Characteristically free quasi-automata

By I. BABCSÁNYI

In [2], [3] and [4] we dealt with the cyclic state-independent, well-generated group-type and reversible state-independent quasi-automata, respectively. In this paper we investigate a more general class of quasi-automata: the characteristically free quasi-automata. For the notions and notations which are not defined here we refer the reader to [3] and [7].

1. General preliminaries

The A-sub-quasi-automaton $A_1 = (A_1, F, \delta_1)$ of the quasi-automaton $A = (A, F, \delta)$ is the kernel of A if

$$\mathbf{A}_1 = \langle \delta(a, f) | a \in \mathcal{A}, f \in F \rangle. \tag{1}$$

A is well-generated if $A = A_1$. In [3] and [4] the well-generated quasi-automaton is called simply generated quasi-automaton. \overline{F}^A (or simply \overline{F}) denotes the characteristic semigroup of A, and \overline{f}^A (or \overline{f}) is the element of \overline{F}^A represented by $f(\in F)$.

The well-generated quasi-automaton $\mathbf{A} = (A, F, \delta)$ is said to be *characteristically* free if there exists a generating system G of A such that

$$\delta(a,f) = \delta(b,g) \Rightarrow a = b, \quad \bar{f} = \tilde{g}(a,b\in G;f,g\in F).$$
⁽²⁾

G is called a characteristically free generating system of A, and its elements are called characteristically free generating elements of A.

We note that every characteristically free generating system is minimal.

Theorem 1. The quasi-automaton $\mathbf{A} = (A, F, \delta)$ is characteristically free if and only if **A** is a direct sum of isomorphic characteristically free cyclic quasi-automata.

Proof. It can easily be seen that the subsets $A_b = \langle \delta(b, f) | f \in F \rangle$ $(b \in G)$ of A form a partition on A, where G is a characteristically free generating system of A. Quasi-automata $A_b = (A_b, F, \delta_b)$ $(b \in G)$ are characteristically free cyclic quasiautomata. Let $b_1, b_2 \in G$ be arbitrary generating elements. The mapping

$$\varphi_{b_1,b_2}:\delta(b_1,f) \to \delta(b_2,f) \quad (f \in F) \tag{3}$$

is an isomorphism of A_{b_1} onto A_{b_2} .

Conversely, it is clear that the direct sum of isomorphic characteristically free cyclic quasi-automata is characteristically free.

Theorems 1. and 2. are equivalent for A-finite well-generated quasi-automata.

Theorem 2. The A-finite well-generated quasi-automaton $\mathbf{A} = (A, F, \delta)$ is characteristically free if and only if there exists a generating system G of A such that

 $|A| = |G| \cdot O(\overline{F}).$

(In this case G is a characteristically free generating system.)

Proof. Let G be a generating system of the A-finite well-generated quasiautomaton $A = (A, F, \delta)$ such that

$$|A| = |G| \cdot O(\overline{F}).$$

Since $|A_b| \leq O(\overline{F})$ ($b \in G$) and $A = \bigcup_{b \in G} A_b$ therefore

$$|A| \leq \sum_{b \in G} |A_b| \leq |G| \cdot O(\overline{F}) = |A|,$$

thus

$$|A| = \sum_{b \in G} |A_b|.$$

This means that $A_b(b \in G)$ form a partition on A and $|A_b| = O(\overline{F})$. It is evident that the mapping $\overline{f} \rightarrow \delta(b, f)$ ($f \in F$) is one-to-one. Therefore, the quasi-automata $A_b(b \in G)$ are characteristically free, cyclic, and for every pair $b_1, b_2 \in G$, $A_{b_1} \cong A_{b_2}$. By Theorem 1, the quasi-automaton $\mathbf{A} = (A, F, \delta)$ is characteristically free, and G is a characteristically free generating system of \mathbf{A} .

The necessity of this theorem follows from Theorem 1.

Lemma 1. (I. BABCSÁNYI [3].) Arbitrary two minimal generating systems of a well-generated quasi-automaton have the same cardinality.

Corollary 1 and 2 follow immadeately from Theorem 2 and Lemma 1.

Corollary 1. The A-finite cyclic quasi-automaton $\mathbf{A} = (A, F, \delta)$ is characteristically free if and only if $|A| = O(\overline{F})$.

The necessity of Corollary 1 is true for infinite quasi-automata; thus we get the following result:

Theorem 3. If the cyclic quasi-automaton $\mathbf{A} = (A, F, \delta)$ is characteristically free then $|A| = O(\overline{F})$.

It should be noted that the converse of Theorem 3 does not hold. Indeed, in Example 1 for the quasi-automaton $A = (A, F_1(X), \delta)$ we show that $|A| = O(\overline{F_1(X)})$, but A is not characteristically free.

Example 1. $A = \langle 1; 2; 3; ... \rangle, X = \langle x, y \rangle,$

 $\delta(1, x) = 2, \quad \delta(1, y) = 1, \quad \delta(i, x) = \delta(i, y) = i + 1 \quad (i = 2, 3, ...).$

It can be seen that $\overline{F_1(X)} = \langle \overline{y^i x^j} | i, j=0, 1, 2, ... \rangle$. (We note that $x^0 = y^0$ is the empty word.)

146

Corollary 2. Every minimal generating system of an A-finite characteristically free quasi-automaton is, characteristically free.

In the following example it is shown that Corollary 2 does not hold for infinite quasi-automata.

Example 2. Let N be the set of natural numbers, $A = N \times N$ and $X = \langle x, y \rangle$. The definition of next state function δ is the following:

$$\delta((i, 1), x) = (i, 2),$$

$$\delta((i, 2), x) = \delta((i, 4), x) = (i, 3),$$

$$\delta((i, 2j+1), x) = \delta((i, 2j+4), x) = (i, 2j+3),$$

$$\delta((i, 1), y) = (i+1, 1),$$

$$\delta((i, 2), y) = \delta((i, 4), y) = (i, 1),$$

$$\delta((i, 2j+1), y) = \delta((i, 2j+4), y) = (i, 2j+2) \quad (i, j = 1, 2, 3, ...).$$

The quasi-automaton $\mathbf{A} = (A, F(X), \delta)$ is cyclic. $\langle (1, j) \rangle$ (j=1, 2, 3, ...) are minimal generating systems, but only $\langle (1, 1) \rangle$ is characteristically free.

Lemma 2. The characteristic semigroup of every characteristically free quasiautomaton has a left identity element.

Proof. Let G be a characteristically free generating system of the quasi-automaton $A = (A, F, \delta)$ and $b \in G$. There exists an $e \in F$ such that $\delta(b, e) = b$. Thus

$$\forall_{f \in \mathcal{P}} f[\delta(b, f) = \delta(\delta(b, e), f) = \delta(b, ef)],$$

that is,

$$\forall_{f \in F} f[\bar{f} = \bar{e}\bar{f}].$$

Theorem 4. Let a_0 be a characteristically free generating element of the cyclic quasi-automaton $\mathbf{A} = (A, F, \delta)$. $\delta(a_0, h)$ $(h \in F)$ is a characteristically free generating element of \mathbf{A} if and only if there exists a $k \in F$ such that $\delta(a_0, hk) = a_0$ and \overline{kh} is a left identity element of \overline{F} .

Proof. Let a_0 be a characteristically free generating element of A, $\delta(a_0, hk) = a_0$ (h, $k \in F$) and $k\bar{h}$ a left identity element of \bar{F} . Furthermore, for $f, g \in F$, let,

$$\delta(a_0, hf) = \delta(\delta(a_0, h), f) = \delta(\delta(a_0, h), g) = \delta(a_0, hg).$$

Since a_0 is a characteristically free generating element, thus,

that is,

$$h\bar{f} = h\bar{g},$$
$$\bar{f} = \bar{k}h\bar{f} = \bar{k}h\bar{g} = \bar{g}.$$

This means that
$$\delta(a_0, h)$$
 is a characteristically free generating element of A.
Conversely, let $\delta(a_0, h)$ $(h \in F)$ be a characteristically free generating element of A.
There exists a $k \in F$ such that $a_2 = \delta(a_2, hk)$. Now let $f \in F$ be arbitrary. By Lemma 2

 $h\bar{k}$ is a left identity element of \bar{F} . Therefore

$$\delta(\delta(a_0, h), f) = \delta(a_0, hf) = \delta(a_0, hkhf) = \delta(\delta(a_0, h), khf),$$

$$f = khf.$$

that is,

It is clear that every well-generated state-independent quasi-automaton is characteristically free. The converse of this statement does not hold (see Example 2). However, by Corollary 2, every A-finite strongly connected characteristically free quasi-automaton is state-independent.

Lemma 3. The characteristic semigroup of a state-independent quasi-automaton is left cancellative.

