
Topological analysis of linear systems 

By I. PAv6 

Abstract 
i 

The author deals with the solution of the input—output analysis problem of 
the linear system models. Beside the traditional elements a suggestion is presented 
for introducing degenerate elements, hereby a more general class of practical linear 
systems can be taken into account. For the analysis by topological formulas the 
author gives fc-trees generation procedures which are essentially applications of 
his earlier methods written in papers [3] and [4]. Finally concrete examples are 
presented from the area of the electrical networks model as well. 

Introduction 

In this paper we are going to deal with models of linear systems which can 
be described by differencial equations in general, and can disjoin two terminal 
tools connecting two points or domains. In practice we can find such systems at 
electrical, mechanical, pneumatic, thermodynamic, etc. networks. After defining 
the system elements let the structure of the linear system be given by an abstract 
graph. Beside the conservative system elements well-known from reference [9], 
degenerate elements will be introduced by which the model of more general linear 
systems can be given. For example, it can be shown that any two terminal or two 
part electrical network consisting of passive elements, mutual inductances and 
controlled generators may be modelled as a network consisting only of degenerate 
(nullator and norator) and passive elements [8]. The network determinant is set 
in the centre of the formal solution of the system equations, a suggestion will be 
presented for its calculation by a topological formula with application of the gen-
eration of fc-trees suggested by the author in earlier papers [3] and [4]. Finally, the 
order of the topological analysis will be shown by concrete examples for the cal-
culations of the electrical linear systems. 
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The elements of the linear system 

In the model of the linear system variables of two type are allowed; namely, 
through and across, which are characterized by the usual measuring directions [9]. 
(In practice through variables are electrical current, power, flood, convection of 
heat, etc., across variables are voltage, rotation, pressure, temperature, etc.). In 
general a variable is a function of the time, and we assume that there exists its 
Laplace-transform. The system elements are defined by relations between the through 
and the across variables in the following manner: 

Type of the relation 

\ 

Name of the 
element 

Sign of the 
element 

Relation between through and 
across variables 

Inductive Inductance -^TP— ' L. s. J(s) = V(s) 

Resistive Resistance —1—1- R. J(s) = V(s) 

Capacitive Capaticy — I I — j(s) = C. s. V(s) 

Over determined Nullator — o — J(s) = 0, V(s) = 0 

Undetermined Nora tor — 8 — J(s) = arbitrary, 
V(s) = arbitrary 

The symbol s is the complex value, J and V are the Laplace-transforms of 
the corresponding functions (through and across variables). The equations between 
the Laplace-transforms are valid under zero initial conditions. L, R and C are 
arbitrary real numbers differing from zero (they are the parameters of the corres-
ponding system elements). In case,of a concrete system V(s) and J(s) belonging 
to a norator are defined by the other elements of the system, the word "arbi-
trary" is to be understood in this manner. 

The first three system elements are to be regarded as classical ones from the 
reference. These are the so called "passive elements". Now we give a reason for 
the introduction of degenerate elements (nullator and norator). 

The through and across source variables driving the linear systems (the inde-
pendent generators) are given by their functions. Beside such ideal source variables 
other ones may occur as well, the function of which depend on through or across 
variable between two vertices of the system graph (controlled generators). For 
example, it may occur that the controlled through source variable between vertices 
i and k is the multiple of the across variable between vertices / and k. This is the 
situation with electrical linear networks in case of voltage controlled circuit gener-
ators. The conventional sign of the controlled source variable occurring in the present 
example and its nullator—norator pair equivalent network are shown by Fig. 1. 
According to Fig. 1 such an equivalent network may be produced from an unique 
passive element (resistance) and from a nullator—norator pair. 

After the. introduction of the nullator—norator pairs there is a possibility 
for producing the models of the controlled generators of all types and the ideal 
transformator by electrical networks [1]. In the nullator—norator pair model of 
a general linear network only elements with parameters R, L and C, nullators and 
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norators, (the latters as a pair) occur [6]. Thus by the introduction of degenerated 
element suggested in the present paper, a practically larger class of the linear sys-
tems may be described than by the set of passive elements. 

