On graphs satisfying some conditions for cycles, II.

By A. ADiAM

Introduction

In this paper we study another class (containing all cycles) of finite directed
graphs, than in Part I. Let a class be introduced as follows: (i) all cycles belong to
the class, (ii) whenever a graph G, is contained in the class and we replace a simple
vertex P of G, by a cycle, then the new graph G is again an element of the class,
(iii) the class is as narrow as possible with respect to the rules (i), (ii). The members
of this class are called the A-constructible graphs. (A more detailed definition will
be given in § 1.) ‘

An advantage of this recursive definition is its simplicity; it has, however, the
disadvantage that is does not give the A-constructible graphs uniquely (the same
graph can be produced in essentially different ways). Therefore another recursive
procedure (called Construction B) will be exposed such that it admits a decomposi-
tion statement (Theorem 1) and it yields all the A-constructible graphs (Theorem 2).
(As it may be foreseen, Construction B is described more elaborately, than Construc-
tion A.) Finally, it is shown that the class of B-constructible graphs is wider, than
the class of the A-constructible ones. We deal with the question (without solving
it completely) how the A-constructible graphs can be characterized in terms of
Construction B.

§ 1. The Constructions A, B

1.1.

CoNSTRUCTION A. The construction consists of an initial step and a finite number
(=0) of ordinary steps.

Initial step. Let us consider a cycle of length n (=2).

Ordinary step. Suppose that the preceding (initial or ordinary) step has produced
the graph G,. Consider G, and a cycle z of length m (=2) such that G,, z are disjoint.
Choose a simple vertex P in G,; denote by e,, e, the edges incoming to P or out-
going from P, resp. Furthermore, choose two different vertices 4, B in z. Let us
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unite Gy and z such that P is deleted, 4 becomes the new final vertex of e, and B
is the new initial vertex of e,.
A graph G is called A-constructible if G can be built up by Construction Al

1.2. Let G be a graph. We denote by K(G) the maximum of the numbers
Z(e) where e runs through the edges of G. An edge ¢, (of G) is called extremal if
Z(eg)=K(G). Denote by G’ the subgraph of G consisting of the extremal edges
(in G) and the vertices incident to them. G’ is not connected in general. The connected
components of G” are called the extremal subgraphs of G. If an extremal subgraph
is a path only (having one or more edges), then we call it an extremal path.

1.3.

ConsTRUCTION B. The construction consists of a finite number (=1) of steps
any of which is either an inital step or an ordinary one in the following sense.

Initial step. Let us consider a graph G such that
\
either G is a cycle (of length =1),

or G is I*-constructible? and G has no cut vertex (and, of course, G has
nelther a loop nor a pair of parallel edges with the same orientation).

Ordinary step. Let us consider a graph G, and a matrix

A Ay ... Ay
B, B,..B,
G, G,...G,
P, P,..P,

(having four rows and k (=1) columns) such that

(«) any of the k+1 graphs G,, G,, G, ..., Gy is Jsomorphlc to a graph produced
in some earlier step of the construction,?

(B) K(Gp)z=max (2, K(Gy), K(Gy), -.., K(G),

(y) 44, A4s, ..., Ay, By, B, ..., B, are pairwise different s1mple vertices of G,

() for any subscrlpt 1 (1 <1—k), G, has an extremal path* g; with the follow-
ing properties:

A; precedes B; along a;, and

the set of vertices lying between 4;, B; on g; is disjoint to the set {4,, 4,, ...,
Ak=BlsBZa--~,Bk}, . )

(¢) for any i (1=i=k), P, is a simple vertex of G; and Z(P,)=1 holds (in G

Denote by e{?, e the edges incoming to P; and outgoing from P;, resp. (in G)).

»

1 l.e. if there exists a finite sequence of steps such that the first one is an initial step, the other
ones are ordinary steps and the last step produces G.

2 We call a graph I*-constructible of it can be produced by Construction I exposed in § 3
of [1]. The term “‘I*-constructible’’ has been used in the same sense in {2].