Proof. Let the quasi-automaton $\mathbf{A} = (A, F, \delta)$ be state-independent and $h\bar{f} = h\bar{g}$ (h, f, $g \in F$). Then for an arbitrary state $a(\in A)$.

$$\delta(a, hf) = \delta(\delta(a, h), f) = \delta(\delta(a, h), g) = \delta(a, hg).$$

Since A is state-independent thus $f = \tilde{g}$, i.e., the characteristic semigroup \bar{F} of A is left cancellative.

The converse of Lemma 3 does not hold. Indeed, in Example 3 the characteristic semigroup $\overline{F(X)}$ of the quasi-automaton $A = (A, F(X), \delta)$ is left cancellative, but A is obviously not state-independent.

Example 3. $A = \langle 1, 2, 3 \rangle, X = \langle x, y \rangle$

δ	1	2	3		\overline{x}			
x y	2	1	2	 x	\bar{x}^2	x	\overline{y}^2	ÿ
y	2	3	2	\bar{x}^2	\bar{x}	\overline{x}^2	\bar{y}	\bar{y}^2
•				\bar{y}	\bar{x}^2	\overline{x}	\bar{y}^2	\bar{y}
				\bar{y}^2	x	\bar{x}^2	\overline{y}	\bar{y}^2

A is not a characteristically free quasi-automaton.

Theorem 5. A characteristically free quasi-automaton is state-independent if and only if its characteristic semigroup is left cancellative.

Proof. The necessity obviously follows from Lemma 3. For the proof of sufficiency, let the characteristic semigroup \overline{F} of the characteristically free quasiautomaton $\mathbf{A} = (A, F, \delta)$ be left cancellative. Take the elements $a(\in A)$ and $f, g(\in F)$ such that $\delta(a, f) = \delta(a, g)$. Let G be a characteristically free generating system of A. There are $b(\in G)$ and $h(\in F)$ such that $\delta(b, h) = a$, thus,

$$\delta(b, hf) = \delta(b, hg).$$

Since A is characteristically free thus $\bar{h}\bar{f}=\bar{h}\bar{g}$. But \bar{F} is left cancellative Therefore, $\bar{f}=\bar{g}$. This means that A is state-independent.

148

We note that if a characteristically free quasi-automaton is state-independent, then each of its minimal generating systems is characteristically free.

In the following two paragraphs we generalise some results of papers [2] and [4], concerning cyclic state-independent and reversible state-independent quasi-automata for characteristically free quasi-automata.

2. Endomorphism semigroup

Theorem 6. Let a_0 be a characteristically free generating element of the characteristically free cyclic quasi-automaton $\mathbf{A} = (A, F, \delta)$ and $\delta(a_0, e) = a_0$ ($e \in F$). Then

$$E(A)\cong \overline{F}\overline{e}.$$

Proof. Define the following mappings $\alpha_{a_0,h}$: $A \rightarrow A$

$$u_{a_0,h}(\delta(a_0,f)) = \delta(a_0,hf) \quad (f \in F).$$
(4)

If $\delta(a_0, f) = \delta(a_0, g)$ $(f, g \in F)$ then, by (2), $\overline{f} = \overline{g}$, thus,

$$\delta(a_0, hf) = \delta(\delta(a_0, h), f) = \delta(\delta(a_0, h), g) = \delta(a_0, hg),$$

i.e., $\alpha_{a_0,h}$ is well-defined. Let $a(\in A)$ and $f(\in F)$ be arbitrary elements. Then there exists a $g(\in F)$ such that $\delta(a_0, g) = a$ Therefore,

$$\alpha_{a_0,h}(\delta(a,f)) = \alpha_{a_0,h}(\delta(a_0,gf)) = \delta(a_0,hgf) = \\ = \delta(\delta(a_0,hg),f) = \delta(\alpha_{a_0,h}(\delta(a_0,g)),f) = \delta(\alpha_{a_0,h}(a),f),$$

i.e., $\alpha_{a_0,h}$ is an endomorphism of A. Let α be arbitrary endomorphism of A. There exists an $h \in F$ such that $\delta(a_0, h) = \alpha(a_0)$. Then for every $a = \delta(a_0, g) \in A$,

$$\begin{aligned} \alpha(a) &= \alpha \big(\delta(a_0, g) \big) = \delta \big(\alpha(a_0), g \big) = \delta \big(\delta(a_0, h), g \big) = \delta(a_0, hg) = \\ &= \alpha_{a_0, h} \big(\delta(a_0, g) \big) = \alpha_{a_0, h}(a), \end{aligned}$$

that is, $\alpha = \alpha_{a_0,h}$. Therefore, every endomorphism of A is of type (4).

From Lemma 2 it follows that \overline{e} is a left identity element of \overline{F} . It can easily be seen that the mapping

$$\alpha_{a_0,h} \rightarrow \bar{h}\bar{e} \quad (h \in F)$$

is an isomorphism of E(A) onto $\overline{F}\overline{e}$.

Corollary 3. The endomorphism semigroup of a characteristically free cyclic quasi-automaton is a homomorphic image of its characteristic semigroup.

Proof. The mapping $\vec{f} \rightarrow \vec{f}\vec{e}$ $(f \in F)$ is an endomorphism of \vec{F} . In Example 2 \overline{xy} is a left identity element of $F(\overline{X})$.

$$\overline{F(X)} = \langle \overline{x^k}; \overline{y^k}; \overline{x^k y}; \overline{y^l x^k}; \overline{y^l x^{j+1} y} | j, k, l = 1, 2, 3, \dots \rangle,$$

$$\overline{F(X)} \overline{xy} = \langle \overline{y^k}; \overline{x^k y}; \overline{y^l x^{j+1} y} | j, k, l = 1, 2, 3, \dots \rangle.$$

Let G be a characteristically free generating system of the characteristically free quasi-automaton $\mathbf{A} = (A, F, \delta)$. Furthermore, $\pi: G \rightarrow G$ and $\omega: G \rightarrow F$.

6 Acta Cybernetica III/2

Theorem 7. The mapping $\varphi_{\pi\omega}$: $A \rightarrow A$ for which

$$\varphi_{\pi\omega}(\delta(b,f)) = \delta(\pi(b), \omega(b)f) \quad (b \in G; f \in F)$$
(5)

is an endomorphism of A. Furthermore, every endomorphism of A is of type (5) and

$$\varphi_{\pi\omega} = \bigcup_{b \in G} \varphi_{b,\pi(b)} \alpha_{b,\omega(b)},$$

where $\varphi_{b,\pi(b)}$ is a mapping of type (3) and $\alpha_{b,\omega(b)}$ is a mapping of type (4).

Proof. Let $\delta(b, f) = \delta(c, g)$ $(b, c \in G; f, g \in F)$. From (2) it follows that b = c and $\overline{f} = \overline{g}$, that is, $\pi(b) = \pi(c)$ and $\overline{\omega(b)}\overline{f} = \overline{\omega(b)}\overline{g}$. Therefore, $\varphi_{\pi\omega}$ is well-defined. Let $a = \delta(b, h)$ be an arbitrary state of **A** and $f \in F$. Then

$$\varphi_{\pi\omega}(\delta(a,f)) = \varphi_{\pi\omega}(\delta(b,hf)) = \delta(\pi(b),\omega(b)hf) =$$

= $\delta(\delta(\pi(b),\omega(b)h),f) = \delta(\varphi_{\pi\omega}(\delta(b,h)),f) = \delta(\varphi_{\pi\omega}(a),f).$

Therefore, $\varphi_{\pi\omega}$ is an endomorphism of A. Let α be an arbitrary endomorphism of A, $\alpha(b) \in A_c$ $(b, c \in G)$ and $\alpha(b) = \delta(c, h)$ $(h \in F)$. Since the subsets A_c $(c \in G)$ of A form a partition on A, thus the mapping $\pi: b \to c$ is well-defined. Let $\omega: G \to F$ such that $\delta(c, \omega(b)) = \alpha(b)$. Then

$$\alpha(\delta(b,f)) = \delta(\alpha(b),f) = \delta(\delta(c,\omega(b)),f) =$$

= $\delta(c,\omega(b)f) = \delta(\pi(b),\omega(b)f) = \varphi_{\pi\omega}(\delta(b,f)) \quad (b\in G,f\in F),$

that is, $\alpha = \varphi_{\pi\omega}$. This means that α is a mapping of type (5). Furthermore,

 $\varphi_{\pi\omega}(\delta(b,f)) = \delta(\pi(b), \omega(b)f) = \varphi_{b,\pi(b)}(\delta(b, \omega(b)f)) = \varphi_{b,\pi(b)} \alpha_{b,\omega(b)}(\delta(b,f)),$ that is,

$$\varphi_{\pi\omega|A_b} = \varphi_{b,\pi(b)} \, \alpha_{b,\omega(b)}.$$

Denote the set of mappings $\varphi_{\pi} := \bigcup_{b \in G} \varphi_{b,\pi(b)}$ by T and the set of mappings $\alpha_{\omega} := \bigcup_{b \in G} \alpha_{b,\omega(b)}$ by H. T and H are subsemigroups of E(A) under the usual multiplication of mappings.

