
A strategy for scheduling splittable tasks to reduce
schedule length

! v

B y J . B L A Z E W I C Z , W . CELLARY, J . W ^ G L A R Z

1. Introduction

In deterministic problems of scheduling tasks on processors (static job-shop
problems) it is usually assumed that task execution times are known in advance.
Of course, in practice this assumption is not always met, but even then the solution
of deterministic problems of scheduling has an important practical meaning. Firstly,
when the expected values of task execution times are known, then it is possible,
using established techniques [3], to find an optimistic estimate of the expected value
of the schedule length. Secondly, upper bounds of execution times of individual
tasks may be known. Then scheduling using these values corresponds to the analysis
of the worst case and is applied in hard-real-time problems with strict deadlines
that must be observed!

Independently of this one can measure task execution times after processing
a given set of tasks and use them to find an optimal schedule. This allows one to
estimate an operational scheduler and to draw conclusions about possible improv-
ments.

It becomes more and more important to schedule splittable (preemptable) tasks
i.e. those that may be preempted; the processing of preempted task may resume
where it left off without any extra work or time being occasioned by the preemption.
Examining splittable tasks is of a great importance in systems of parallel processors
using a common operating store. Such systems have increasingly many applications
in the control of such processes as traffic, telephone switch control organization
[5, 11] in which several processors using a common data base and computational
procedures are being used. It is easy to verify that the possibility of preemption is
profitable for improving the schedule length.

Scheduling splittable tasks was considered in [8, 9, 10]. Algorithms, presented
in these papers, concern only homogeneous processors and relatively simple prece-
dence relations among tasks. In [4, 7], the problem was considered of scheduling
independent tasks on processors that are consistently fast or donsistently slow for
all the tasks. In the papers mentioned above non-enumerative algorithms were
presented. However the problem of scheduling dependent, splittable tasks, in the

100 J. Blazewicz, W. Cellary and J. Weglarz

general case, is known to be polynomial complete [4] and hence unlikely to admit
a non-enumerative solution. Thus, for this case the direct use of scheduling strategies
in an operating system has rather restricted applications. Finding such strategies
has, however, practical significance for the following reasons. Firstly, one can use
them to estimate an operational scheduler. Secondly, the distance between an optimal
solution and a suboptimal one for a heuristic, non-enumerative approach, may be
found. Lastly, enumerative algorithms may be used in computer centres that perform
large and complex numerical computations but not in a real-time environment.

In this paper such a scheduling strategy will be presented, which gives some
particular advantages. Then it will be compared for the case of homogeneous proces-
sors with the strategy described in [2].

2. Scheduling on heterogeneous processors

There are given a set of m processors P1, P2, Pm and a set of n tasks
7 \ , T2, ..., Tn. The execution time of task Tj on processor P, will be denoted
by r¡j, where T t j is a positive real number.

We will assume, that precedence relations among tasks are given in the form
of an activity network in which arcs correspond to tasks and nodes to events. Let
the number of nodes of the network be equal to r+1. It will be assumed that the
events are ordered in such a way that event j does not occur earlier than event i
if / < / .

The concept of the algorithm for scheduling splittable tasks on heterogeneous
processors to minimize schedule length was given in [1]. For this purpose the follow-
ing denotations were introduced:

— Sk, k=l, 2, ..., r, the set of all tasks which may be processed between the
occurrence of event k and 1. This set is called the main set;

— K j , j = 1,2, ..., n, the set of indices of these main sets in which task Tj may be
processed.