We do not define exactly the rules of the connections between the system ele-
ments. But we assume in the present paper that the graph of the system is connected, 
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Fig. I 

an. element does not contain a loop, the degenerated elements occur only in pairs 
and degenerated element cannot be parallel with any passive one. According. to 
[8] the latter condition does not break the general case. Practically, concrete linear 
systems obviously hold these conditions. 

After this we draw up the program of the input—output analysis of linear 
systems in the following manner. Consider a model of a linear system by its graph, 
the edges of which are system elements, through and across source variables driving 
the system. Determine the concrete values of the through and across variables 
in each passive elements. 

System equations and their formal solution 

Let the system graph consist of n vertices, / edges containing a passive element 
and N pairs of nullator—norator edges. The equivalent network of an edge of 
the graph containing a passive element is shown in Fig. 2 (Fig. 2 takes into account 
the generalized case). 
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Concerning the passive element the vector equations are the following: 

V = u + U (1) 

J = i + I , (2) 
where U and I are vectors of the across and through source variables, respectively, 
the components of which can be found in the equivalent networks of the edges 
of the graph, u and i are column vectors of size / made from the Laplace-transforms 
of the across and through variables of the edges. 

After suitable numbering of the edges, let A be the incidence matrix of the 
graph concerning a reference vertex, and divide it into the following parts: 

A = [Ap A0 A J 

where submatrix Ap corresponds to the edges containing a passive element, A0 
to the nullator and A„ to the norator edges. 

It is true [cf. 8] that 
J = yV (3) 

where y = ( j 1 ; y2, ••• > J/) is a diagonal matrix and yt is the operator admittance 
of the z'-th passive element. Namely, 

r,(s) 

After this we define the incidence matrices of the modified graphs. 
Let gAp represent the reduced incidence matrix of the graph which is determined 

by the edges containing a passive element after short circuiting, all nullator edge 
endpoints. We use matrix Ap in a similar sense, i.e., let „A p be the reduced incidence 
matrix of the graph which is determined by the edges containing a passive element 
after short circuiting all norator edges endpoints. 

To describe the linear system we write the law of the node [8] in the,following 
form: 

~AP • i = O. (4) 

Finally, let us introduce the vector P of size (n—N) by the equation 

u = oA'p.P (5) 

the components of which are sum of the across variables along the path connecting 
the suitable vertex of the graph with the reference vertex [9]. 

(1)—(5) are the basic equations of the examined system. 
Considering (1) and (2), 

i + I = y(u+U). (6) 

Let us multiply (6) by the matrix „Ap from the left, and consider (4). Then 

oo Ap • I = TCAp • y • u -f „„Ap • y • U. (7) 

Taking into account (5), after some rearrangement we get 

• y • oA'p • P = „Ap(I—y • U). . (8) 
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Let us introduce the symbol Y by 

Y — ooAp • y • oAp. 

If det (Y)TÎO then there exists the inverse matrix Y - 1 . In this case, by [8], 
we can write 

P = Y - 1 . „ A ; . ( I - y . U ) . (9) 

One can consider (9) as the explicite solution of the input—output analysis. 
We remark that in this manner the calculation of det (Y) is necessary for the solu-
tion, or rather, for determining the inverse of a matrix. 

If the system contains also purely across or through source variable edges 
then the form of (9) is modified slightly. There is no problem that the graph contains 
only through variable edges. Namely, in this case the equivalent network of the 
generalized passive edge has a passive element with "operator admittance of zero". 
It can be seen that in the case of across source variable edges the right side of (9) 
is invariable, and the modification of (9) does not influence the calculation of det (Y). 
Further more, det (Y) will be called system determinant. 

