
Method for simulation of digital automata
B y T . VELITCHKOV a n d K . BOYANOV

Simulation of digital automata is more and more widely applied in designing
of digital devices, as it permits full functional testing before their building. The
methods for simulation known so far may be classified into two groups. The first one
includes the methods for simulation based on the algorithm describing the behaviour
of the tested devices [1], [2]. The second group includes the methods based on the
logical equations, describing the components the digital device consists of [3], [4].
Some of these methods give an idea of the time sequence of the signals of the real
device, others do not. The methods of the first group can be easily applied when the
simulation of the automaton as a whole is required, while those of the second group
are convenient when the simulation of some components of the automaton is neces-
sary. The existing methods for simulation have some inconveniences. In the detailed
examination of the behaviour of a digital automaton the volume of the data processed
by the simulating programme and the machine time required, grow much faster
than the increase of complexity of the automaton. Due to that it is accepted that the
whole automaton consists of few, but complex components. This approach does not
allow the detailed study, which is often required.

This paper proposes a method permitting the detailed examination of the behav-
iour of each of the structurally described components when the simulation of an
algorithmically described complex digital automaton is carried Ag Ai
out. The method makes possible the determination of the output * f
signals of the automaton for every time interval for which the —1

input signals are determined. Moreover, the simulating pro-
grammes remain unchangeable for different structures of the p-'
simulated digital automaton and for the various input signals.

Basic definitions

We define a finite automaton according to [5]. Logical network for us is a multi-
tude of finite automata with connected inputs and outputs. We accept that time
is. divided into equal elementary time intervals during which the input and the output
symbols of the automaton remain unchangeable and

c z
Fig. 1

58 T. Velitchkov and K. Boyanov

where t is a real time interval, r is the elementary time interval and T is a number
without dimensions. We call T delay factor. The multitude of all input and output
symbols assigned for an elementary time interval to the automata the logical network
consists of is called momentary state. Time diagram is the multitude of momentary
states for the time interval t=m where «>1 . We classify the internal states of the

i

A , n
•

1 1 ^ SX •
1

I V, \
1 1 /
! '-» !

I •S *
 1

! /3
V . '

I

1

1
1 1

1

1 '

I I 1

1
1

1 1
1
1
1

t

^
1 1

i
i

1
1
1

L 1
1
1

1

1
1

t

1

Fig. 4

automaton into two groups: stable states, in which the automaton can stay during
more than one successive time intervals and quasistable states, in which the automaton
cannot stay during more than one elementary time interval. We call signals the physi-
cal phenomena representing the input or the output symbols of the finite automata.

[Method for simulation of digital automata 59'

Essential ideas

We will try to represent the real automata so as to obtain the time-diagram of
a logical network and its components.

XviYif

A-.fVc)

Fig. 5

Let us consider a real automaton having two inputs C and Z and two outputs
A0 and Ax (fig. 1), whose input and output symbols are represented with real signals.
The .time-diagram of the automaton is shown on fig. 2. It can be seen that during the
time intervals tlt t2, t4 and t5 the output state of the automaton is undetermined.

We will approximate the behaviour of the real automaton to this of a finite
automaton, whose graph is shown on fig. 5 and whose time-diagram is given on fig.3.

60 T. Velitchkov and K. Boyanov

Both the input and the output alphabets of the automaton are shown on fig. 14.
(The symbol A will be discussed later.)

On fig. 3 it can be seen that there is no undetermined in the time-diagram. How-
ever, it does not show the time delay between the input affectations and the output
reactions of real automaton (time intervals t1(5.)

The time-diagram on fig.4 approximates permissibly precisely the time-diagram
given on fig.2. Fig.6, fig.7 and fig.8 show the graphs of automata meeting the require-
ments of the time-diagram on fig.4. The automaton defined by the graph on fig.6
analyses its own input symbol for every elementary time interval and according to
its internal state provides the corresponding output symbol. The stable states of the
automaton (0, 1,2 and 3) are separated by sequences of quasistable states in which
the automaton can be during the time intervals tx H- ?5. The number of the quasistable
states is obviously dependent on the duration of the corresponding time interval. The

[Method for simulation of digital automata 61'

