
Deadlock problems of dynamic memory allocation on
minicomputers with multilevel interrupt system

By J . SOMOGYI

1. Introduction

There have been, a number of papers in the last decade dealing with control
of concurrent processes (see [1] for a comprehensive list of papers). In this paper
we investigate the applicability of some of the theoretical results to minicomputers
with multilevel interrupt system.

In view of concurrent processes the main characteristics of these machines
can be summarised as follows (see Fig. 1). Let i, j and k denote three interrupt
levels such that and suppose that a t time t0 the machine works on level i.
At time t1 a level k interrupt request arrives. Because of k>i the hardware saves
the context (program counter* indicators, etc.) of level i, and loads the context
of level k into the appropriate hardware registers. Then program execution goes
on at the memory address pointed by the new program counter.

A t time i2 a level / i n t e r r u p t request arrives. Because of j < k (the current level)
the request is recorded by the hardware, but not dealt with. At time t3 level k
completes. At this time level j is the highest waiting level. Therefore the hardware
selects (via context changing) level j for execution. At time i4 level / completes. Then
the hardware returns to level i interrupted a t time tv

In section 2 we shall describe a deadlock problem related to the monitor
program of the VT1005, a Hungarian manufactured minicomputer with an interrupt
system described before. The design and development of the monitor program was

level k

level j

level i
i

11 t2 t3
Fig. I

Hardware scheduling .of interrupt levels

92 J. Somogyi

performed when the complete specification of the machine had not been freezed
by the manufacturer. Therefore, instead of using a simulator the moni tor was
written in a higher level language, C D L [2], and was debugged on another mini-
computer, RIO, which is equivalent to CII Mitra 15.

From programmer's point of view the interrupt system of the two minicomputers
are identical, so the ascertainments of this paper apply to both machines.

In section 3 two solutions of the deadlock problem will be described and
compared in view of their memory requirement. Section 4 is devoted to the
implementation details. In section 5 we prove that the solution described in section 4
is deadlock free.

Suppose that in Fig. 1 the program executed on level i calls for a monitor
service (e.g. ASCII—EBCDIC conversion), and a t time tx the control is in the
service routine. At the same time another program on level k enters, and calls for
the same monitor service. Then there are two possibilities, either queuing the second
and the possible further requests, or writing re-entrant service routines.

In the first case the service routines become resources, each forming a separate
resource type. Moreover the service routines may call for further service routines,
etc. Avoiding deadlocks so, the deadlock avoidance may become overcomplicated
for the limited memory of a minicomputer.

In the second case we have to provide dynamically allocated working areas
for the service routines, with memory being the only resource type to be dealt with.
Further simplification can be introduced" by allocating the memory in blocks of
a fixed size. Though a C D L procedure is available handling variable size blocks,
it does not fit 8K byte memory of our machine [3].-

After all in our system there is a common memory consisting of fixed size
blocks, and one C D L procedure can have one such memory block. Suppose tha t
the programs running on interrupt levels greater than zero are all peripheral device
handlers. (There is no interrupt associated with level zero, this level is reserved for
user programs.) Then, in best case an interrupt level requires two memory blocks,
as shown in Fig. 2.

2. The deadlock problem

d e v i c e h a n d l e r

c h a r a c t e r
c o n v e r s i o n

i n p u t - o u t p u t
m o n i t o r

Fig. 2
The best case

Deadlock problems of dynamic memory allocation on minicomputers 93

In the figure CDL procedures are represented by circles. The procedures within
the same row are executed one by one. Therefore the number of rows is equal to
the depth of nesting, that is to the maximum number of blocks required by the
interrupt level.

The worst case is caused by device errors requiring operator intervention (e.g.
card jam, paper low). In this case the input-output monitor is called for sending
the appropriate message to the operator 's console. Then, as Fig. 3 shows, the inter-
rupt level requires five memory blocks.

d e v i c e
h a n d l e r

c o n s o l e
h a n d l e r

Fig. 3
The worst case

Suppose now that some of the interrupt levels have memory, but none of them
has enough to complete, and the common memory has been exhausted. Then the
system contains a deadlock.

94 J. Somogyi

3. The solution of the deadlock problem

The maximum memory requirement of each interrupt level is given. Therefore
the deadlock could be prevented by the known methods [5]. Unfortunately the
application of these methods to the machines described. before, implies a serious
efficiency problem.