For a given schedule we denote:

— xijk£{0> 1)> i= 1> ..., w ; 7 = 1 , 2 , . . . , n; k£Kj, a part of task 7} processed
on processor Pi in Sk\

— tijk—Ty the processing time of a part xijk\
m

— Ujk= 2 tijk> 7 = 1 , 2, k£Kj the processing time of a part of task
>=i

Tj processed in Sk ;

— tj = 2 ljk> 7—1, 2, ...,n, the processing time of the whole task Tj]
k£Kj

— j>fc, k=l, 2, ..., r, the schedule length in Sk;
r

— y = 2 yn' schedule length.
t = i

A strategy for scheduling splittable tasks to reduce schedule length 101

Using the above denotations, the following linear programming (LP) problem
may be formula ted:

Minimize y
Subject to

m

2 = i j = \,2,...,n, (i)
k i K j i = 1

i = 1,2,..., m,
y * ~ 2 x t № T y S 0 (2)

j£Sk K — 1, z , . . . , r ,

m j — 1, 2, . . . , H, - Z x u k T ' V - ° k c K . (3)

Equation (1) guarantees tha t every task will be processed; inequality (2) defines
yks as the schedule lengths; inequality (3) assures tha t obtaining a feasible schedule
will be a possible, i.e. one such tha t no task is processed simultaneously on more than
one processor.

As the result of solving the described L P problem the optimal values y*, x*Jk, t*Jk
and t*, / = 1 ,2 , ...,m; j= 1, 2, ... , n; k£Kj, a re obtained. However, all starting
points of parts of tasks are unknown. These points may be found by using the rule
shown in Fig. l . As the initial values fo r the rule, the optimal values, obtained by
solving the L P problem formulated above, are taken. In Fig. 1 t(i), / ' = 1 , 2 , ..., m,
denotes the processing time tjk of the f t h assigned task, and t(m + 1) the pro-
cessing time tjk of the first unassigned task.

3. Development of the algorithm

In the problem described in Section 2. the first feasible solution is known in
advance — it is the sequential processing of all the tasks on a single processor.

n
The number of variables is v=(m + \) •(/•'+ ^ l ^ y l) , where \Kj\ denotes the

j=i
r rt

number of elements of set Kj. The number of constraints is c=n+mr+ 2! \Kj\- For
j = i

solving this problem the. Revised Simplex Method [6] is worthwhile, because for
most cases v >3c . I t is clear tha t the number of variables and constraints increases
with increasing of the number of tasks and processors. For example for 5 processors
and not very complicated networks containing 10 tasks the number of variables
is about 100, 30 tasks — 500, 60 tasks — 1.5 -10 s and 100 tasks — 5-10 3 . The
numbers of constraints for the same networks are respectively about 50, 200, 400
and 800. If we want to use directly one of the simplex methods for solving the L P
problem, about 107 memory cells for 100 tasks will be needed because of the necessity
of memorizing the matrix of coefficients which is, the largest one in the problem.
Thus the direct use of simplex methods has here a very restricted application.

Below an approach which allows for the great reduction of the difficulty men-
tioned above will be shown.

3 Acta Cyhernetica III/2

102

I

J. Blazewicz, W. Cellary and J. Weglarz

start

k:-. = 1

order tasks in de-
creasing order of re-

assign arbitrarily m first tasks
to different processors, denote
assigned parts of tasks by x,Jk

find = m i n i'm.

yes no

process the assigned tasks
for a quantum of time

process the assigned tasks
for a quantum of time

M=yk-t{m+\)

decrease yk, t(i) /'=1,2,..., m
and respective t,jk by

a quantum of time M

no < >

no

• , yes

k:=k+\

r

yes

Q Stop ^

Fig. 1
Finding starting points of ^ „ ' s

A strategy for scheduling splittable tasks to reduce schedule length 103

^ start ^

'I'
set up the.

column counter
/: = 1

<±L> yes

y e s

no

beginning from the
row (M - f (/ — l) w + 1)
• put m times "1"

j: — max { p : f \Ks\<l-r-d(i-l)}
s—1

k: = the (/ - ; • - (/ - \) d - 2 № 1) th
s= 1

element from the set K,

beginning from the

row (« + « i r + 2 № ') p~ I
put |S,| times "1"

put "1" into the row j

put " - T , " into the
rows (n + m f c — 1) + /) and

(«+/— r+rm—(i— 1)d)

put "0" into the
other rows o f "

the /-th column

put "—1" into the
r o w (l — r — m d + n)

isimplex procedurei

no

/ : = / + !

