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Multitape and multihead Turing machines are well-known generalizations 
of the basic model. All these generalizations have the common feature that they 
have a single finite state control and thus, they work in a synchronous manner. 
That is, the finite state control device coordinates the moves of the read-write heads 
so that they work at the same speed [1]. 

The new model introduced in the present paper can be considered as an abstract 
model of multi-processor systems, where the working speeds of the individual 
processors are independent f rom each-other. The only restriction is the exclusion 
of a symultaneous acces to the same storage location, i.e., each storage location 
can be accessed by only one processor at a time. This limitation is quite reasonable 
whenever more than one processors share the storage device. The model is asynchro-
nous as there is no other connection between the individual processors except the 
common storage device through which they can pass information. 

Suppose we have two Turing machines sharing a single tape (see Figure 1). 

Figure 1 

Each finite state control works at its own speed that may also vary in the course 
of the computation. If they at tempt to access the same square on the tape one of 
them will be delayed until the other completes one step. If this step does not change 
the position of the corresponding read-write head then another choice is made for 
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the finite control to be the next. The choice can be made in many different ways 
depending on some preassigned priorities or on the basis of some probabilities, 
etc. Here we are not concerned with the details of how to make this choice, but we 
are interested in the computational power of the general model. We will show that 
the computational power of multicontrol Turing machines is the same as that of 
the basic model. For this purpose we shall give first our formal definitions. 

Definition. A single-control mondeterministic Turing machine is a quintuple 
T=(K, Z, q0, B, M), where AT is a finite nonvoid set of internal states, Z is a finite 
nonvoid set of tape symbols, q0£K is the initial state, B£Z is the blank symbol, 
M is a mapping from KXZ into the subsets of / D < ( Z - { f l } ) X { - l , 0, +1}, 
called moves. 

Definition. A configuration of a single-control nondeterministic Turing machine 
is a word XqY, where A'and Yare words over Z — {B} and q£K. 

The configuration denotes the nonblank portion of the tape, the actual position 
of the read-write head, and the actual internal state of the finite control. 

The symbol scanned by the read-write head in this configuration is the first 
symbol of Y, or B if Y is the empty word. 

A move of the Turing machine will change its configuration in the following 
steps. 

a) The internal state of the finite state control is changed. 
b) A symbol of Z—{B) is printed on the tape in place of the scanned symbol. 
c) The read-write head moves one square to the left, remains unchanged, or 

moves one square to the right as expressed by the values —1,'0, or + 1 , respectively. 
The transformation of the configuration induced by the mapping M defines 

the relation =>• such that Xlq1Y1=>X2q2Y2 iff there is a move in M that changes 
the configuration XlqlY1 into X2q2Y2. In fact, the mapping M can be given as 
a set of rewriting rules. Namely. 

(i) qy-pziM iff (p, z, 0 K M ( q , y), 

(ii) xqy^pxz^M for all x£Z iff ( p , z, — 1 )£M(q, y), 

(iii) qy-zp^M iff (p,z, + 1 ) ^ ( 9 , J')-

The reflexive and transitive closure of the relation => will be denoted as usual 
by 

Definition. A configuration XqY is final if for the first symbol y of Y the set 
M(q, .y)=0, or if Y is the empty word and M(q, B) = 0. 

Definition. A computation of a Turing machine is a sequence of moves 
q0P^>XqY, where q0 is the initial state, P is a word over Z, and XqY is final. The 
input value of the computation is P while the output is represented by XY, the 
final contents of the storage tape. 

Definition. A two-control mondeterministic Turing machine is an 8-tuple 
T=(K',K",Z,q'0,qlB,M',M"), where T' = (K', Z, q'0, B, M') and T" = {K", 
Z,ql, B, M") are single-control Turing machines such that 
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Definition. A configuration of a two-control Turing machine is a word Xq'Uq"Y, 
where X, U, Y are words over Z-{B}, q'£K' and q"£K". 

The relations =>• and => can be defined in a similar fashion as in the case of 
single-control Turing machines, taking into account that a symbol of K' will be 
adjacent to a symbol of K" whenever the two read-write heads are scanning the 
same square. In such cases either of the two controls (but only one of them) 
may perform the next move as if the other were not there. Otherwise they work 
parallel and do not disturb each-other. Now we will show the following. 

Theorem. Every computation performed by a two-control Turing machine 
can be performed by a single-control one. 

Proof. In order to prove this theorem we will simulate the computations of 
a two-control Turing machine with the aid of a single-control one. 

The essential feature of the simulation is that the parallel moves of the two 
control devices will be performed in a serial manner such that only one of them 
will be activated at a time while the other will be frozen. But the active and the 
frozen status can be exchanged between them any time that makes the simulation 
of every parallel computation possible. 

Let T2 = (K', K", Z, q'0, ql, B, M', M") be a two-control Turing machine. 
Then let T± = {K, Zx, q0, B, M) be defined such that 

K=((K' U {1, 2}) X (K" U {1,2}))U {L, R, J , SL, F, =|, H), 

z ^ z u f t r u r i x z ) . 

Internal states of the form [q', q"] represent the coincidence of the two read-
write heads. A pair of the form [q\ 1] or [q", 1], ([q, 2] or [q'\ 2]) means that the 
corresponding control device is acive and it is currently to the left (to the right) 
of the other. The meanings of the special state symbols are the following: 

L (R): activating is passing over to the left (right), 
J (%): activating is passing over to the left (right) leaving a final configuration 

frozen behind, 
F p ) : completely final configuration obtained on the left (right), 
H : simulation halted. 

The actual state of the frozen control device will be encoded onto the tape as 
a tape symbol of the form [q\ y] or [q",y\. Now we have to specify the mapping M. 