3 Tt is permitted that both G;, and G, are isomorphic to the result of the same previous step,
though ji#/,. G;, and G, are considered to be disjoint even in this case._

¢ The paths a,, a,, ..., a, are not necessarily different.
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- Let us construct a new graph such
that, for every subscript i (1=i=k), we B
' delete P; (out of G,), 4; becomes the new '
final vertex of e{ and B becomes the new
initial vertex of e, (Thls means that the o
situation (a) is replaced by the situation (b) - : tez

on Fig. 1.) P
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A graph G is called B- consnucnble if
G can be built up by Construction B.

1.4.

-—9'—%'-

A.
‘Proposition 1. Suppose that G-is produ- "' o

€
ced by an ordinary step of Construction B. / \
Then G has precisely k extremal subgraphs, (a) ] ()
namely, the part a; of 'a; from A; to B; for Fig. 1
each i (1=i=k).
Proof Denote by Z(e), Z;(e) the number of cycles containing an edge e,
meant in G, G;, respectively. The rules in the ordinary step (chleﬂy (5)) imply

Z(e) = 1+Z,(e) = 1+ K(Gy)

e R R

whenever e belongs to some a;. It is clear that
Z(e) = Zy(e) = K(Gy)
is true fgr the other edges of G, and, for any /i (1 =i=k),
Z(e) = Zi(e) = K(G) = K(Gy)

“holds (by ()} if e is an arbitrary edge of G;. _ A
The above proof and (f) guarantee the following assertion, too:

Proposition 2. If G can be represented as the result of an ordinary step Con-
struction B, then

K(G)(=1+ K(Gy) = 3.

Proposition 3. If G is B-constructible and K(G)=2, then each extremal sub-
graph of G is a path and the inner vertices of the extremal paths of G are simple.

Proof. Case 1. G results by an initial step (of Construction B) only. We
assumed K(G)>2 it is hence obvious that K(G)=2 and G is 1*-constrLCt1ble
The conclusion is fulfilled because of Construction 1 in [1].

Case 2. G is produced by an ordinary step. We use induction: we suppcse
that G, satisfies the conclusion of Proposition 3. Proposition 1 implies ttat each
extremal subgraph of G is a part of an extremal path of G,, thus Propcsition 3
is valid also for G.

The next result is implied immediately by Propositions 1, 2 ar.d tke assumpticns
in Construction B: ) ‘

1*
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Proposition 4. Let the graph G be represented as the result of an ordinary
step of Construction B. Denote the extremal paths of G by ay, ay, ..., a; let the
initial vertex of a; be A; and the final vertex of a; be B; (where 1 =i=k). Then

the degree of A, is 2, 1) and we have Z(e(l))—l Z(e®) =2 where e and
ef? are the edges incoming to A; with appropriate superscripts, ’

the degree of B; is (1,2) and we have Z(Ee) =1, Z(e(4))>2 where ef® and
ef¥ are the edges outgoing from B; with appropriate superscripts.®

§ 2. Some notions concerning Construction B

2.1. Let us consider a particular application of Construction B consisting
of ¢ steps. We say that the relation i< is true (where {i, j/} & {1, 2, ..., q}) precisely if

<j,

the j-th step is ordinary, and

the graph G resulting in the /-th step is isomorphic to one of the graphs G,, G;,
G, ..., G, used in the j-th step.

We denote by < the transitive extension of the relation < (in the set {1, 2, ..., ¢}).
It is obvious that < is a partial ordering and i <j may hold only if i<j. The defini-
tion of Construction B implies that, to any fixed j, i< is satisfiable (by some i)
exactly if the j-th step is ordinary.

An application of Construction B, consisting of g steps, is called connected
when all the ¢g—1 relations 1<gq, 2<«g, ..., g—1<Cq are true.

2.2. Two initial steps, occurring in particular performances of Construc-
tion B, are called isomorphic if the graphs appearing in them are isomorphic.