yes

Fig. 2
Generation of consecutive columns of the matrix of coefFcients in one simplex iteration

104 J. Blazewicz, W. Cellary and J. Weglarz

The idea of this approach is based on a generation of consecutive columns
of the matrix of coefficients in every simplex iteration. Such generation is possible,
because in the Revised Simplex Method the elements of the matrix of coefficients
are constant during computation. As a result only one column of this matrix has
to be stored a t any moment , and so storage requirements are significantly reduced.

For the purpose of describing the technical aspects of generation let us distinguish
among columns of the matrix of coefficients three sets of columns. The first set

n

contains r columns corresponding to variables yk; the second set — m • ^ \Kj\
j=i

n

columns ' corresponding to variables xijk; the third set — mr+ £ \Kj\ columns
j=i

corresponding to artificial variables. After identification of the actually generated
column to which the set does belong, appropr i a t e values are put into the rows
corresponding to constraints (1), (2) and (3) on the base of the minimum informat ion
about the structure lof the problem. This information includes n, m, matrix of exe-
cution tiines [ry] and the vector describing the structure of the network, containing
arcs as ordered pairs 'of riodes. After generation a single column, one check the
benefit of introducing this .column into the solution of.the L P problem in accordance
with the p simplex procedure. The number of constraints (1), (2), (3) are equal res-

i I " ••
pectively to n, r-m and 2\K;\. The block diagram of the generation of consecutive.

. j - i
WjiuiïiiiS \JI I.lie iViutiiX Oi COtiiIviëiiLD i."> Giît pimpitX iitaaiiCn IS shown in Fig.; 2.

In Fig. 2. d~2.\kj\. p- ' ;
J=1 I

The fact must be stressed that the.computer time used by the algorithm in com-
parison with the time used by the algorithm in which ¡the procedure of generation
is not used, is reduced, exicept for small problems which dp npt require mass storage.
Of course, if the networje-node ordering is not given, the obtained schedule is in
general à suboptimal one. The optimal schedule may be obtained ;by choosing the
best one f r o m among optimal solutions for all possible orders.

!

4. Scheduling on homogeneous processors 4 - a comparison of two algorithms
i !

In the case of homogeneous processors, tasks may be scheduled in accordance
with the algorithm described in Sections 2 and 3. Let us call it the A-algorithm.
However, for this case, a special. algorithm has been elaborated [2] which will be
called the B-algorithm. In this Section we present the conceptual basic of this
algorithm in comparison with the ^-algori thm.

In the fi-algorithm we also use the concept of the main sets Sk, k = 1, 2, . . . , /•,
which was introduced in Section 2.

Let us number f rom 1 to N the feasible sets, i.e. those subsets of all main sets,
in which the number of elements is not greater than m. Now let Qj denote the set
of all numbers of the feasible sets in which task T j may be processed and t(the
duration of set /'. Thus one obtains the LP problem :

A strategy for scheduling splittable tasks to reduce schedule length 105

Minimize
N

y=2h-
¿=1

Subject to
2U = t j j = 1 , 2 , . . . , » (4)

HQj
or in matrix notation

At = r
where A is the matrix of coefficients:

[1 if «€<2j
, J [0 otherwise.

Obviously, the columns of matrix A correspond to the resource feasible sets.
The number of variables in this problem is much greater than in ^-algori thm, fo r
example: for 5 processors and 10 tasks it is about 50, 30 tasks — 2• 103, 60 tasks
— 3 • 104 and 100 tasks — 2 • 105. On the other hand, the number of constraints
is much smaller than in ^-algori thm, because it is equal to the number of tasks
(see (4)).

In order to avoid the storage of matrix A, the method of automatic generation
of columns for ¿-algori thm, for this matrix was also elaborated [2].

Comparing these two algorithms one should pay attention to core store require-
ments and computer time.