Corollary 4. If the quasi-automaton $A = (A, F, \delta)$ is characteristically free then

$$E(A) = TH$$
 and $T \cap H = \{i\}.$

Proof. It is evident that $\varphi_{\pi\omega} = \varphi_{\pi} \alpha_{\omega}$ and

$$\varphi_{\pi} = \alpha_{\omega} \Leftrightarrow \varphi_{\pi} = \alpha_{\omega} = \iota, \ \langle$$

where ι is the identity element of E(A).

Corollary 5. If the A-finite quasi-automaton $A = (A, F, \delta)$ is characteristically free and \overline{F} is a monoid then

$$O(E(A)) = |A|^{|G|}$$

where G is a characteristically free generating system of A.

Proof. By Theorem 1, O(T) is equal to the number of the transformations of G, that is, $O(T) = |G|^{|G|}$. Since \overline{F} is a monoid thus, by Theorem 6, $E(A_b) \cong \overline{F}(b \in G)$. By Theorem 2, $O(\overline{F}) = \frac{|A|}{|G|}$. Therefore, by Theorem 7, $O(H) = \left(\frac{|A|}{|G|}\right)^{|G|}$. Thus, by Corollary 4,

$$O(E(A)) = O(T) \cdot O(H) = |G|^{|G|} \cdot \left(\frac{|A|}{|G|}\right)^{|G|} = |A|^{|G|}$$

Theorem 8. Let the quasi-automaton $\mathbf{A} = (A, F, \delta)$ be characteristically free. Then 1) $\varphi_{\pi} \in G(A)$ if and only if π is a permutation of G, where G is a characteristically free generating system of A.

2) $\alpha_{\omega} \in G(A)$ if and only if $G' = \langle \delta(b, \omega(b)) | b \in G \rangle$ is a characteristically free generating system of A.

Proof. 1) By Theorem 1, $\varphi_{\pi|A_b}$ ($b \in G$) is an isomorphism. Thus $\varphi_{\pi} \in G(A)$ if and only if

$$\varphi_{\pi|A_b} = \varphi_{\pi|A_c}(b, c \in G) \Rightarrow A_b = A_c,$$

that is, b=c. This means that π is a permutation of G.

2) By (3), $\alpha_{\omega} \in G(A)$ if and only if for every $b \in G$,

$$\overline{\omega(b)f} = \overline{\omega(b)g} \quad (f, g \in F) \Rightarrow \overline{f} = \overline{g}$$

and $G' = \langle \delta(b, \omega(b)) | b \in G \rangle$ is a generating system of A, i.e., G' is a characteristically free generating system of A.

The quasi-automaton $\mathbf{A} = (A, F, \delta)$ is called *reversible* if for every pair $a(\in A)$, $f(\in F)$ there exists a $g(\in F)$ such that $\delta(a, fg) = a$. (s. V. M. GLUSKOV [9].)

We note that if \overline{F} is left cancellative (i.e., if the characteristically free quasiautomaton A is state-independent) then every mapping α_{ω} is one-to-one. If every A_b ($b \in G$) is strongly connected (i.e., A is reversible) then α_{ω} is onto. If A is reversible and state-independent then H is a subgroup of G(A) (see [3] and [4]).

If $\varphi_{\pi}, \alpha_{\omega} \in G(A)$ then

$$\begin{split} \varphi_{\pi\omega}\big(\delta(b,f)\big) &= \delta\big(\pi(b),\,\omega(b)f\big) = \alpha_{\pi(b),\,\omega(b)}\big(\delta(\pi(b),f)\big) = \\ &= \alpha_{\pi(b),\,\omega(b)}\,\varphi_{b,\,\pi(b)}\big(\delta(b,f)\big) \quad (f \in F,\, b \in G), \end{split}$$

that is,

$$\varphi_{\pi}\alpha_{\omega} = \varphi_{\pi\omega} = \bigcup_{b \in G} \alpha_{\pi(b), \omega(b)} \varphi_{b, \pi(b)} = \bigcup_{b \in G} \alpha_{b, \omega(\pi^{-1}(b))} \varphi_{\pi^{-1}(b), b} = \alpha'_{\omega}\varphi_{\pi}$$

where $\alpha'_{\omega} := \bigcup_{b \in G} \alpha_{b, \omega(\pi^{-1}(b))}$.

We denote the set of mappings $\alpha_{\omega}(\in G(A))$ by H'. H' is a subgroup of H. Let us denote the set of mappings $\varphi_{\pi}(\in G(A))$ by P. P is a subgroup of T.

Corollary 6. If the quasi-automaton $\mathbf{A} = (A, F, \delta)$ is characteristically free then

$$G(A) = PH' = H'P \quad and \quad P \cap H' = \{i\}.$$

Proof. It is evident that PH', $H'R \subseteq G(A)$. Let $\alpha \in G(A)$. Then there exist $\varphi_{\pi} \in T$ and $\alpha_{\omega} \in H$ such that $\alpha = \varphi_{\pi} \alpha_{\omega}$, by Corollary 4. We show that $\varphi_{\pi} \in P$ and $\alpha_{\omega} \in H'$. Using the proof of Theorem 7, we get that the mapping $\pi: b \to c$ $(b, c \in G)$, where $\alpha(b) \in A_c$, is a transformation of G. Assume that $\alpha(b_1)$, $\alpha(b_2) \in A_c$ $(b_1, b_2, c \in G)$.

6*

Then there exist $h_1, h_2 \in F$ for which $\alpha(b_1) = \delta(c, h_1)$ and $\alpha(b_2) = \delta(c, h_2)$, that is, $b_1 = \delta(\alpha^{-1}(c), h_1)$ and $b_2 = \delta(\alpha^{-1}(c), h_2)$. By Theorem 1, $A_{b_1} = A_{b_2}$, that is, $b_1 = b_2$. Thus π is one-to-one. Since $\alpha(b) \in A_c$ thus $\alpha(A_b) \subseteq A_c$. Thus, for every $c(\in G)$ there exists a $b(\in G)$ such that $\alpha(b) \in A_c$, since α is an automorphism. Therefore, π is a permutation of G, that is, $\varphi_{\pi} \in G(A)$. This means that $\alpha_{\omega} = \varphi_{\pi}^{-1} \alpha \in G(A)$. Since $\varphi_{\pi} \alpha_{\omega} = \alpha'_{\omega} \varphi_{\pi}$, where $\alpha'_{\omega} \in H$, thus $\alpha'_{\omega} = \varphi_{\pi} \alpha_{\omega} \varphi_{\pi}^{-1} \in G(A)$.

Corollary 7. If the quasi-automaton $A = (A, F, \delta)$ is characteristically free, then *P* can be embedded homomorphically into the automorphism group of H'.

Proof. It is clear that the mapping $\Theta_{\pi}: \alpha_{\omega} \to \alpha'_{\omega}$ is an automorphism of H' $(\varphi_{\pi} \in P, \alpha_{\omega}, \alpha'_{\omega} \in H')$. The mapping $\varphi_{\pi} \to \Theta_{\pi} (\varphi_{\pi} \in P)$ is well-defined. Take arbitrary mappings $\varphi_{\pi_1}, \varphi_{\pi_2} (\in P)$ and $\alpha_{\omega} (\in H')$. If

 $\varphi_{\pi_2}\alpha_{\omega} = \alpha_{\omega_1}\varphi_{\pi_2}$ and $\varphi_{\pi_1}\alpha_{\omega_1} = \alpha_{\omega_2}\varphi_{\pi_1}(\alpha_{\omega_1}, \alpha_{\omega_2} \in H')$

then

$$\varphi_{\pi_1\pi_2}\alpha_{\omega} = \varphi_{\pi_1}\varphi_{\pi_2}\alpha_{\omega} = \varphi_{\pi_1}\alpha_{\omega_1}\varphi_{\pi_2} = \alpha_{\omega_2}\varphi_{\pi_1}\varphi_{\pi_2} = \alpha_{\omega_2}\varphi_{\pi_1\pi_2}$$

thus,

$$\Theta_{\pi_1}\Theta_{\pi_2}(\alpha_{\omega})=\Theta_{\pi_1}(\alpha_{\omega_1})=\alpha_{\omega_2}=\Theta_{\pi_1\pi_2}(\alpha_{\omega}),$$

that is, $\Theta_{\pi_1}\Theta_{\pi_2}=\Theta_{\pi_1\pi_2}$.

We note that if the quasi-automaton A is reversible and state-independent then H' = H (see I. BABCSÁNYI [4].)

Example 4.

