delta_i, \lambda_i)$ be given. Suppose that for an automaton $\mathbf{A} = \mathbf{A}(X, A, Y, \delta, \lambda)$ with state set $A = A_1 \times A_2 \times \ldots \times A_n$ the functions $\varphi: A_1 \times A_2 \times \ldots \times A_n \times X \to X_1 \times X_2 \times \ldots \times X_n, \psi: A_1 \times A_2 \times \ldots \times A_n \times X \to Y$ are given. Then $\mathbf{A} = \prod_{i=1}^{n} \mathbf{A}_{i}[X, Y, \varphi, \psi]$ is called a loop-free or *R*-product of the automata $\mathbf{A}_{1}, \mathbf{A}_{2}$, ..., A_n , if the conditions $\delta((a_1, a_2, ..., a_n), x) = (\delta_1(a_1, x_1), \delta_2(a_2, x_2), ..., \delta_n(a_n, x_n))$,

 $\lambda((a_1, a_2, ..., a_n), x) = \psi(a_1, a_2, ..., a_n, x) \text{ hold for arbitrary } (a_1, a_2, ..., a_n) \in A \text{ and } x \in X, \text{ where } (x_1, x_2, ..., x_n) = \varphi(a_1, a_2, ..., a_n, x); \text{ moreover } \varphi(a_1, a_2, ..., a_n, x) = \varphi(a_1, a_2, ..., a_n, x)$ = $(\varphi_1(a_1, a_2, ..., a_n, x), \varphi_2(a_1, a_2, ..., a_n, x), ..., \varphi_n(a_1, a_2, ..., a_n, x))$ holds as well, where φ_i (i=1, 2, ..., n) is independent of states having indices not less (in the original definition not greater) than i under the partial ordering R. The functions φ and ψ of the R- product are called *feedback function* and *output function*, respectively.

If in the considered R-product A the set R is completely ordered, then A is called

a quasi-superposition of A_1, A_2, \dots, A_n . Let $A_1 = A_1(X_1, A_1, Y_1, \delta_1, \lambda_1)$ and $A_2 = A_2(X_2, A_2, Y_2, \delta_2, \lambda_2)$ be arbitrary automata, where $Y_1 \subseteq X_2$. Then a quasi-superposition $\mathbf{A} = \prod_{i=1}^{2} \mathbf{A}_i[X_1, Y_2, \varphi, \psi]$ of \mathbf{A}_1 and A₂, where $\varphi(a_1, a_2, x) = (x, \lambda_1(a_1, x)), \psi(a_1, a_2, x) = \lambda_2(a_2, \lambda_1(a_1, x))$ are for any

P. Dömösi

 $a_1 \in A_1$, $a_2 \in A_2$ and $x \in X_1$, is said to be the superposition of A_1 by A_2 . The superposition can naturally be generalized for an arbitrary finite system of automata $A_i = A_i(X_i, A_i, Y_i, \delta_i, \lambda_i)$ (i=1, 2, ..., n) with $Y_j = X_{j+1}$ (j=1, 2, ..., n-1).

A system \mathfrak{A} of finite automata is called homomorphically (isomorphically) *R-complete*, if for every given finite automaton A there exists a finite *R*-product **B** of automata from \mathfrak{A} , such that an *A*-subautomaton of **B** can be mapped *A*-homomorphically (*A*-isomorphically) onto A. \mathfrak{A} is a *minimal* (homomorphically or isomorphically) *R*-complete system if for arbitrary $C \in \mathfrak{A}$ the system $\mathfrak{A}/\langle C \rangle$ is not (homomorphically or isomorphically) *R*-complete.

Then the following theorem holds^(*).

Theorem 1. There exists a minimal homomorphically R-complete system of finite automata.

Proof. Denote by Γ a system of finite automata, where the elements of Γ are pair-wise not isomorphic, and simultaneously for every finite automaton A there exists an element B of Γ , such that A is isomorphic to B. It can easily be seen, that Γ is enumerable. Take an arrangement $\Gamma = \langle A_i(X_i, A_i, Y_i, \delta'_i, \lambda'_i) | i = 1, 2, ... \rangle$ of the (enumerable) set Γ .