Let us consider two ordinary steps (again in Construction B) such that the
number k£ is common. Denote the graphs and vertices, occurring in the first of
these steps, by G,, Gy, A1, B, P1, ..., Gy, Ak, Bi, Pi; analogously, let the graphs
and vertices of the second step in question be G, G7, A7, By, Py, ..., G{, A, B, P;.
We call the considered steps to be isomorphic if there exist

(D) an isomorphism « of G onto Gy,
(ii) a permutation = of the set {1.2,...,k}, and
(iii) for every choice of i (1 =i=k), an isomorphism f; of G onto G,
such that the equalities ‘ .
w(A]) = Arey, (B =Ble, Bi(P) =Pl

are fulfilled for each i (1=i=k).

If two ordinary steps are isomorphic, then the originating graphs are again
isomorphic.

A performance of Construction B is called simple if the i-th and j-th steps
in it are not isomorphic unless i=j. -

5 It is clear that e{V, {*? have been taken from G;; €{?’, e{*) have been taken from G,.
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2.3. Two applications Q,, 0, of Construction B are said to be similar if the
number ¢ of their steps is the same and there exists a “permutation ¢ of the set
{1, 2, ..., q} such that

the relation i<c;j holds if and only if 6(i)<,0(;j) (Where <; means the re-
Jation < with respect to Q,, 1=/=2), and

in case of any i (l=i=gq), the i-th step of Q, is isomorphic to the o(i)-th
step of Q,.

§ 3. The inverse construction

3.1. Suppose that a graph G results by an ordinary step of some particular
application of Construction B. The main goal of this § is to produce the k41
graphs G,, Gy, G,, ..., G, and the 3k vertices A,, By, Py, Ay, By, P;, ..., Ay, B,, P,
(occurring in the ordinary step) by using the properties of G solely. This will lead
to the statement that each B-constructible graph can be represented by (one and)
only one simple, connected performance of Construction B apart from similarity.

Proposition 5. If G is a graph mentioned in the initial step of Construction B,
then there-is no Construction B which would give G as the result of an ordinary step.

Proof. Since any graph G boccurring in the initial step satisfies 1=K(G)=2
evidently, the statement to be proved follows immediately from Proposition 2.

3.2,

ConstrucTiON C. Let G be a (finite) graph such that
[«] K(G) =3,

[B] every extremal subgraph of G is a path (denote them by ay, a,, ..., a;;
let the initial and final vertex of a; be 4;, B,, resp., where 1=i=k),

[y] for any i, each inner vertex of a; is simple,

[0] for any i/, the degree of 4; is (2 1) moreover, Z(ef?)=1 and Z(e®)=2
hold for the edges incoming to 4; if they are denoted appropriately,

[¢] for any i, the degree of B,- is (1, 2), furthermore, Z(ef*)=1 and Z(e/)=2
are true for the edges outgoing from B; if they are denoted suitably,

[{] for any i, the pair ¢/V, /Y can be connected by a chain which contains
neither A; nor B; as an inner vertex; the analogous statement is true for the pair
efD, e® too

[7] for any i, each cham connecting e and ef¥ contains either A,~ or B; innerly
and the chains connecting_ e/®, ¢f® do the same.

Let us form k+1 new graphs G,, G, G,, ..., G, (from G) in the following way:

(1) we take k new vertices Py, Py, ..., Py,

(2) for any i (1=i=k), let ¢{Y go mto P; (instead of 4;) and let ¥ come out
of P, (instead of B)); denote the resulting (non-connected) graph by G*,

(3) let Gy, G;, Gs, ..., G, be the connected components of G* with such sub-

scripts that® whenever 1<z<k then G; contains /¥, ¢/¥, and G, contams none of
e(l) e(3) e(l) e(3) . e(l) e(3)

¢ [¢} and [n] guarantee that the number of connected components is 4+ 1 and the conditions
to be posed are satisfiable.
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Thus Construction C is completed.

It is evident that, if [«}]—{[n] are fulfilled, then G uniquely defines & and the
graphs G,, G,, G,, ..., G, resulting by Construction C (apart from the numbering
of Gy, G, ..., Gy ”

3.3.