A										$\overline{y^2}$,
$\begin{array}{c} x \\ y \end{array}$	3	3	3	6	6	6			\overline{x}		
y	2	1	3	5	4	6	\overline{y}	Ŕ	$\overline{y^2}$	\bar{y}	
							$\overline{\bar{y}^2}$	\overline{x}	\overline{y}	$\overline{y^2}$	

 $G = \langle 1; 4 \rangle$ is a characteristically free generating system of A.

$$\pi_{1} = \begin{pmatrix} 1 & 4 \\ 1 & 4 \end{pmatrix}, \quad \pi_{2} = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}, \quad \pi_{3} = \begin{pmatrix} 1 & 4 \\ 4 & 4 \end{pmatrix}, \quad \pi_{4} = \begin{pmatrix} 1 & 4 \\ 4 & 1 \end{pmatrix};$$

$$\omega_{1} = \begin{pmatrix} 1 & 4 \\ \overline{x} & \overline{x} \end{pmatrix}, \quad \omega_{2} = \begin{pmatrix} 1 & 4 \\ \overline{x} & \overline{y} \end{pmatrix}, \quad \omega_{3} = \begin{pmatrix} 1 & 4 \\ \overline{x} & \overline{y^{2}} \end{pmatrix}, \quad \omega_{4} = \begin{pmatrix} 1 & 4 \\ \overline{y} & \overline{x} \end{pmatrix}, \quad \omega_{5} = \begin{pmatrix} 1 & 4 \\ \overline{y} & \overline{y} \end{pmatrix},$$

$$\omega_{6} = \begin{pmatrix} 1 & 4 \\ \overline{y} & \overline{y^{2}} \end{pmatrix}, \quad \omega_{7} = \begin{pmatrix} 1 & 4 \\ \overline{y^{2}} & \overline{x} \end{pmatrix}, \quad \omega_{8} = \begin{pmatrix} \overline{1} & 4 \\ \overline{y^{2}} & \overline{y} \end{pmatrix}, \quad \omega_{9} = \begin{pmatrix} 1 & 4 \\ \overline{y^{2}} & 4 \\ \overline{y^{2}} \end{pmatrix},$$

$$T = \langle \iota = \varphi_{\pi_{1}}, \varphi_{\pi_{2}}, \varphi_{\pi_{3}}, \varphi_{\pi_{4}} \rangle, \quad H = \langle \alpha_{\omega_{i}} | i = 1, 2, ..., 9 \rangle,$$

$$O(T) = 4, \quad O(H) = 9, \quad O(E(A)) = O(TH) = |A|^{|G|} = 6^{2} = 36,$$

$$T \cap H = \{l\}, \quad P' = \langle \iota = \varphi_{\pi_{1}}, \varphi_{\pi_{4}} \rangle, \quad H' = \langle \alpha_{\omega_{5}}, \alpha_{\omega_{5}}, \alpha_{\omega_{5}}, \alpha_{\omega_{9}}, \alpha_{\omega_{9}} = \iota \rangle.$$

$$\varphi_{\pi_{4}} \alpha_{\omega_{5}} = \alpha_{\omega_{5}} \varphi_{\pi_{4}}, \quad \varphi_{\pi_{4}} \alpha_{\omega_{6}} = \alpha_{\omega_{3}} \varphi_{\pi_{4}} \text{ and } \varphi_{\pi_{4}} \alpha_{\omega_{5}} = \alpha_{\omega_{6}} \varphi_{\pi_{4}},$$

that is, G(A) = PH' = H'P, $P \cap H' = \{l\}$.

|HT| = 24. Therefore, $E(A) = TH \neq HT$.

152

3. Reduced quasi-automata

In the paper [2] we introduced on the state set A of the quasi-automaton $\mathbf{A} = (A, F, \delta)$ the following congruence relation ϱ :

$$a\varrho b \Leftrightarrow \bigvee_{f \in F} f[\delta(a, f) = \delta(b, f)].$$
(6)

The factor quasi-automaton $\overline{\mathbf{A}} := \mathbf{A}/\varrho$ is said to be the reduced quasi-automaton belonging to A. The quasi-automaton $\mathbf{A} = (A, F, \delta)$ is called reduced if for arbitrary $a, b \ (\in A)$:

$$aob \Rightarrow a = b.$$

We note that if \bar{e} is a left identity element of \bar{F} then

$$a \varrho b(a, b \in A) \Leftrightarrow \delta(a, e) = \delta(b, e).$$

If the characteristic semigroup \overline{F} of a well-generated quasi-automaton A is a monoid, then A is reduced. The proof is obvious; we only note that A is well-generated if and only if

$$\forall_{a \in A} a[\delta(a, e) = a],$$

where \bar{e} is a right identity element of \bar{F} (see I. BABCSÁNYI [4]).

Denote the characteristic semigroup of $\overline{\mathbf{A}} = (\overline{A}, F, \overline{\delta})$ by \overline{F} . Let \overline{f} be the element of \overline{F} represented by $f(\in F)$. Furthermore \overline{a} is the element of \overline{A} represented by $a(\in A)$.

Lemma 4. If the quasi-automaton $\mathbf{A} = (A, F, \delta)$ is characteristically free then the quasi-automaton $\overline{\mathbf{A}} = (\overline{A}, F, \overline{\delta})$ is characteristically free as well.

Proof. Let G be a characteristically free generating system of A. It is clear that the set $\overline{G} = \langle \overline{a}_0 | a_0 \in G \rangle$ is a generating system of \overline{A} . Let

 $\overline{\delta}(\overline{a}_0, f) = \overline{\delta}(\overline{b}_0, g) \quad (a_0, b_0 \in G; f, g \in F),$

that is,

$$\forall h[\delta(a_0, fh) = \delta(b_0, gh)].$$

Since G is characteristically free thus

$$a_0 = b_0$$
 and $\forall h[\bar{f}\bar{h} = \bar{g}\bar{h}],$

thus, $\bar{a}_0 = \bar{b}_0$ and $\bar{f} = \bar{g}$. This means that \bar{G} is characteristically free.

Theorem 9. If the quasi-automaton $\mathbf{A} = (A, F, \delta)$ is characteristically free then $E(A) \cong E(\overline{A})$.

Proof. Let G be a characteristically free generating system of A. It is evident that all mappings $\varphi_{\bar{\pi}\bar{\omega}}$ of type (5) are endomorphisms of $\overline{\mathbf{A}}$ ($\bar{\pi}: \overline{G} \rightarrow \overline{G}; \; \bar{\omega}: \overline{G} \rightarrow F$).

Take the mapping $\Psi: E(A) \rightarrow E(\overline{A})$ for which

$$\Psi(\varphi_{\pi\omega}) = \varphi_{\overline{\pi}\overline{\omega}} \Leftrightarrow \bigvee_{a_0 \in G} a_0[\overline{\pi}(\overline{a}_0) = \overline{\pi(a_0)} \text{ and } \overline{\omega}(\overline{a}_0) = \omega(a_0)].$$

Since the mapping $a_0 \rightarrow \overline{a}_0$ ($a_0 \in G$) is one-to-one, thus the $\overline{\pi}$ and $\overline{\omega}$ are well-defined.

$$\varphi_{\pi\omega} = \varphi_{\pi'\omega'}(\in E(A)) \Rightarrow \bigvee_{a_0 \in G} a_0 \Big[\bigvee_{f \in F} f \Big[\delta\big(\pi(a_0), \omega(a_0)f\big) = \delta\big(\pi'(a_0), \omega'(a_0)f\big) \Big] \Big] \Rightarrow$$
$$\Rightarrow \bigvee_{a_0 \in G} a_0 \Big[\overline{\delta\big(\pi(a_0), \omega(a_0)\big)} = \overline{\delta\big(\pi'(a_0), \omega'(a_0)\big)} \Big] \Rightarrow$$
$$\Rightarrow \bigvee_{\bar{a}_0 \in \bar{G}} \bar{a}_0 \Big[\overline{\delta}\big(\bar{\pi}(\bar{a}_0), \bar{\omega}(\bar{a}_0)\big) \Big] = \overline{\delta}\big(\bar{\pi}'(\bar{a}_0), \bar{\omega}'(\bar{a}_0)\big) \Big] \Rightarrow \varphi_{\bar{\pi}\bar{\omega}} = \varphi_{\bar{\pi}'\bar{\omega}'}.$$

Conversely,

$$\varphi_{\bar{\pi}\bar{\omega}} = \varphi_{\bar{\pi}'\bar{\omega}'} \Rightarrow \bigvee_{\bar{a}_0 \in \mathcal{G}} \overline{a}_0 \Big[\bigvee_{f \in F} f \Big[\bar{\delta} \big(\bar{\pi}(\bar{a}_0), \bar{\omega}(\bar{a}_0)f \big) = \bar{\delta} \big(\bar{\pi}'(\bar{a}_0), \bar{\omega}'(\bar{a}_0)f \big) \Big] \Big] \Rightarrow$$
$$\Rightarrow \bigvee_{\bar{a}_0 \in \mathcal{G}} \overline{a}_0 \Big[\bigvee_{f \in F} f \Big[\bar{\delta} \big(\overline{\pi(a_0)}, \bar{\omega}(\bar{a}_0)f \big) = \bar{\delta} \big(\overline{\pi'(a_0)}, \bar{\omega}'(\bar{a}_0)f \big) \Big] \Big].$$

Since $\overline{\pi(a_0)}$, $\overline{\pi'(a_0)} \in \overline{G}$ and \overline{G} is a characteristically free generating system of \overline{A} thus

$$\forall_{a_0\in G} a_0[\overline{\pi(a_0)} = \overline{\pi'(a_0)}],$$

that is,

$$\bigvee_{a_0\in G} a_0\left[\bigvee_{f\in F} f\left[\delta(\pi(a_0), f) = \delta(\pi'(a_0), f)\right]\right].$$

But $\pi(a_0), \pi'(a_0) \in G$ and G is a characteristically free generating system of A. Thus $\forall a_0 [\pi(a_0) = \pi'(a_0)]$

$$\forall a_0 [\pi(a_0) = \pi'(a_0)],$$

that is, $\pi = \pi'$. From this, using $\overline{\omega}(\overline{a}_0) = \omega(a_0)$ and $\overline{\omega}'(\overline{a}_0) = \omega'(a_0)$, we get that $\varphi_{\pi\omega} = \varphi_{\pi'\omega'}$. This means that Ψ is one-to-one. It is clear that Ψ is onto.