Let $p_0, p_1, ..., p_n, ...$ be an infinite sequence of prim numbers, where $p_0 \ge 2$, $p_1 > p_0$, and for every further $p_j (j=2, 3, ...), p_j > p_{j-1} + p_0 \cdot p_1 \cdot ... \cdot p_{j-2} \cdot \overline{A}_{j-1}$ holds. Give the elements of automaton-system $\Delta = \langle \mathbf{B}_0, \mathbf{B}_1, ..., \mathbf{B}_n, ... \rangle$ as follows: $\mathbf{B}_0 = \mathbf{B}_0(X_0, D_0, Y_0, \delta_0, \lambda_0)$ is an arbitrary automaton, such that $D_0 = \langle 1, 2, ..., p_0 \rangle$, furthermore for any pair $u \in D_0, x \in X_0$

$$\delta_0(u, x) = \begin{cases} u+1, & \text{if } 1 \le u < p, \\ 1, & \text{if } u = p_0. \end{cases}$$

For every further $\mathbf{B}_i(i=1, 2, ...)$ let $\mathbf{B}_i = \mathbf{B}_i(C_i \times X_i, D_i \cup C_i \times A_i, Y'_i, \delta_i, \lambda_i)$ be, where Y'_i is an arbitrary nonempty and finite set,

$$C_i = \langle 1, 2, \dots, p_0 \cdot p_1 \cdot \dots \cdot p_{i-1} \rangle, \tag{1}$$

$$D_i = \langle 1, 2, \dots, p_i \rangle, \tag{2}$$

and $\lambda_i: (D_i \cup C_i \times A_i) \times C_i \times X_i \rightarrow Y'_i$ is arbitrary function, moreover for every triple $s \in D_i$, $(u, a) \in C_i \times A_i$, $(r, x) \in C_i \times X_i$

$$\delta_i(s,(r,x)) = \begin{cases} s+1, & \text{if } 1 \le s < p_i, \\ 1, & \text{if } s = p_i, \end{cases}$$
(3)

 $\delta_i((u, a), (r, x)) = \begin{cases} (u+1, \delta'_i(a, x)), & \text{if } r = u \text{ and } 1 \leq u < p_0 \cdot p_1 \cdot \dots \cdot p_{i-1}, \\ (1, \delta'_i(a, x)), & \text{if } r = u \text{ and } u = p_0 \cdot p_1 \cdot \dots \cdot p_{i-1}, \\ 1(\in D_i), & \text{if } r \neq u. \end{cases}$ (4)

^(*) The proof of Theorem 1 is based on an idea of F. Gécseg.

On minimal *R*-complete systems of finite automata

First we prove that Δ is homomorphically *R*-complete system of finite automata.

Take an arbitrary finite automaton $\mathbf{A} = \mathbf{A}(X, A, Y, \delta, \lambda)$, and let $\langle \Psi_1, \Psi_2, \Psi_3 \rangle$ denote an isomorphism of \mathbf{A} onto a suitable element \mathbf{A}_i in Γ . Let the automata $\mathbf{C}_i = \mathbf{C}_i(X, C_i, C_i \times X_i, \delta''_i, \lambda''_i)$, $\mathbf{B}'_i = \mathbf{B}'_i(C_i \times X_i, D_i \cup C_i \times A_i, Y, \delta_i, \lambda^*_i)$ be constructed in the following way:

For any $r \in C_i$, $x \in X$, $s \in D_i$, $(u, a) \in C_i \times A_i$,

$$\delta_i''(r, x) = \begin{cases} r+1, & \text{if } 1 \leq r < p_0 \cdot p_1 \cdot \dots \cdot p_{i-1}, \\ 1, & \text{if } r = p_0 \cdot p_1 \cdot \dots \cdot p_{i-1}, \end{cases}$$
(5)

$$\lambda_i''(r, x) = (r, \Psi_1(x));$$
(6)

let $\lambda_{i}^{*}(s, (r, \Psi_{1}(x)))$ be an arbitrary element in Y given unambigously,

$$\lambda_i^*((u, a), (r, \Psi_1(x))) = \begin{cases} \Psi_3^{-1}(\lambda_i'(a, \Psi_1(x))), & \text{if } r = u \\ \text{arbitrary element in } Y \text{ given} \\ \text{unambigously, otherwise.} \end{cases}$$
(7)

From the above constructions it is evident that the superposition $C_i * B'_i$ of C_i by B'_i exists. On the other hand, using (4), (5) and (6), it can easily be proved that there is an A-subautomaton of $C_i * B'_i$ with set of states $B = \langle (u, u, a) | u \in C_i, a \in A_i \rangle$.