When occuring an interrupt, the service must start immediately so as to avoid
the loss of data or status informations. Doing so, we need at least one memory
block. Therefore, if we decide to postpone the service of the interrupt for avoiding
the deadlock, we must do it before starting the input-output operation, that is, the
operation must not be started. However, this implies significant loss of time, because
the input-output operation could take place during the waiting time.

Because of the small memory size of the VT1005, we are forced to look for
a solution as simple as possible. In the following we shall compare two simple
solutions in view of their memory requirement.

We are interested only in the differences of the two solutions, so we ignore the
memory requirement of the user program, which is the same in the two cases.

3.1. The trivial solution. Let the size of the common memory be large enough to
satisfy the memory requirement of each interrupt level simultaneously even in the
worst case.

Calculating the total memory requirement we have to take into consideration,
that the operator 's console can service one request at a time. The other requests are
queued by the input-output monitor. Therefore only one of the interrupt levels
can have the maximum number of blocks, the others can require one less.

Let M denote the maximum number of blocks required by an interrupt level,
let B be the length of one block, and let N be the number of interrupt levels active
at a time. Then the total memory requirement is M B+(N— 1)(M— 1) B.

3.2. A nontrivial solution. Let the size of the common memory be such that the
minimal memory requirement of each interrupt level could be satisfied simultaneously,
and one of them could have the maximal requirement. Moreover only one of the
interrupt levels at a time can have memory exceeding the minimal requirement.
As a matter of fact, it would be good enough to grant one memory block per inter-
rupt level for starting the interrupt service routine. However, we want to avoid
the unnecessary suspension of levels when the input-output operation was error free.

Let M, N, B be as before, let m denote the minimum number of blocks required
by an interrupt levél, and let C.be the size of code necessary for controlling the
memory allocation according to the present solution. Then the total memory
requirement is NmB+(M—m)B+C.

The nontrivial solution has an advantage over the trivial one, if

MB + (N—l)(M—l)B> NmB+(M—m)B+C

and, therefore, if

^ > 1 + (M - m - l) i T : . . . — —

Deadlock problems of dynamic memory allocation on minicomputers 95

4. The implementation

The common memory consists of Nm+M—m blocks, M—m of which are
subject to mutual exclusion. The mutual exclusion is implemented via the enqueue
and remove primitives defined below.

Let q denote the waiting queue, consisting of the total number of interrupt
levels plus one element, let p be the pointer of the queue, and let n be the actual
interrupt level. Then.

enqueue(n) :

L: p = 0 0 [O] : = u , p:=n return
I

p 0 q[p]'-= n, p:=n—:—D1T- g o t o L

where DIT stands fo r Desactivate InTerrupt. This allows to continue the execution
of other interrupt levels with lower priorities,

^remove («):

p = n p : = 0 return (no levels are waiting)
' I
p^n q[0]: = q[n] PIT ?[0] return

where PIT s tands , for Programmed InTerrupt. This activates the interrupt level
desactivated by the D I T operation. The execution of the activated level will continue
in the enqueue primitive just behind the DIT.operation.

Dealing with a single-processor system, the primitives are implemented by
interrupt inhibition.

For allocation and deallocation of memory blocks, let R denote a list consisting
of the total number of interrupt levels plus one element, and . let n be the level
requesting or releasing a memory block.

The allocation procedure:

/ ? [«] := i?[n] + 1 m + 1 allocate memory

R[n] = m 1 enqueue (n) allocate memory

The deallocation procedure:

deallocate memory /?[«]•:= /?[n] —1 — — / ? [n] ^ m — — ^ e x i t
.1

/?[«] - m — remove («).
Returning to the question of choosing the one of the. two solutions to : be

advantaged our numerical results are: C = 160 bytes, 5 = 3 2 bytes, M = 5 and m = 2 ,
therefore N ^ 4 . Hence the second solution needs less memory, if at least four of the
peripheral devices are expected to work simultaneously.

5. Proof of the nontrivial solution being deadlock free

For formal treatment of the deadlock problem we adopt the definition of [1]
with the number of resource types equal to one. To begin with we convert the de-
scription of the interrupt servicing procedure into a chain. Fig. 4 shows the chain ~
corresponding to Fig. 2.