Let $\varphi_{\pi_1\omega_1}, \varphi_{\pi_2\omega_2} \in E(A)$ and $\delta(a_0, f)$ $(a_0 \in G, f \in F)$ an arbitrary state of A. If $\pi := \pi_1 \pi_2$ and $\omega(a_0) := \omega_1(\pi_2(a_0)) \omega_2(a_0)$ then

$$\begin{split} \varphi_{\pi_1\omega_1} \,\varphi_{\pi_2\omega_2} \big(\delta(a_0, f) \big) &= \varphi_{\pi_1\omega_1} \big(\delta(\pi_2(a_0), \omega_2(a_0) f) \big) = \\ &= \delta \big(\pi_1 \pi_2(a_0), \omega_1(\pi_2(a_0)) \, \omega_2(a_0) f \big) = \varphi_{\pi\omega} \big(\delta(a_0, f) \big), \end{split}$$

that is, $\varphi_{\pi_1 \omega_1} \varphi_{\pi_2 \omega_2} = \varphi_{\pi \omega}$. But $\bar{\pi}_1 \bar{\pi}_2(\bar{a}_0) = \bar{\pi}_1(\overline{\pi_2(a_0)}) = \pi_1 \pi_2(\bar{a}_0) = \bar{\pi}(\bar{a}_0)$ and $\bar{\omega}_1(\bar{\pi}_2(\bar{a}_0)) \cdot \bar{\omega}_2(\bar{a}_0) = \bar{\omega}_1(\overline{\pi_2(a_0)}) \bar{\omega}_2(\bar{a}_0) = \omega_1(\pi_2(a_0)) \omega_2(a_0)$. Therefore,

$$\begin{split} \varphi_{\bar{\pi}_1 \overline{\omega}_1} \,\varphi_{\bar{\pi}_2 \overline{\omega}_2} \big(\delta(\bar{a}_0, f) \big) &= \varphi_{\bar{\pi}_1 \overline{\omega}_1} \big(\delta\big(\bar{\pi}_2(\bar{a}_0), \overline{\omega}_2(\bar{a}_0) f \big) \big) = \\ &= \bar{\delta} \big(\bar{\pi}_1 \bar{\pi}_2(\bar{a}_0), \overline{\omega}_1 \big(\bar{\pi}_2(\bar{a}_0) \big) \overline{\omega}_2(\bar{a}_0) f \big) = \varphi_{\bar{\pi} \overline{\omega}} \big(\bar{\delta}(\bar{a}_0, f) \big), \end{split}$$

that is, $\varphi_{\pi_1 \overline{\omega}_1} \varphi_{\pi_2 \overline{\omega}_2} = \varphi_{\pi \overline{\omega}}$. Thus Ψ is an isomorphism of E(A) onto $E(\overline{A})$.

We note that if $\pi \neq \pi'$ then $\varphi_{\pi\omega} \neq \varphi_{\pi'\omega'}$. Furthermore,

$$\varphi_{\pi\omega} = \varphi_{\pi\omega'} \Leftrightarrow \bigvee_{a_0 \in G} a_0[\overline{\overline{\omega(a_0)}} = \overline{\overline{\omega'(a_0)}}].$$

Corollary 8. If the quasi-automaton $\mathbf{A} = (A, F, \delta)$ is characteristically free, then the characteristic semigroup \overline{F} of $\overline{\mathbf{A}}$ can be embedded isomorphically into the endomorphism semigroup E(A) of \mathbf{A} .

Proof. Let G be a characteristically free generating system of A and π the identity mapping on G. Denote the mapping $\varphi_{\pi\omega}$ by φ_h if

$$\forall _{a_0 \in G} a_0[\omega(a_0) = h].$$

It can clearly be seen that the mapping $\bar{h} \rightarrow \varphi_h$ $(h \in F)$ is one-to-one. Let $h, k, f \in F$ and $a_0 \in G$. Then

$$\varphi_h \varphi_k \big(\delta(a_0, f) \big) = \varphi_h \big(\delta(a_0, kf) \big) = \delta(a_0, hkf) = \varphi_{hk} \big(\delta(a_0, f) \big),$$

that is, $\varphi_h \varphi_k = \varphi_{hk}$. Thus the mapping $\overline{h} \to \varphi_h$ $(h \in F)$ is an isomorphism of \overline{F} into E(A).

We note that the characteristic semigroup \overline{F} of the characteristically free quasiautomaton $\mathbf{A} = (A, F, \delta)$ can be embedded homomorphically into E(A). If $O(\overline{F}) = 1$ then every element of \overline{F} is its left identity element. In this case $H = \{i\}$.

Corollary 9. If the cyclic quasi-automaton $\mathbf{A} = (A, F, \delta)$ is characteristically free then $E(A) \cong \overline{F}$.

Proof. By Theorem 6, $E(A) \cong \overline{Fe}$. Since \overline{e} is a left identity element of \overline{F} , thus the mapping $\overline{fe} \to \overline{f}(f \in F)$ is an isomorphism of \overline{Fe} onto \overline{F} .

Corollary 10. The characteristically free quasi-automaton $\mathbf{A} = (A, F, \delta)$ is reduced if and only if its characteristic semigroup is a monoid.

Proof. By Lemma 2, there exists a left identity element \bar{e} of \bar{F} , that is,

$$\underset{a \in A}{\forall} a \Big[\underset{f \in F}{\forall} f \Big[\delta(a, f) = \delta(a, ef) = \delta \big(\delta(a, e), f \big) \Big] \Big]$$

If **A** is reduced then

$$\forall_{a\in A} a[a=\delta(a,e)],$$

i.e. \bar{e} is the identity element of \bar{F} . It is evident that if \bar{F} is a monoid then A reduced. The next result follows from Theorem 6 and Corollary 10.

Corollary 11. The characteristically free cyclic quasi-automaton A is reduced if and only if $\overline{F} \cong E(A)$.

Lemma 5. Let the quasi-automaton $\mathbf{A} = (A, F, \delta)$ be characteristically free and L the set of left identity elements of \overline{F} . Then

$$\forall_{a_0\in G} a_0[\bar{a}_0 = \langle \delta(a_0, e) | \bar{e} \in L \rangle],$$

and for arbitrary pair $a_0, b_0 (\in G)$, $|\bar{a}_0| = |\bar{b}_0|$, where G is a characteristically free generating system of A.

Proof. Let $\bar{a}_0 = \bar{b}$ $(a_0 \in G, b \in A)$. Then there exist $h \in F$ and $b_0 \in G$ for which $\delta(b_0, h) = b$, thus,

$$\forall f[\delta(a_0, f) = \delta(b, f) = \delta(b_0, hf)],$$

that is, $a_0 = b_0$ and $\forall f[\bar{f} = \bar{h}\bar{f}]$. Therefore, $\bar{h} \in L$. It is evident that if $\bar{e} \in L$ then $\delta(a_0, e) \in \bar{a}_0$. If $\delta(a_0, e_1) = \delta(a_0, e_2)$ $(a_0 \in G; \bar{e}_1, \bar{e}_2 \in L)$ then $\bar{e}_1 = \bar{e}_2$, thus the mapping $\delta(a_0, e) \to \bar{e}$ $(\bar{e} \in L)$ is one-to-one; therefore, $|\bar{a}_0| = O(L)$ $(a_0 \in G)$.

We note that for every state $a(\in A)$:

$$\bar{a} \supseteq \langle \delta(a, e) | \bar{e} \in L \rangle$$

and $\bar{a} \subseteq A_{a_0}$, where $a_0 \in G$ and $a = \delta(a_0, h)$ $(h \in F)$.

Corollary 12. (I. BABCSÁNYI [4].) If the quasi-automaton $A = (A, F, \delta)$ is reversible and state-independent then $\bar{a} = \langle \delta(a, e) | \bar{e} \in L \rangle$ ($a \in A$) and for every pair $a, b \in (A), |\bar{a}| = |\bar{b}|$.