-output symbol of the automaton being in a quasistable state is identical with its
output symbol of the latest stable internal state it has been into. The described autom-
aton carries out the time :diagram from fig.4, but in this representation the number
of the internal states is too great and this makes difficult the representation and the
simulation of complex automata. Besides that, two functionally equivalent real
•automata with different delay factors will have a different number of internal states
and this is quite inconvenient. Moreover, it don't makes possible the checking of the
correctness of the input symbols. This inconvenience can be avoided by the introduc-
tion of an additional stable state N (undeterminated state, fig. 7). Before getting into
any successive state (regardless of its being stable or quasistable) the automaton
analyses its input symbol and in case it proves to be unacceptable for the given internal
state, the automaton gets into the undeterminated state N and supplies the undeter-
mined output symbol Y„. The automaton remains in the state N till some prelimi-
narily defined input affectation does not make it change its state. For the automaton
on fig.l this is the input affectation X0. Nevertheless, the number of the internal
states of the automaton is still great in this representation. In order to avoid this
inconvenience the automaton is represented on fig. 8 by a graph where the successive
quasistable states are joined into new stable states M1 2_i, M12_2 . . . The automaton
will remain in these new states for as many elementary time intervals as is the duration
of the intervals t1-^-t5. We consider this representation of the real automata to be
enough convenient and will use it in simulation of digital devices.

Simulation

To simulate the work of logical network means in fact to-simulate the work
of the automata it consists of. Not the real automata are considered, but their equiv-
alent finite automata, which are represented in the manner described above. A multi-
tude of variables jSf is introduced for the simulation of the work of a finite automaton.

arguments
ai a2

conjunction disjunction nor
operation

nand
operation

exclusive
or

exlusion
Of Oi

0 0 0 0 1 1 0 1

0 1 0 1 0 1 1 1

1 0 0 1 0 1 1 0

1 1 1 1 0 0 1 0

0 A 0 A A 1 0 1

A 0 0 A A 1 v A A

1 A A 1 0 A ' A 0

A 1 A 1 0 A A A

A A A A A A A A

Fig. 9

62 T. Velitchkov and K. Boyanov

P D (individual description)'

' / / / / / / / / y / 7)

T D (type description)

automaton 1

automaton 2

automaton / automaton /

automaton m

type I

type 1

E type k

Fig. 10

I D E N T

lenght LN [type G |

These variables correspond to the input, output and internal states of the automaton
and will be called internal variables of the automaton. The variable representing the
input state can have many values as is the number of the symbols of the input alphabet
of the automaton and its value in any given moment corresponds to the actual input
symbol. The internal and the output states are represented in the same way. The
multitude of the internal variables includes also variables corresponding to the delay
factors, as well as service variables required by the simulating system. As the func-

tioning of every type of automata is in-
individual number dividually simulated, it is necessary to

define all its stable and quasistable
states, the incorrect input affectations,,
which will be looked for, when the
simulation will be carried out and also
to define the internal variables of the
automata and to work out the algo-
rithm of their changes. For the simu-
lation of a logical network all the auto-

• mata it consists of should be described
and all their connections should be
pointed out. It is also necessary to
determine the initial state of the net-
work. This presents a difficult problem
when complex logical networks are
considered. That is why this method
accepts that the input (and output) sym-
bols are three : 0, 1 and A. The A state

Fig. 11 is undetermined (0 or 1) and it is assign-

i inks of input C

au tomaton A'i ou tput A/|

links of input Z

j au toma ton A'; | ou tput A/ : J

ident i f icators of the au toma ta connected to the outputs A
a
 and A t

au tomaton A'; | a u t o m a t o n N , | ~7 / [

[Method for simulation of digital automata 63'

ed to any input (or output) whose state cannot be precisely specified, as well as to
the outputs of the automata, which have received an incorrect input affectation (on
the graph on fig.5 and fig.6 this state is marked by Yn). The introduction of this third
state demands that the truth table of the logical functions should be changed (we
accept that all logical functions are. represented in a classical and, or, not basis).