96 J. Somogyi

h a n d l e r c o n v e r s i o n h a n d l e r m o n i t o r
Fig. 4

Chain corresponding to Fig. 2

T (5)

h a n d l e r

- Within the chain T(J) represents a unit of execution during which the resource
usage of the chain remains constant. Such a unit will be called a task. The execution
of a chain implies a sequence of task initiation and termination events. The task
termination events are associated with both the releasing of resources not needed
by the next task, and the immediate requesting of the additional resources necessary
for initiating the next task. The task initiation events are associated with the alloca-
tion of the resources requested at the termination of the previous task.

The interrupt servicing system consists of the parallel combination of chains
defined above. Then the state of the system is described by the pair of vectors

and
P(k) = (Pl(k),...,PN(k))

Q(k) = (gi(/c),..., QN(k))

where Pt(k) and Qi(k) denote, respectively, the number of memory blocks held and
requested_by the ith chain after the &th event.

Let T(j) and T(J) denote, respectively, the initiation and termination events
of task T(J). Then Fig. 5 shows the Pt and Q, values of the chain of Fig. 4.

T(1) J (l) T(2) J (2) T(3) J (3) T(4) J (4) T(5) J (5)
1 1 2 1 1 1 2 . 1 1 0
0 1 0 0 0 1' 0 0 0 0

Fig. 5
Pi and Qi values of chain of Fig. 4

Note that Qt can have values of 0 or 1 only. The interpretation of
is that the ith chain is awaiting the allocation of a memory block. P ^ k) ^ ® and
Qi(k)=0 implies that the ith chain is in execution.

Let w denote the system capacity, that is, the total number of memory blocks.
We say that the system in the fcth state contains a deadlock, if there exists a non-
empty set D of chain indices such that for each i in D

e,(fc)>vv- 2 Pjik).
j£D

Applying the notation to our case, we see that 0 ^ P i (k) ^ M
and w=Nm+M—m. Suppose that there exists a subset D of chain indices such that

Ô , . (f e) > w - 2 Pjik)
jib

for each i£D.
We shall come to a contradiction by this. There are three cases to consider.

Deadlock problems of dynamic memory allocation on minicomputers 97

C a s e 1. Pj(k)^m for j=1, 2, ..., N. Then

w- 2 p j (k) = w-\D\m ^ w-Nm = M-m = 3 > Qt(k)
JiD

for / = 1 , 2, ...,N.

C a s e 2. There is a chain index r such that

Pj(k) m if j ^ r
and

w < Pr(k) • M.

Then we have two subcases.
a

C a s e 2A: r$D. Then

w - 2 Pj(k) = w —|Z)|w ^ w-(N-l)m = M>Qt(k)
jiD

for i = l , 2 , ...,N,

C a s e 2B: r£D. Then

w- 2Pj(k) s w—Pr(k)—(\D\ — l)m ^ w-Pr(k)-(N-.l)m = M-Pr(k)

but Pr(k) + Qr(k)^M, therefore M-Pr(k) S Qr(k) so there is an index rgZ), for which

. 2 r (f e) > vv- 2 ^ (f c)

does not hold.

6. Conclusions

Because of the modest instruction set of the minicomputers the size of the
code increases rapidly with the complexity of the algorithm. The optimal solution
can hardly be found, in general it needs lengthy experimentation. The price given
for the simplicity of our algorithm is the poor utilization of the memory. We could
solve the problem using less memory blocks via more complex algorithm.

The machine independently defined algorithms for deadlock avoidance could
hardly decrease the timing efficiency. I t is worth noting, that the machine independency
versus efficiency problem did not occured in the other parts of the system, in spite
that a machine independent higher level language (CDL) was used.

RESEARCH INSTITUTE FOR APPLIED ,
COMPUTER SCIENCE
BUDAPEST

References

[1] COFFMAN, E .G . & P . J . DENNING, Operating systems theory, Prentice-Hall, Englewood Cliffs,
N . J . , 1973 . ;

[2] KOSTER, C. H . A., A compiler compiler, Report MR 127, Mathematics Centrum, Amsterdam,
1971 .

[3] JACOBSON, M. & J. MULLER, The buddy system in CDL, Machine oriented higher level langua-
ges, North Holland Pub. Co. Amsterdam, 1974.

(Received June 8, 1976)

<