Consider the mapping $\Psi'_2: B \rightarrow A$ given as follows:

For every state $(u, u, a) \in B$ let $\Psi'_2((u, u, a)) = \Psi_2^{-1}(a)$. From constructions (4)—(7) it can be seen that Ψ'_2 is an A-homomorphism of the A-subautomaton of $C_i * B'_i$ with set of states B onto A. On the other hand, using (2) and (3), it is not difficult to prove that C_i can be represented as an A-subautomaton of a quasi-superposition of automata $B_0, B_1, \ldots, B_{i-1}$. So in consequence of construction B'_i , the superposition $C_i * B'_i$ is an A-subautomaton of a quasi-superposition of B_0, B_1, \ldots, B_i . Since A is arbitrary chosen, Δ is a homomorphically R-complete system of finite automata.

Let us prove that Δ is minimal, i.e. in case of any $\mathbf{B}_i \in \Delta$ the system $\Delta \setminus \langle \mathbf{B}_i \rangle$ is not homomorphically *R*-complete. To this we shall show, that no *R*-product of elements in $\Delta \setminus \langle \mathbf{B}_i \rangle$ has any *A*-subautomaton which can be mapped *A*-homomorphically onto \mathbf{B}_i .

Suppose that contrary to our assumption such *R*-product there exists. Denote by $\langle \Psi_1, \Psi_2, \Psi_3 \rangle$ a homomorphism of an *A*-subautomaton of this *R*-product onto **B**_i, moreover, let $(e_1, e_2, ..., e_m)$ be a state of this *A*-subautomaton such that $\Psi_2((e_1, e_2, ..., e_m)) = s(\in D_i)$.

From (3) it is evident that

$$s \cdot q = s \Leftrightarrow p_i |q| \quad (q \in F(C_i \times X_i)).$$
 (8)

Also from (3) and $\Psi_2((e_1, e_2, ..., e_m)) \in D_i$ it can be supposed that for a suitable

39

element x of $C_i \times X_i$ the

$$(e_1, e_2, \dots, e_m) \cdot x^l = (e_1, e_2, \dots, e_m)$$
(9)

holds, where l is an appropriate natural number. Thus, due to (8), $p_i|l$ also holds. Suppose that the l is minimal among all numbers satisfying (9). For every i(=1, 2, ..., m) let l_i be a minimal natural number for which $(e_1, e_2, ..., e_i) \cdot x^{l_i} = (e_1, e_2, ..., e_i)$ holds, moreover, let φ_i be the *i* th function-component of the feedback function of the *R*-product in question. Finally, let \mathbf{M}_i be the *i* th component-automaton in our *R*-product.

Suppose that $\mathbf{M}_1 = \mathbf{B}_j(\in \Delta)$. In this case, referring to the equalities $\varphi_1(e_1 \cdot \varphi_1(e_1, e_2, \dots, e_m, x), x) = \varphi_1((e_1, e_2, \dots, e_m) \cdot x, x)$, and (4), either $\mathbf{M}_1 = \mathbf{B}_0$, or $e_1 \cdot \varphi_1(e_1, e_2, \dots, e_m, x)\varphi_1((e_1, e_2, \dots, e_m) \cdot x, x) \in D_j$ holds. Then, because of (3) and (4), equality (9) holds only in case $e_1 \in D_j$. Hence $l_1 \in \langle p_0, p_1, p_{i-1}, p_{i+1}, p_{i+2}, \dots \rangle$ that is $p_i \nmid l_1$. If \mathbf{M}_2 in the *R*-product is independent of $\mathbf{M}_1, p_i \nmid l_2$ similarly holds. Otherwise there are two possible cases.