Corollary 13. (I. BABCSÁNYI [4].) If the reversible state-independent quasiautomaton $\mathbf{A} = (A, F, \delta)$ is A-finite and there exists an $a \in A$ such that $|A_a|$ is a prime number, then the characteristic semigroup \overline{F} of \mathbf{A} is a group or every element of \overline{F} is its left identity element.

Proof. By Corollary 12, $|\bar{a}|$ is a divisor of $|A_a|$ $(a \in A)$. If $|A_a|$ is a prime number then $|\bar{a}|=1$ or $|\bar{a}|=|A_a|$. If $|\bar{a}|=1$ then, also by Corollary 12, $|\bar{b}|=1$ for every $b(\in A)$. This implies that \bar{F} is a group. If $|\bar{a}|=|A_a|$ then for every state $b(\in A_a)$,

$$\forall f[\delta(a,f) = \delta(b,f)].$$

Since for every $h(\in F)$, $\delta(a, h) \in A_a$ thus

$$\forall_{f \in \mathbf{F}} f[\delta(a, f) = \delta(a, hf)],$$

that is,

$$\forall_{f \in F} f[\bar{f} = \bar{h}\bar{f}].$$

Therefore, \bar{h} is a left identity element of \bar{F} .

Let the characteristically free quasi-automaton $\mathbf{A} = (A, F, \delta)$ be cyclic and a_0 a characteristically free generating element of \mathbf{A} . $\delta(a_0, h)$ $(h \in F)$ is a characteristically free generating element of \mathbf{A} if and only if the mapping $\alpha_{a_0,h}$ (see (3)) is an automorphism of \mathbf{A} . This means that the cardinal number of the set of characteristically free generating elements equals O(G(A)).

In Example 2 $(\overline{i, 1}) = \langle (i, 1) \rangle; \quad (\overline{i, 2}) = \langle (i, 2); (i, 4) \rangle; \quad (\overline{i, 2j+1}) = \langle (i, 2j+1); (i, 2j+4) \rangle \quad (i, j=1, 2, 3, ...). \quad \overline{F} = \langle \overline{x^k}; \quad \overline{y^k}; \quad \overline{xy}; \quad \overline{y^l x^k} | k, l=1, 2, 3, ... \rangle. \quad E(A) \cong \overline{F} \text{ and} \quad G(A) = \{i\}.$

Theorem 10. If the characteristically free quasi-automaton $\mathbf{A} = (A, F, \delta)$ is cyclic then the quasi-automaton $\mathbf{E}(\mathbf{A}) = (E(A), F, \delta')$ is well-defined, where

$$\delta'(\alpha_{a_0,h},f) = \alpha_{a_0,hf} \quad (f \in F)$$

and $\mathbf{E}(\mathbf{A}) \cong \overline{\mathbf{A}}$.

Characteristically free quasi-automata

Proof. Since

C

$$\alpha_{a_0,h} = \alpha_{a_0,k} \Leftrightarrow \bigvee_{f \in F} f[\delta(a_0,hf) = \delta(a_0,kf)],$$

thus -

$$\alpha_{a_0,h} = \alpha_{a_0,k} \Longrightarrow \underset{f \in F}{\forall} f[\alpha_{a_0,hf} = \alpha_{a_0,kf}].$$

Furthermore,

$$\delta'(\alpha_{a_0,h},fg) = \alpha_{a_0,hfg} = \delta'(\alpha_{a_0,hf},g) = \delta'(\delta'(\alpha_{a_0,h},f),g)$$

(h, k, f, $g \in F$; a_0 is a characteristically free generating element of A.), that is, E(A) is well-defined. The mapping $\Psi: E(A) \rightarrow \overline{A}$ for which

$$\Psi:\alpha_{a_0,h}\to\overline{\delta(a_0,h)}\quad (h\in F)$$

is one-to-one and onto. Finally, we shall show that Ψ is a homomorphism. Take arbitrary elements $\alpha_{a_0,h} \in E(A)$ and $f \in F$. Then

$$\Psi(\delta'(\alpha_{a_0,h},f)) = \Psi(\alpha_{a_0,hf}) = \overline{\delta(a_0,hf)} = [$$

= $\overline{\delta(\delta(a_0,h),f)} = \overline{\delta}(\overline{\delta(a_0,h)},f) = \overline{\delta}(\Psi(\alpha_{a_0,h}),f)$

Theorem 11. If the characteristically free quasi-automaton $\mathbf{A} = (A, F, \delta)$ is cyclic, then E(E(A)) is the semigroup of left translations of E(A) and $E(E(A)) \cong E(A)$.

Proof. Note that E(E(A)) denote the endomorphism semigroup of E(A). Let $\alpha_{a_0,h}, \alpha_{a_0,k} (\in E(A))$ be arbitrary endomorphisms and $\mu \in E(E(A))$. Then

$$\mu(\alpha_{a_0,h} \alpha_{a_0,k}) = \mu(\alpha_{a_0,hk}) = \mu(\delta'(\alpha_{a_0,h},k)) = \delta'(\mu(\alpha_{a_0,h}),k) = \delta'(\alpha_{a_0,h},k) = \delta'(\alpha_{a_0,h},k) = \alpha_{a_0,ak} = \alpha_{a_0,ak} = \alpha_{a_0,ak} = \mu(\alpha_{a_0,h}) \alpha_{a_0,k},$$

where $h, k, g \in F$ and $\mu(\alpha_{a_0, h}) = \alpha_{a_0, g}$. This means that μ is a left translation of E(A). Conversely, if μ is a left translation of E(A), then

$$\mu(\delta'(\alpha_{a_0,h},f)) = \mu(\alpha_{a_0,hf}) = \mu(\alpha_{a_0,h}\alpha_{a_0,f}) = \mu(\alpha_{a_0,h})\alpha_{a_0,f} = \\ = \alpha_{a_0,g}\alpha_{a_0,f} = \alpha_{a_0,gf} = \delta'(\alpha_{a_0,g},f) = \delta'(\mu(\alpha_{a_0,h}),f),$$

where $f \in F$ and $\mu(\alpha_{a_0,h}) = \alpha_{a_0,g}$, i.e. μ is an endomorphism of E(A). It is well-known that every monoid is isomorphic to the semigroup of its left translations.

We note that if the quasi-automaton $\mathbf{A} = (A, F, \delta)$ is cyclic and characteristically free, a_0 is a characteristically free generating element of \mathbf{A} , $\delta(a_0, e) = a_0(e \in F)$ and $A_e := \langle \delta(a_0, fe) | f \in F \rangle$, then the quasi-automaton $\mathbf{A}_e = (A_e, Fe, \delta_e)$ is well-defined. A_e is a reduced sub-quasi-automaton of \mathbf{A} and $\overline{Fe^A}_e \cong \overline{F}$.

Theorem 12. If the endomorphism semigroup E(A) of the characteristically free cyclic quasi-automaton $\mathbf{A} = (A, F, \delta)$ is isomorphic to the direct product of semigroups E_i (i=1, 2, ..., n) then $\overline{\mathbf{A}}$ is isomorphic to the A-direct product of reduced characteristically free cyclic quasi-automata $\mathbf{A}_i = (A_i, F, \delta_i)$ and $E(A_i) \cong E_i$.

Proof. It is sufficient to prove this theorem for n=2. Let $E(A) \cong E_1 \otimes E_2$. We can assume that $E(A) = E_1 \otimes E_2$. By Theorem 10, $E(A) \cong \overline{A}$. Let $\alpha_{a_0,h} := (\alpha_{1,h}, \alpha_{2,h})$ $(\alpha_{i,h} \in E_i, i=1, 2)$. Since

$$(\alpha_{1,hf}, \alpha_{2,hf}) = \alpha_{a_0,hf} = \alpha_{a_0,h} \alpha_{a_0,f} = (\alpha_{1,h}, \alpha_{2,h})(\alpha_{1,f}, \alpha_{2,f}) = (\alpha_{1,h}\alpha_{1,f}, \alpha_{2,h}\alpha_{2,f})$$

thus $\alpha_{i,hf} = \alpha_{i,h} \alpha_{i,f}$. This means that the mappings $\delta_i: E_i \times F \rightarrow E_i$ given by

 $\delta_i(\alpha_{i,h}, f) = \alpha_{i,hf}$

are well-defined. Furthermore, the quasi-automata $\mathbf{E}_i = (E_i, F, \delta_i)$ are also well-defined.

$$\delta'((\alpha_{1,h}, \alpha_{2,h}), f) = \delta'(\alpha_{a_0,h}, f) = \alpha_{a_0,hf} = \\ = (\alpha_{1,hf}, \alpha_{2,hf}) = (\delta_1(\alpha_{1,h}, f), \delta_2(\alpha_{2,h}, f)),$$

that is, $\mathbf{E}(\mathbf{A}) = \mathbf{E}_1 \otimes \mathbf{E}_2$. Thus $\overline{\mathbf{A}} \cong \mathbf{E}_1 \otimes \mathbf{E}_2$. It is evident that $\alpha_{a_0, e}$ is a characteristically free generating element of $\mathbf{E}(\mathbf{A})$, where a_0 is a characteristically free generating element of \mathbf{A} and $\delta(a_0, e) = a_0$ ($e \in F$). Prove that $\alpha_{i, e}$ (i = 1, 2) is a characteristically free generating element of \mathbf{E}_i . Let

$$\alpha_{i,f} = \delta_i(\alpha_{i,e}, f) = \delta_i(\alpha_{i,e}, g) = \alpha_{i,g} \quad (f, g \in F).$$