Proposition 6. Assume that the graph G results by an ordinary step of Construc-
tion B such that the graphs and vertices (occurring in the step) are G,, Gy, Gs,..., G
and Ay, By, P], A3, By, P:, ..., Av,. Bi, Pp, respectively. Then Construction C is
applicable for G. Let us apply Construction C for G, denote the resulting graphs
by Gj, Gy, Gs, ..., G{ and the vertices, playing essential roles in the construction,
by AY,B{,P{, A, By, P;, ..., Ay, B{, P{. In this case Gy=G, and Ilze/e exists
a permutation w of the set {1, 2, .. k} which satisfies

G:f = G:(in Ai’ = A::(i}r B." = B:(i,, P.f = P;’(i)
Jor each i (1=i=k). ‘

Proof. Let us take into account the obvious fact that the cycles of G; and
(essentlally) the cycles of Gy, G, .... G bécome thé cycles of G, moreover, G does
not contain any other cycle.

The conditions [x]—[#] of Construction C are true for G; in detail,

[«] is ensured by Proposition 2,

[B], [y] are by Proposition 3,

[0], [€] are by Proposition 4,

[€], [n] follow from the suppositions (y), (6), (¢) occurring in the ordinary
step of Construction B.

The applicability of Construction C has been shown. Using Proposition 1,

we can convince ourselves that G coincides with Gg and the system {G7, G5, ..., G}
equals the system {G;, G, . Gk} (up to labelling). Hence also the comcxdence of

the vertices 4;, B;, P; (as stated in the Proposition) follows.

Theorem 1. Let two applications Q,, Q, of Construction B be considered such
that they produce the same graph G. If Q, and Q, are simple and connected, then
they are similar.

Proof. Denote the number of steps of Q,, Q> by ¢,, g, respectively. In the
sequel, we shall apply Proposition 6 and the last sentence of Section 3.2 without
any particular reference.

Leta relation g be defined between the sets R, ={1, 2, ..., ¢,;} and R,={1,2,...,4.}
followingly: o(i, j) holds precisely when the graph resulting in the i-th step of Q,
is isomorphic to the graph originating in the j-th step of @, (where 1 =i=gq,, 1 5j=4¢,).
Because @, and @, are simple, ¢ is a one-to-one assignment between some subset
R; of R, and some subset R; of R,. We can write ¢(i) =/ instead of ¢(i, j)=1.

Our next purpose is to show that R{=R, and R;=R,. Put i¢R,. Since Q,
is connected, there exists a sequence iy, i}, Is, ..., Iy such that

i=i0'<1i1 ‘<1i2\/1...<1i5——"q1
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(s>0) It is obvious that o(i))=g,, thus i€ R;. Whenever i, belongs to R;, then
1 does the same (1=t¢=ys). Consequently, Ri=R, and the equality R:=R,
follows by an analogous inference (therefore ¢, =q,).
We are going to verify that ¢ establishes a similarity. In order to do this, it
remains to show that ¢ preserves the relation < (in both directions). If i <;i*, then

ES3

i= iO <1i1 <1‘i2 "<1..._<1iw = |’

for suitable numbers fos 15 -0 0 . For any ¢ (1 =t=w), the graph resulting in the

o(t— 1)-th step of Q, is ut1llzed 1n the o (#)-th step of Q,, thus o(1— l)<o-(r) (since

0, is simple) and ¢ (¢ — 1)< ,6(¢). Hence o (i) <,6(i*). — Conversely, 7 <,i* 1mpl1es
o-1(i) <6~ 1(i*) by a symmetrical inference.

Corollary. Let O, Q2, G be as in the first sentence of Theorem 1. Denote the
number of the steps of these constructions by q,, q», respectively. If Q1 is simple and
connected, then q,=q,.

Proof. We can reduce Q, into a simple and connected construction Q3 follow-
ingly:.
whenever 1 =i<gq, and neither the i-th, g,-th steps are 1somorphlc nor the rela-
tion i <Cg, holds, then the /-th step is deleted
' whenever 1=i<j=g, and the i-th, j-th steps are isomorphic, then the j-th
step is deleted.
Let us define r as the smallest,number with the property that the r-th and qs- th
. steps of Q, are isomorphic. It is easy to see that
each of the (r+1)-th, (r+2)-th, ..., g,-th steps.of O, is deleted by virtue of the
above rules, and. ' - :
the r-th step of Q, becomes the last step” of Q3.
We get ¢, =¢,=¢, where ¢; is the number of steps of Q.