Structure of the simulating system

This paper considers the simulating system carrying out the described ideas.
The system includes the files TD and PD (fig. 10), the lists Ll9 L2 and the. counter
CNT. It makes possible the simulation of the logical network, built of a finite number
of types of automata, which have preliminarily assigned internal variables and algo-
rithms. The programmes simulating the functioning of each type of automata are
worked out according to their algorithms and are grouped into the file type descrip-

64 T. Velitchkov and K. Boyanov

tions (TD). The internai variables of all automata, taking part in the network, form
the individual descriptions of the automata and are grouped into the file PD. Besides
that, every individual description includes the length factor (LN), indicating its own
length, the identificator IDENT, showing the individual number of the automaton
and the type factor G, denoting the type of the automaton (fig. 11). The connections
between the components of the simulated network are shown by the identificators
of the automata and by the numbers of the outputs connected to each input. (See
fig. 11.) In order to examine a network it is necessary to define precisely the input
affectations for every elementary time interval. This method achieves that by describ-

(en'OÜ
C internal state rnal state y

H I r ^ ^ ^ [¿ 7] Ï j i 5 1«IMJ IjwLj [Mm^

[¿ J (" F j ^ gWj] i^jjJ

(s t a t e 0)

input symbol
any other

X,

\V-. = Mm., I

l 5 ' ^ ' I

(ÉD

XI

any other

(state l)

input symbol
Xo

Xi X2

1 V: = Mn.t

\ 1
|S,: = A/IM |

1

\T:—-T2 . \T-.=T, 1

Fig. 13a

ing all input variables as autonomous automata, according to the definition given
in [6]. The time counter CNT contains the number of the actual time interval. At the
initial moment its value is 0, while all inputs and outputs are in the A state. The list
Lx includes the identificators of the autonomous automata, representing the input
variables. The programme reads an identificator of an automaton from L1} takes out
its individual description from the file PD, decodes its type and reads its type descrip-
tion from the file TD. During the first elementary time interval this automaton will
be an autonomous one whose output will be set in 0 or 1. After that the identificators
of all automata connected to the output which has changed its state are put in L2.
In case the automaton has got into a quasistable state, its own identificator will be
put in L2. This process continues till the list is exhausted. Then the contents of L2
is put in the place of Lx, "1" is added to the time counter and the study of the behav-
iour of the network for the next time interval begins. The list L j contains now the

[Method for simulation of digital automata 65'

identificators of all the automata to whose inputs new symbols have been assigned,
as well as the identificators of the automata being in a quasistable state. The rest
automata are not studied because their states (input and internal) remain unchangea-
ble. The general algorithm of the simulating programme is given on fig. 12. After
every elementary time interval "the complete table of output states" is filled with
the new data, composed of the identificators and of the states of the outputs of all the
automata the network consists of. This table is the result of the simulation and is

Ao

(̂ state

/ input symbol
any other

1 K

1 , |s, = M23-2|
I 1 ,

|s, = Y0 |

1 ,
= 3

1 ,

|s,

1 T . \T

1 1

Xo

ŝtate

_J ^ any other
- ^ i n p u t symbol

Xi

= Aijo-i

= M, o.2

r> \

1
* 0 1

F: = T, 1

Fig. 13b

stored on a magnetic tape. The simulation will be carried out till some preliminarily
specified conditions are detected. (Certain states of some automata or a given value
of the time counter CNT.) The structure of the simulated network and the algorithm
of the automata for each type are described in a proper language, which is not dis-
cussed in this paper.

5 A c t a C y b e r n e t i c a I I I / l

66 T. Velitchkov and K. Boyanov

Let us consider a counter, for example. Its time-diagrams (real and approximat-
ed) are shown on fig.3 and fig.4. The graph of the finite automaton, approximating:
the counter, is given on fig. 8. (Only the stable states 1 and 2 and the quasistable ones
linking them are shown; the other branches are similar to them.) The multitude of
the internal variables becomes of the kind

&={V,X,Y,T1,Tz,...,Ti,T}

(s t a l e i v)

^ 1
inpu t sy iuboP>—

i V: = Mso.i 1

any other

Fig. ISc

where:

V — is the variable of the internal state, it contains the number of the actual
internal state;

X — is the variable of the input state, it points out the actual input symbol;
Y— is the variable of the output state, it points out the actual output symbol;
Ti, i— 1, 2, ... are delay factors;
T — is the variable of the actual delay.