Core store requirement for both algorithms is equal 16c. So in this respect,
it is more worthwhile to use the ¿-algori thm, because the number of constraints
c in it is much smaller. The number of variables as well as the number of constraints
influence computer time. In Table 1 computer times for A- and ¿-algori thms are
compared for not very complicated networks and 5 processors. These results were
produced using programs written in F O R T R A N IV and processed on an O D R A 1305.

Table 1.

Iterations Computer time of

Number to optimum single iteration [S]

of tasks Algo- Algo- Algo- Algo-
rithm A rithm B rithm A rithm B

10 65 12 1.5 0.9
30 250 39 3.5 3.1
60 500 88 6.2 7.3

100 1000 151 10.1 18.2

It proceeds f rom Table 1 that using the ¿-algori thm one reaches the opt imum
faster within the scope of studied examples. However, it seems that as the size (number
of tasks) of the problem increases, the performance of .¿-algorithm relatively
improves, but for both algorithms, the time used to reach the optimum permits
their practical application to problems of up to 100 tasks.

Concluding, one should state that the ¿-algori thm is better for the case of
homogeneous processors and may be used in parctice.

106 J. Blazewicz, W. Cellary and J. Weglarz

Abstract

This paper deals with deterministic problems of scheduling n preemptable tasks on m parallel
processors. The structure of the set of tasks is given in the form of an activity network (i.e. a direc-
ted, acyclic graph with only one origin and only one terminal) and the minimizing of the schedule
length is the performance measure. The cases of identical as well as heterogeneous processors are
considered. The problem of obtaining the minimal schedule lenght is reduced to a linear programm
ing problem. In order to provide facilities for solving problems of a practical size, the special pro-
cedure proposed here considerably reduces computer storage requirements. For the case of identical
processors two approaches for solving the problem have been compared.

I N S T I T U T E O F C O N T R O L E N G I N E E R I N G ,
T E C H N I C A L U N I V E R S I T Y O F P O Z N A N
P O Z N A t f j P O L A N D

References

11] BLAZEWICZ, -J., W . CELLARY, J. WEGLARZ, Scheduling preemptable tasks on heterogeneous
processors (submitted for publication).

[2] BLAZEWICZ, J., W. CELLARY, J. WEGLARZ, Some computational problems of scheduling
dependent and preemptable tasks to minimize schedule length, Found. Control Engrg., v. 1,
1975, pp. 75—83.

[3] COFFMAN, E. G . , JR. & P. J . DENNING, Operating systems theory, Prentice Hall, Englewood
Cliffs, N. J., 1973. . . ^

[4] COFFMAN, E. G., JR. (ed), Computer & job/shop scheduling theory, Wiley-Interscience, 1976.
[5] Covo, A. A., Analysis of multiprocessor control organizations with partial program memory

replication, IEEE Trans. Computers, v. C—23, 1974, pp. 113—120.
[6] GASS, S. J., Linear programming, McGraw—Hill, N. Y., 1969.
[7] HORVATH, E. C. & R . SETHI,. Preemptive schedules for independent tasks, Technical Report,

N o 162, Computer Science Dep., Pennsylvania State Univ., 1975.
[8] M C NAUGHTON, R . , Scheduling with deadlines and loss functions, Management Sci., v. 6,

1959, pp. 1—12.
[9] M U N T Z , R . R . & E . G . COFFMAN, JR., Optimal preemptive scheduling on two-processor systems,

. IEEE Trans. Computers, v. C—18, 1969, pp. 1014—1020.
[1 0] M U N T Z , R . R . & E . G . COFFMAN, JR., Preemptive scheduling of real-time tasks on multiprocessor

systems, J. Assoc. Comput. Mach., v. 17, 1970, pp. 324—338.
[1 1] TORRES, J . , Test and evaluation of computer traffic control system, Diamond Interchange Traffic

Control. PB—224160, v. 9, 1973.

(Received Feb. 16, ¡976)