§ 4. Interrelations between
A-constructibility and B-constructibility

4.1.
Theorem 2. Each A-constructible graph is B-constructible.

Proof For cycles the assertion is trivial. Otherwise, we use induction for the
number of edges. Let an A-constructible graph G be considered, suppose that every
. A-constructible graph, having a fewer number of edges than G, is B-constructible.
By the definition of the A-constructibility, there is an A-constructible graph G*
and a simple vertex P of G* such that G can be produced if we insert a cycle (of
length /) for P in G* (in sense of the ordinary step of Construction A). G* is
B-constructible by the induction hypothesis.

? It may happen that some of the first, second, ..., ( — 1)-th steps of Q. are also deleted.
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Let us consider a performance Q* of Construction B which produces G*.
In what follows, our aim is to modify Q* such that the new construction should
give G. For the sake of simplicity, we agree that the construction steps of Q* will
always be mentioned as they are numbered in Q*.

We define a sequence

Dy, D, ...D, (s=1)
of vertices and a sequence
j13j2>'-~5js (]l>.]2>>.ls)

of numbers (indicating steps) in the following (recursive) manner:

D, is P (a vertex of the graph G* resulting in the last step of 0*) and j, is the.
number of the steps of QF,

if D; has already been defined, it belongs to the graph originating in the j-th
step of O* and the step in question is ordinary, then let j;,, (<j;) be such a number
that the result of the j;, ,-th step occurs among the graphs appearing (as G,, G,, G,, ..., .
..., G) in the j-th step and D; corresponds to some vertex D;,; of the result of
the j;+,-th step (by virtue of an isomorphism mentioned in Construction B, (a)),

if D; has been defined as a vertex of a graph originating in the j-th step of Q*
such that this step is initial, then we put s=7 and the process terminates.

We remark that each D; is a simple vertex of the containing graph.

Next we define s or s+1 new construction steps which are called ji-th step,
Jja-th step, ..., ji-th step and, in some cases, jo-th step.

Case 1. Z(D,)=1 in the graph GO resulting by the j,-th step. G is I*-con-
structible. The graph G’ originating from G® by inserting a cycle of length / at
D, (as in the ordinary step of Construction A) is again I*-constructible. Let the
Jji-th step be initial, let it produce G’®™. — Suppose that the ji-th step has been
_defined (1=i<s), we define a new construction step and call it the j{,,-th one in
the following manner: the new step differs from the j;,,-th one only in that respect
that now the (uniquely determined) graph containing D,_; is replaced by the result
or the ji-th step. (The graph resulting in the ji,,-th step will contain a cycle of
length [ instead of D, otherwise it will coincide with the graph originating in the
js—i'th Step') .

Let us draw up a new construction Q followingly:

it contains all the steps of O* except the last one (in the original ordering),

for every i (1=i<ys), let the j{-th step be inserted between the j,_;.,-th and
(Js<i+1+1)-th ones,

the last step of Q is the j/-th step.

It is obvious that Q is an application® of Construction B and Q@ produces G.

Case 2. Z(D,)=2 in the result GO of the j-th step. Let an initial step, called
Jo-th one, be defined in such a manner that it produces a slighthly modified copy
of GO with the single difference that D, is replaced by the path & whose length
equals the (directed!) distance d of 4 and B in the last step of the performance of
Construction A producing G.

8 @ is not simple and connected in general even if Q* has these properties. _
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' Now the j;-th step is ordinary such that
k=1,
G, is the result of the ji-th step,
G, is the cycle of length /—d,
A, and B, are the beginning and final vertices of a (see how the ji-th step is
defined), respectively,
P, is an arbitrary vertex of G;.
. The further treatment of Case 2 is similar to Case 1. Now both the j;-th and
i;-th steps (in this ordering) are inserted between the j-th and (j,+1)-th ones.