[Method for simulation of digital automata 67'

input
symbols

binary values
of the input signals output

symbols

binary values
of the output signals input

symbols
C Z

output
symbols

A0 A!

0 0 Y, 0 1

0 1 Yt 0 1

X* 1 0 Y, . 1 0

X3 1 1 Y* 1 1

Xt 0 A Y* 0 A

Xs A 0 Y5 A 0

Xs A 1 Yt A 1

X7 1 A Y, 1 A

Xs A A Yy A A

Fig. 14 note: the symbols Yiy YB, y6, K,
are not allowed

Examining the behaviour of the counter we accept that the input affectations.,
cannot be shorter than t2, ?4 (fig-4). Any input affectations which do not meet
this requirement will be considered to be incorrect. Let us suppose that the counter
is in the stable state 1 (fig.8). It will stay in it as long as the input symbol remains X0.
When the input symbol becomes Xx, the internal state will get into the quasistable :
state M12_i (see fig.8), the variable of the actual delay (T) receives the value T2 and
the output symbol remains unchangeable. Being in the state M12_i the counter
analyses its input symbol, whose value should remain invariably X1. Meanwhile "1" '
is subtracted from the current delay during every elementary time interval. When
the value of T becomes 0 the counter gets from the state M12_x into the state M12_2.
and the output symbol changes from Y± to. Y2. The change of the input symbol while
the internal state is still M12_± means that the input affectation is shorter than T2.
In such a case the next internal state of the automaton will be N and the variable
of the output state will receive the value YN. The automaton will remain in the state
M12_2 as long as the input symbol is Xx. It will get into the state 2, when the input,
symbol is X0. Any other input symbol will lead into the state N. The maximum length
of the input affectation is not checked during the time interval t3, because it is not
limited in time. So far we have considered the branch of the graph connecting the
stable states 1 and 2. All other branches are similar.

The algorithm of the counter described above is shown on fig. 13. The variables ..
S1} S2, S3, / j , I2 and 73 are service variables. They are not required by the graph but .
their use makes the algorithm simpler.

•68 Т. Velitchkov and К. Boyanov: Method for simulation of digital automata

Conclusions

The method considered in this paper makes possible the simulation of logical
networks, composed of large and expansible set of components. The simulating
programme does not depend on the structure of the network and on the kind of the

•components it consists of. On one hand, the examined network could consist of only
one algorithmically described automaton (except the automata representing the
input variables). On the other hand, the structure of the network could be described
in full details (it can be accepted that the network is composed of elements carrying
•out the elementary logical functions). This method permits the combination of these
two extreme cases. Complex digital automata can be simulated in this way and the
detailed examination of some of their parts is possible. Descriptions of new types of

• components can be easily added to the simulating programme system.
A full information about the functioning of the simulated automata is obtained

as a result of the work of the programme. Moreover, race simulation or oscilation
of the tested network can be registrated. Finally, by the lists L± and L2 we can judge
how often the various components of the tested nerwork are used.

The authors are indebted to ass. prof. D. Dobrev from the Institute of Mathe-
matics and Mechanics of the Bulgarian Academy of Sciences for his valuable recom-
mendations.

BULGARIAN ACADEMY OF SCIENCES
INSTITUTE OF MATHEMATICS A N D
MECHANICS WITH COMPUTER CENTER

: SOFIA, BULGARIA

References

»[1] Боянов , К. & Т. Величков, Моделирование логических схем на цифровой вычисли"
тельной машине, Доклады БАН, т. 22, № 5, 1969.

•[2] BREUER, М . A . , Functional partitioning and simulation of digital circuits, IEEE Trans. Com-
puters, v. C19, N11, 1970.

[3] BREUER, M. A., Techniques for the simulation of computer logic, Comm. ACM, v. 7, 1964, pp.
443—446.

' [4] SHALLA, L . , Automatic analysis of electronic digital circuits using list processing, Comm. ACM,
v. 9, 1966, pp. 372—380.

• [5] Глушков , В. M., Синтез цифровых автоматов, Физматгиз, 1969.
,.[6] Т р а х т е н б р о т , Та., Конечные автоматы (поведение и синтез), Наука, Москва, 1969.

(Received April 13, 1974)