Then for every $h \in F$,

$$\delta_i(\alpha_{i,h},f) = \alpha_{i,hf} = \alpha_{i,h}\alpha_{i,f} = \alpha_{i,h}\alpha_{i,g} = \alpha_{i,hg} = \delta_i(\alpha_{i,h},g),$$

that is $f^{E_i} = \bar{g}^{E_i}$. Therefore, the quasi-automata E_i are cyclic and characteristically free. From Theorem 6 it follows that $\beta_h: \alpha_{i,f} \to \alpha_{i,hf}$ $(f \in F)$ is an endomorphism of E_i , and for arbitrary endomorphism β of E_i there exists an $h \in F$ such that $\beta = \beta_h$.

$$\beta_h = \beta_k(h, k \in F) \Leftrightarrow \bigvee_{f \in F} f[\alpha_{i,hf} = \alpha_{i,kf}] \Leftrightarrow \alpha_{i,he} = \alpha_{i,ke}.$$

But $\alpha_{i,h} = \alpha_{i,he}$ and $\alpha_{i,k} = \alpha_{i,ke}$. Therefore, the mapping $\beta_h \rightarrow \alpha_{i,h}$ $(h \in F)$ is a one-to-one mapping of $E(E_i)$ onto E_i . Since $\beta_f \beta_g = \beta_{fg} (f, g \in F)$, thus the mapping $\beta_h \rightarrow \alpha_{i,h}$ $(h \in F)$ is an isomorphism. Let $\overline{\alpha_{i,h}} = \overline{\alpha_{i,k}}$, that is,

$$\forall_{f\in F} f[\delta_i(\alpha_{i,h},f) = \delta_i(\alpha_{i,k},f)].$$

Thus $\alpha_{i,h} = \alpha_{i,he} = \alpha_{i,ke} = \alpha_{i,k}$. Therefore, the quasi-automata E_i are reduced.

Corollary 14. The reduced characteristically free cyclic quasi-automaton A is isomorphic to the A-direct product of reduced characteristically free cyclic quasi-automata A_i (i=1, 2, ..., n) if $E(A) \cong E(A_1) \otimes E(A_2) \otimes ... \otimes E(A_n)$. Example 5

A	1 1 2	$\mathbf{A}_2 \mid 3 \mid 4$	$\mathbf{A}_1 \otimes \mathbf{A}_2$	(1,3)	(1,4)	(2,3)	(2,4)
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x 4-3	x	(1,4)	(1,3)	(2,4)	(2,3)
	y 22	- y 4 3	у	(2,4)	(2,3)	(2,4)	(2,3) (2,3).

1 is characteristically free generating element of A_1 . 3 and 4 are characteristically free generating element of A_2 . A_1 and A_2 are reduced. $E(A_1) = \langle \alpha_1, \beta_1 \rangle$, where $\alpha_1 = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ and $\beta_1 = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$ $E(A_2) = \langle \alpha_2, \beta_2 \rangle$, where $\alpha_2 = \begin{pmatrix} 3 & 4 \\ 3 & 4 \end{pmatrix}$ and $\beta_2 = \begin{pmatrix} 3 & 4 \\ 4 & 3 \end{pmatrix}$, $E(A_1 \times A_2) = E(A_1) \otimes E(A_2)$.

4. Homomorphism

Let $\mathbf{A} = (A, F, \delta)$ be a quasi-automaton and $I (\notin F)$ an arbitrary symbol. Define the semigroup F^{I} to be $F \cup \{I\}$, multiplication in F is unchanged and I acts as an identity for $F \cup \{I\}$. Furthermore, let φ be a mapping of A into itself and $\delta_{\varphi}: A \times F^{I} \rightarrow A$ such that

$$\delta_{\varphi}(a,f) = \begin{cases} \delta(a,f) & \text{if } f \in F \\ \varphi(a) & \text{if } f = I \end{cases} (a \in A).$$
⁽⁷⁾

Lemma 6. (I. BABCSÁNYI [4].) The quasi-automaton $\mathbf{A}_{\varphi} := (A, F^{I}, \delta_{\varphi})$ is welldefined if and only if φ is an idempotent endomorphism of the quasi-automaton $\mathbf{A} = (A, F, \delta)$ and the restriction of φ to the kernel of \mathbf{A} is the identity mapping. In this case \mathbf{A} is sub-quasi-automaton of \mathbf{A}_{φ} .

Proof. Necessity. Assume that the quasi-automaton A_{φ} is well-defined. Let $a(\in A)$ be an arbitrary state. Then

$$\varphi(a) = \delta_{\varphi}(a, I) = \delta_{\varphi}(a, I^2) = \delta_{\varphi}(\delta_{\varphi}(a, I), I) = \varphi^2(a),$$

that is, $\varphi^2 = \varphi$. Furthermore, if $f \in F$ then

$$\delta_{\varphi}(a, If) = \delta_{\phi}(a, fI) = \delta_{\varphi}(a, f) = \delta(a, f),$$

 $\delta_{\varphi}(\delta_{\varphi}(a, f), I) = \delta_{\varphi}(\delta(a, f), I) = \varphi(\delta(a, f)),$
 $\delta_{\varphi}(\delta_{\varphi}(a, I), f) = \delta_{\varphi}(\varphi(a), f) = \delta(\varphi(a), f).$

Since A_{α} is well-defined, thus

$$\delta(a,f) = \varphi(\delta(a,f)) = \delta(\varphi(a),f).$$

This means that φ is an idempotent endomorphism of A and $\varphi|A_1=\iota$ $(A_1$ is the state set of the kernel of A (see (1))). The proof of sufficiency is similar. Since F is a subsemigroup of F^I and δ coincides with the restriction of δ_{φ} to $A \times F$, thus A is sub-quasi-automaton of A_{φ} .

Theorem 13. (I. BABCSÁNYI [4].) Every homomorphism of the quasi-automaton $\mathbf{A}_{\varphi} = (A, F^{I}, \delta_{\varphi})$ is a homomorphism of the quasi-automaton $\mathbf{A} = (A, F, \delta)$. Conversely, if Ψ is a homomorphism of \mathbf{A} onto the quasi-automaton $\mathbf{B} = (B, F, \delta')$, then Ψ is a homomorphism of \mathbf{A}_{φ} onto $\mathbf{B}_{\varphi'}$ if and only if $\Psi \varphi = \varphi' \Psi$.

Proof. Since A is the state set of A and A_{φ} , furthermore, A is a sub-quasiautomaton of A_{φ} , thus every homomorphism of A_{φ} is a homomorphism if A. Conversely, let Ψ be a homomorphism of A onto B. φ and φ' are mappings of type (7). It is clear that Ψ is a homomorphism of A_{φ} onto $B_{\varphi'}$, if and only if

$$\bigvee_{a \in A} a \left[\Psi \varphi(a) = \Psi \big(\delta_{\varphi}(a, I) \big) = \delta'_{\varphi'} \big(\Psi(a), I \big) = \varphi' \Psi(a) \right],$$

that is, $\Psi \varphi = \varphi' \Psi$.

We note that if φ is the identity mapping of A, then the homomorphisms of A and A_{φ} coincide. In this case denote A_{φ} by $A_I = (A, F^I, \delta_I)$.

Theorem 14. Let $\mathbf{A} = (A, F, \delta)$ be an arbitrary quasi-automaton. There exists a characteristically free quasi-automaton $\mathbf{B} = (B, F, \delta')$ such that \mathbf{A}_1 is the homomorphic image of **B** and the characteristic semigroups of \mathbf{A}_1 and \mathbf{B} are equal.