4.2. The collection of A-constructible graphs is properly included in the family
of B-constructible ones. An example for a B-constructible graph which is not
A-constructible may be the cycle of length 1; a less trivial counter-example can be
seen on Fig. 2. (One can check by applying Construction C that this graph is
B-constructible. On the other hand, it does not contain any cycIe which would be
resulted in the last step of Construction A. — The numbers in F1g 2 indicate the

values of Z(e).)
m o

Fig. 2

4.3. The existence of counter-examples (similar to the above one) disproves
the following statement: whenever each of G, G,, G,, ..., G, in an ordinary step
of Construction B is A-constructible, then G is again A-constructible. However,
the converse assertion is valid:

Proposition 7. Let the graph G be the result of an ordinary step of a performance
- of Construction B. If G is A-constructible, then each of the graphs Gy, Gy, Gs, ..., G
(in the step) are likewise A-constructible.

Proof. 1t is clear that each step of Construction A augments the number of
cycles (of the constructed graph) by one. Moreover, let a performance of Construc-
tion A be given and denote the number of steps by r. Let us define a mapping
y of the set {1, 2, ..., r} in the following (recursive) way:

y(1) is the result of the beginning step,

if (y(1), y(2), ..., y§(j—1) are defined and) we execute the j-th step of the con-
struction, then the - meaning of y(1), y(2), ..., y(j—1) remains the same in G as in |
G, (with the small modification that P is now substituted by the path from A4 to B)
and y(j) is defined as the new cycle z (of G)®. It is clear that y is a one-to-one corre-
spondence whose range equals the family of cycles of the constructed graph.

® Gy, G are now used as in describing the ordinary step of Construction A.
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On the other side, we can convince ourselves by analyzing the ordinary step
of Construction B that whenever z is an arbitrary cycle of the constructed graph G,
then z has been present in exactly one of G, Gy, Gy, - , Gy, (if this graph is G; with
i=>0, then apart from the change that P; is replaced by the chain from 4;'to B).

Let now G and some G; (O<1<k) be as in the Proposition. Denote by Q, the
application of Construction B in question (yielding G) and let Q, be a performance
of Construction A which produces again G. Let us define the increasing sequence

j15j2’ --'ajs

containing precisely those numbers j for which y(j) is present in G; (y is now defined
for 0,). We can compile a performance Q@ of Construction A from the i-th, jo-th, .

., jth steps of Q, (with some modifications which may be left to the reader) 1t
is ev1dent that @ produces G;. This can be done for every value of 7 running from
0 to k.

Having Proposition 7, the characterization of A-constructible graphs among
the B-constructible ones requires still to clear up the following question:

Problem. Suppose that GO, G,, G5, ..., G, are A-constructible graphs (k=1).
Let us apply the ordinary step of Construction B for them (with some choices of
the vertices having distinguished roles in the step). Let a necessary and sufficient

condition be given in order the resulting graph G be again A-constructible.
g .

) O rpadax ynoB1eTBOPHAIOLIHX
HEKOTOPbIM YCJI0BHAM I8 UHKA0B, 11

TIycTh KJIaCC KOHEYHBIX OPHEHTHPOBAHHEIX TPah0B ObITH BBOAMM CICAYIOUIUM PEKYPCUBHBIM
obpa3oM: (1) Kaxoelil LUK COOEPKAETCA B Knacce, (2) eciiu G, — rpad cogepxaeMelif B Kilacce U
Mbl 3aMEHSEM HEKOTOPYo TOuKy cremend (1, 1) rpada G, UuKIOM, TO HOBBIX rpad HaXOZUTCH
omsTh B Kiacce, (3) Kiace sSBIAETC MUHAMANBHBIM BBUAy mpasuia (1) n (2). Unensr 3toro Kmacca
HaA3BIBAIOTCSA A-KOHCTPYHDPYEMBIMH TpadamH.

Jra pexypcHBHAs NPOIENYPaA He NAET BO3MOKHOCTD st OQHO3HAYHOTO PAa3JIOKEHUS Pe3ylib-
THpyeMoro rpada. Bsonurcs apyras mpoueaypa (ua3siBaeMa koHCIpyxumeil B) tak, yro ona mo-
MYCKAET HOYTH COHHCTBEHHYIO IEKOMITO3UIMIO K Boe A-KOHCTPyMpyemble rpadbl srstores B-xou-
CTPYHPYCMBIMH,
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