(a) The number of states in \mathbf{M}_2 is less than that in \mathbf{B}_i . Hence for arbitrary input word q of \mathbf{M}_2 the number of pairly different states from the series e_2 , $e_2 \cdot q$, $e_2 \cdot q^2$, ... \dots , $e_2 \cdot q^s$, ... is less than p_i (see the construction of $\langle p_0, p_1, \dots \rangle$). Namely, if by the effect of e_1 and x^{l_1} the input word q is given to \mathbf{M}_2 , then $p_i \not\mid l_2$ since $l_2 = l_1 t$, where t is a natural number with $t < p_i$.

(b) The number of states in \mathbf{M}_2 is greater than that in \mathbf{B}_i . Suppose that by the effect of e_1 and x^{l_1} the input word q is given to \mathbf{M}_2 . In this case for every natural number k by the effect of e_1 and $x^{k \cdot l_1}$ the automaton \mathbf{M}_2 in state e_2 has the input word q^k and $p_i \not| |q|$. Suppose that $\mathbf{M}_2 = \mathbf{B}_h(\in A, h > i)$ and $e_2 = (s, a) (\in C_h \times A_h)$. Because of (1) and (4), $e_2 \cdot q \notin \langle s \rangle \times A_h$. Therefore, by (4), for any $k (\cong 1)$ we have $e_2 \cdot q \notin C_h \times A_h$. Thus $e_2 \cdot q^k \in D_h$, which, by (9) and (3), means that $e_2 \in D_h$. Consequently, taking into considerations the minimality of l_2 , by (8) we get $l_2 = [l_1, p_j]$, where [m, n] denotes the least common multiple of m and n. Therefore, $p_i \not| l_2$ holds as well.

Repeating our procedure for the components e_3 , e_4 , ..., e_m , finally we get that $p_i \langle I_m$. Since $l = l_m$ holds *per definitionem*, thus $p_i \langle I$. Therefore, by (8), $\Psi_2((e_1, e_2, ..., e_m)) \notin D_i$. Thus none of the A-subautomaton of the considered R-product can be mapped A-homomorphically onto the A-subautomaton of \mathbf{B}_i with the set of states D_i . Consequently, it also cannot be mapped A-homomorphically onto \mathbf{B}_i . Hence the system Δ is minimal, which ends the proof of Theorem 1.

Finally we prove

Theorem 2. There exists a homomorphically *R*-complete system of finite automata which does not contain any minimal homomorphically *R*-complete subsystem.

Proof. Again let $\Gamma = \langle \mathbf{A}_1, \mathbf{A}_2, ..., \mathbf{A}_n, ... \rangle$ denote a system of finite automata such that the elments of Γ are pairly not isomorphic and for every finite automaton **A** there exists an element **B** of Γ which is isomorphic to **A**. Now let us take the system $\Lambda = \langle \mathbf{B}_1, \mathbf{B}_2, ..., \mathbf{B}_n, ... \rangle$ where for arbitrary i(=1, 2, ...) every automaton $\mathbf{A}_i(j=1, 2, ..., i)$ is a subautomaton of \mathbf{B}_i .

It can easily be seen that Λ is homomorphically *R*-complete system of finite automata. By a result of F. GÉCSEG [1], no finite subset of Λ is homomorphically *R*-complete.

Denote by Ω an infinite subset of Λ . It is evident that for every natural number *i* there is a *j* with $j \ge i$ such that $\mathbf{B}_j \in \Lambda \cap \Omega$. Since every $\mathbf{A}_1, \mathbf{A}_2, ..., \mathbf{A}_j \in \Gamma$ is a subautomaton of \mathbf{B}_j , thus Ω is also homomorphically *R*-complete. It is obvious that Ω is not minimal, which completes the proof of Theorem 2.

THE BOULDING SOCIETY OF SOUTHERN HUNGARY /DÉLÉP/ H-6721 SZEGED, HUNGARY BOCSKAI U. 10-12.

References

- [1] GÉCSEG, F., О композиции автоматов без петель, Acta Sci. Math. (Szeged), v. 26, 1965, pp. 269—272.
- [2] GÉCSEG, F., On complete systems of automata, Acta Sci. Math. (Szeged), v. 30, 1969, pp. 295-300.
- [3] GÉCSEG, F. & I. PEÁK, Algebraic Theory of automata, Disquisitiones Matematicae, Akadémiai Kiadó, Budapest, 1972.

(Received May 14, 1975)