Proof. Take the quasi-automaton $A_I = (A, F^I, \delta_I)$. Let G be a generating system of A_I . Define the following relation τ on $G \times F^I$:

$$(b,f)\tau(c,g) \Leftrightarrow b = c$$
 and $\bar{f}^{A_I} = \bar{g}^{A_I}(b,c\in G; f,g\in F^I).$

It is clear that τ is an equivalence relation. Let C_{τ} be the partition on $G \times F^{I}$ induced by τ . $C_{\tau}(A)$ is the set of the classes $C_{\tau}(b,f)$ $(b \in G, f \in F^{I})$. Consider the mapping $\delta': C_{\tau}(A) \times F^{I} \rightarrow C_{\tau}(A)$ for which

$$\delta'(C_{\tau}(b,f),h) = C_{\tau}(b,fh).$$

Let $g, h \in F^I$. Then

$$\delta'(C_{\tau}(b,f),gh) = C_{\tau}(b,fgh) = \delta'(C_{\tau}(b,fg),h) = \delta'(\delta'(C_{\tau}(b,f),g),h),$$

that is, the quasi-automaton $C_{\tau}(A) = (C_{\tau}(A), F^{I}, \delta')$ is well-defined. We prove that $\overline{F^{I}}$ is the characteristic semigroup of $C_{\tau}(A)$:

$$\bar{f}^{A_{I}} = \bar{g}^{A_{I}} \Leftrightarrow \bigvee_{h \in F^{I}} h[\bar{h}^{A_{I}}\bar{f}^{A_{I}} = \bar{h}^{A_{I}}\bar{g}^{A_{I}}] \Leftrightarrow$$

$$\Leftrightarrow \bigvee_{h \in F^{I}} h\left[\bigvee_{b \in G} b[C_{\tau}(b, hf) = C_{\tau}(b, hg)] \right] \Leftrightarrow$$

$$\bar{f}^{A_{I}} = \bar{f}^{A_{I}} \bar{g}^{A_{I}} = \bar{f}^{A_{I$$

$$\Leftrightarrow \bigvee_{C_{\tau}(b,h)\in C_{\tau}(A)} C_{\tau}(b,h) [\delta'(C_{\tau}(b,h),f) = \delta'(C_{\tau}(b,h),g)] \Leftrightarrow f^{C_{\tau}(A)} = \tilde{g}^{C_{\tau}(A)}.$$

The set $G_I := \langle C_\tau(b, I) | b \in G \rangle$ is a generating system of $C_\tau(A)$. Let

$$C_{\tau}(b,f) = \delta'(C_{\tau}(b,I),f) = \delta'(C_{\tau}(c,I),g) = C_{\tau}(c,g)$$

 $(b, c \in G; f, g \in F^{I})$. Then b = c and $\bar{f}^{A_{I}} = \bar{g}^{A_{I}}$. Thus $C_{\tau}(b, I) = C_{\tau}(c, I)$ and $\bar{f}^{C_{\tau}(A)} = = \bar{g}^{C_{\tau}(A)}$, i.e., $C_{\tau}(A)$ is characteristically free. The mapping

$$\Psi \colon C_{\tau}(b,f) \to \delta_I(b,f)(b \in G, f \in F^I)$$

is a homomorphism of $C_t(A)$ onto A_I .

Example 6. Take again the quasi-automaton A given in the Example 3.

$$\begin{split} \frac{\mathbf{A}_{I} \mid 1 \; 2 \; 3}{I \mid 1 \; 2 \; 3} & G = \langle 2 \rangle \\ \overline{I \mid 1 \; 2 \; 3} & \overline{F^{I}} = \langle \overline{x}, \overline{x^{2}}, \overline{y}, \overline{y^{2}}, \overline{I} \rangle \\ x \mid 2 \; 1 \; 2 \\ y \mid 2 \; 3 \; 2 \\ \end{split}$$

$$\begin{split} \frac{\mathbf{C}_{\tau}(A) \mid C_{\tau}(2, I) \; C_{\tau}(2, x) \; C_{\tau}(2, x^{2}) \; C_{\tau}(2, y) \; C_{\tau}(2, y^{2})}{I \mid C_{\tau}(2, x) \; C_{\tau}(2, x^{2}) \; C_{\tau}(2, x) \; C_{\tau}(2, y^{2})} \\ \overline{I \mid C_{\tau}(2, I) \; C_{\tau}(2, x) \; C_{\tau}(2, x^{2}) \; C_{\tau}(2, y) \; C_{\tau}(2, y^{2})} \\ x \mid C_{\tau}(2, x) \; C_{\tau}(2, x^{2}) \; C_{\tau}(2, x) \; C_{\tau}(2, x^{2}) \; C_{\tau}(2, x) \\ y \mid C_{\tau}(2, y) \; C_{\tau}(2, y^{2}) \; C_{\tau}(2, y) \; C_{\tau}(2, y) \\ \Psi = \begin{pmatrix} C_{\tau}(2, I) \; C_{\tau}(2, x) \; C_{\tau}(2, x) \; C_{\tau}(2, x^{2}) \; C_{\tau}(2, y) \\ 2 \; 1 \; 2 \; 3 \; 2 \\ \end{pmatrix}$$

Corollary 15. Let the quasi-automaton $\mathbf{A} = (A, F, \delta)$ be well-generated and \overline{F}^A a monoid. There exists a characteristically free quasi-automaton $B = (B, F, \delta')$ such that \mathbf{A} is a homomorphic image of \mathbf{B} and $\overline{F}^B = \overline{F}^A$.

By Theorem 14 the proof is evident. (The identity element of \overline{F}^A acts as I.)

Характеристично свободные квазиавтоматы

А-подквазиавтомат $A_1 = (A_1, F, \delta_1)$ квазиавтомата $A = (A', F, \delta)$ называется ягром автомата A, если $A_1 = \langle \delta(a, f) | a \in A, f \in F \rangle$. А называется верно-порождённым если $A = A_1$. Верно-порождённый квазиавтомат A называется характеристично свободным если (2) выполняется. (G есть неприводимая сустема образующих в квазиавтомате A) F^A (или F) является характеристической подгруппой квазиавтомата A.

Квазиавтомат $A = (A, F, \delta)$ характеристично свободный тогда и только тогда, когда он прямая сумма изоморфных характеристично свободных циклических квазиавтоматов (Теорема 1.). Если циклический квазиавтомат А характеристично свободный, тогда |A| = 0(F). (Теорема 3.). Если А ещё А-конечный, тогда теорема 3. можно повернуть. (Следствие 1.). Характеристично свободный А от состоянии независимый тогда и только тогда, когда его характеристическая полугруппа авляется с левым сокращением (Теорема 5.).

Во втором цункте получаем все ендоморфизмы характеристично свободных квазиавтоматов (Теорема 6. и 7.)

В третем пункте проводим отношение ϱ (в. ешё [2]) на множестве состояний А квазиавтомата $\mathbf{A} = (A, F, \delta)$. Отношение ϱ конгруенция. А называется *ограниченным*, если $a\varrho b$ ($a, b \in A \Rightarrow \Rightarrow a = b$. Если А характеристично свободный, тогда факторквазиавтомат $\overline{\mathbf{A}} := \mathbf{A}/\varrho$ квазиавтомата А тоже характеристично свободный (Лемма 4.) и $E(A) \cong E(A)$ (Теорема 9). (Через E(A) обозначаем полугруппу всех ендоморфизмых А.)

Если А характеристично свободный циклический квазиавтомат и $E(A) \cong E_1 \otimes E_2 \otimes \otimes \ldots \otimes E_n$, тогда $\overline{A} \cong A_1 \otimes A_2 \otimes \ldots \otimes A_n$, где $A_i (i=1, 2, ..., n)$ характеристично свободные циклические ограниченные квазиавтоматы и $E(A_i) \cong E_i$ (Теорема 12.).

Если $\mathbf{A} = (A, F, \delta)$ верно — порождённый квазиавтомат и \vec{F}^A обладает двусторонной единицей, тогда сушествует такой характеристично свободный квазиавтомат $\mathbf{B} = (B, F, \delta')$, что **A** есть гомоморфный образ квазиавтомата **B** и $\vec{F}^A = \vec{F}^B$ (Следствие 15.).

ENTZBRUDER VOCATIONAL SECONDARY SCHOOL H—9700 SZOMBATHELY, HUNGARY

References

- BABCSÁNYI, I., A félperfekt kváziautomatákról (On quasi-perfect quasi-automata), Mat. Lapok, v. 21, 1970, pp. 95–102.
- [2] BABCSÁNYI, I., Ciklikus állapot-független kváziautomaták (Cyclic state-independent quasiautomata), Mat. Lapok, v. 22, 1971, pp. 289---301.
- [3] BABCSÁNYI, I., Endomorphisms of group-type quasi-automata, Acta Cybernet., v. 2, 1975, pp. 313-322.
- [4] BABCSÁNYI, I., Generálható kváziautomaták (Generated quasi-automata), Univ. Doct. Dissertation, Bolyai Institute of József Attila University, Szeged, 1974.
- [5] CLIFFORD, A. C. & G. B. PRESTON, The algebraic theory of semigroups, v. 1, 1961, v. 2, 1967.
- [6] FLECK, A. C., Preservation of structure by certain classes of functions on automata and related group theoretic properties, Computer Laboratory Michigan State-University, 1961, (preprint).
- [7] GÉCSEG, F. & I. PEÁK, Algebraic theory of automata, Budapest, 1972.
- [8] ТRAUTH, CH. A., Group-type automata, J. Assoc. Comput. Mach., v. 13, 1966, pp. 170—175. [9] GLUSKOV, V. M. (Глушков, В. М.), Абстрактная теория автоматов, Uspehi Mat. Nauk, v.

16:5 (101), 1961, pp. 3-62.

(Received April 16, 1976)