1) M([q', q"ly) = 0 iff M'{q', y) = M"(q", y) = 0, and 

M([q\ q'l y) = M([q", q'\ y) for all q'£ K', q"£ K" and y £ Z , ' 

2a) ([p',q"],z,0)£M([q',q'ly) iff (p\ z,0)ZM'(q', y), 

2b) ([q',p"lz,Q)cM(W,q"ly) iff (p", z, 0)£M"(q", y). 
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From here on a pair of related specifications like 2a and 2b will be given by 
describing just the first of them. 

3«) ([/,!],[<?", 4 - \ ) i M ( [ q ' , q ' % y ) iff (p',z,-\)iM'(q',y). 

4 a) ([p',2],[q",z), + \)(LM([q',ql,y) iff (p', z,+ \)£M'(q\y). 

5a) For i = l , 2 and j = — 1 ,0, +1, 

([p',i),z,№M([q',ily) iff (p',z,j)eM'(q',y). 

6a) ' M([q', 1], [q", y]) = M([q\2], \q", y]) = M{[q', q'\ y) 

for all q'iK\q"£K" and y e Z . 

la) (R,W,yl + ^M{[q',\],y) and (L, [q', y\, — 2], y) 

iff M(q',y)^Q. 

8) (R,y, + \)M(R,y) and (L, y, - \)^M(L, y) for all y£Z. 

9a) {X,[q',yl+ViM{[q',\},y) and U,[q',y],-\)iM([q\2],y) 

iff M(q', >0 = 0. 

10) (fl , y, + l)£M(ii,y) and ( J , j > , - 1 ) € M ( J , y) for all y£Z. 

11a) ([q',2ly,0)iM(R,[q',y]) and ([q\ 1], y, 0)£M(L, [q\y]) 

for all q'£K' and y£Z. 

12a) ([q',2ly,0)iM(X,[q',y]) and ([?', 1], y, 0 ) £ M ( J , [q\y]) 

iff M'(q', y) 0. 

13a) [q\y]) and ( F , y , + l ) e M ( J , [ q ' , y ] ) 

iff M'(q', y) = 0. 

14) (\y,-\)iM(^,y) and (F,y, + \)iM(F,y) for all 

15) { H , y , Q ) i M { M q ' , y ] ) and (H, y, 0)£M(F, [q',y]) 

for all q'£K' and y£Z. 

N o w let us see how Tx simulates T2. Suppose we have a computat ion of T2 
starting with a configuration q'0qlP and ending with a final configuration Xq'Uq"Y. 
Then Tx will be started with [q'0q'¿]P. As long as the two read-write heads are scanning 
the same square the simulation is guaranted by specifications 1, 2a and 2b. As soon 
as they are parted one of them becomes active while the other becomes frozen 
(3a—b, 4a—b) and the control device of 7\ follows exactly the actions of the active 
control of T2 (5a—b). 

If the frozen control is encountered by the active one, either of them will be 
enabled to proceed (6a—b). The simulation of the active control may be suspended 
any time by Tx so that Tx switches over to the other. This is realized by Tx with the 
aid of special states R, L, 5i and J which cause a search for the frozen control 
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on the tape. Tx always remembers the correct direction for the search via the state-
suffix 1 or 2. (see la—b, 9a—b, 8, 10). The search is ended by activating the previously 
frozen control device (11a—b, 12a—b) unless both of them happen to be in a final 
configuration. In the latter case the frozen state will be cancelled from the tape and 
a message will be sent back to cancel the other encoded state as well and to stop 
the simulation (13a—b, 14, 15). If the final configuration of T2 is of the form Xq'q"Y 
then the simulation in Tx will be finished with the configuration X[q', q"] Y. In this 
case the resulting tape inscription of will be exactly the same as that of T2, but 
in other cases we must first get rid of the encoded final states (13a—b, 15). 

The nondeterministic order of parallel steps in T2 is properly simulated by the 
nondeterministic active — frozen status switching in 7 \ , and this completes the proof. 

It can be observed that Tx makes use of the same amount of tape squares as 
T2 does. In particular, if T2 is linearly bounded then so is Tv On the other hand 
the above theorem can be extended to more than two control devices and thus, 
we have the following: 

Corollary. Every asynchronous parallel computation performed by a multicontrol 
Turing machine can be also performed by a single-control Turing machine using 
the same amount of tape. 

A number of interesting special cases of multicontrol Turing machines can be 
considered. One of them could be an abstract model of the so called pipeline process-
ing where a streamlike information flow is processed simultaneously at different 
stages by several control units. The tape alphabet Z can be partitioned for this 
purpose in such a way that the input alphabet of each control unit forms a subset 
of the output alphabet of the previous one. This means that each control unit would 
work at full speed as long as the tape inscription permits. 

Finally it should be mentioned that the simulation of asynchronous parallel 
processes was given above by a nondeterministic model even if the individual control 
units are deterministic. It is known that nondeterminism can be reduced to deter-
ministic operation in case of Turing machines, but this would very likely require 
additional tape [2]. 

References 

[1] HARTMANIS, J . & R . E . STEARNS, On the computational complexity of algorithms, Trans. Amer. 
Math. Soc.. v., 117, 1965, pp. 285—306. 

[2] SAVITCH, W . J . , Relationships between nondeterministic and deterministic tape complexities, 
J. Comput. System Sci., v. 4, 1970, pp. 177—192. 

[3] STOSS, H. J., k-Band-Simulation von k-Kopf-Turing-Maschinen, Computing, v. 6, 1970, pp. 
309—317. 

(Received May 12, 1976) 