Calculation of the system determinant 

It is known from [5] that 

d e t ( Y ) = (10) 

This is a topological formula, where FN+1 is an edge admittance product formed 
by an (N+ l)-tree of the system graph which consists of only edges containing 
a passive element, and this (jV-f-l)-tree turns into a circuitless connected graph 
after short-circuiting either the nullator or the norator endpoints. The sign of each 
product comes from the product of the corresponding majors of „Ap and 0Ap. 
The summation takes into account the same (N+ l)-trees of the type in question. 
The generation of such (W+l)-trees can be given by the following algorithm. 

Step 1. After missing all nullator edges produce and list trees of the remained 
graph which contain all the norator edges. This is possible by the suitable organiza-
tion of the method written in [3]. 

Step 2. Leave the norator edges from the trees produced by step 1. We obtain 
' fN+i (yy_|_ i)-trees, and 

{'iTiV + l j 3 { f N + l } ( 1 1 ) 

is obviously fulfilled. 

Step 3. Short-circuit the endpoints of the left nullator edges in each of the 
elements of set {'FN+1}. Let us select from them the circuitless graphs according 
to method [4]. By this the generation of all F N + 1 comes to the end. 

Finally, we remark that the sign of any FN+1 edge admittance product can 
be determined by the application of the Davies rule. 
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Universal parameters 

We use the method written in this paper in the analysis of an electrical linear 
network model consisting of nullator—norator pairs. It is known that any universal 
parameter of a two port network (if there exists any) can be obtained as system 
determinant of the two port network its input and output being closed by suitable 
nullator—norator pairs [2]. One can see the suitable closure in Fig. 3 together with 

1—:— 
X x P„ X OO Bu 

— — 

r 
o F oo X R„ 1 1 

Fig. 3 

the symbol of the universal parameter. Notice that the short circuit closure in Fig. 3 
is equivalent to a parallel connected nullator—norator pair. Referring to the earlier, 
it is clear that for the production of any universal parameter by topological formulas 
we need the earlier A>trees of the suitable closed network graph, and now N + 1 == 
^ksN+3, where N is the number of the nullator—norator pairs in the original 
network model. 

We give a block scheme of the A:-trees generation in Fig. 4 to produce an ar-
bitrary universal parameter. To realize this algorithm by a computer the procedure 
has all the advantages of methods written in [3] and [4] (i.e., "calculation of the 
trees" is possible "one by one", it is not necessary to reserve' them in the storage 
capacity). 

In the case of active networks the determination of the universal parameters 
makes possible to describe the system functions of the network model in question, 
which are quotiens of the suitable universal parameters in general [2]. 

Further on we are going to study the description of some system functions 
either passive or active networks. 

Analysis of passive networks 

First consider a two terminal network consisting of R, L and C elements and 
set ourselves an aim to write its operator admittance function in the general case. 
The task can be drawn up as the determination of the input admittance of a two 
terminal network closing its output by break (the output may be an arbitrarily 
choosen pair of the vertex in the network). 

The first equation of the inverse hybrid characteristics is: 

h = DnU^ D12L 
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from which after considering / 2 = 0 
we get 

Y — J±- — D 

Taking into account the defini-
tions of the universal parameters 
we can write 

y _ G u 
1 in p • 

11 

(12) 

Taking into account the calcu-
lation of Gu and Pu by topologi-
cal formulas (see Fig. 3) we can see 
that to produce the numerator of 
(12) all the trees of the network 
graph are needed, while the denom-
inator needs all 2-trees which con-
tain the input points in separate 
components of the graph. So k-trees 
needed to (12) can be generated by 
the somewhat modified method writ-
ten in'[3]. Next determine the trans-
fer impedance function of an arbi-
trary RLC two port network, the 
scheme of which is represented in 
Fig. 5. 

Now from the impedance char-
acteristics of the network closed 
on the output by a break we obtain 

Z 
" A 

= z 2 
/ . = o 

(13) 

and from (13), because of the defi-
nitions of the universal parameters, 

EL 
G„ 

(14) 

follows. 
To write the numerator of (14) 

all the 2-trees are needed, which 
separate either the input or the output 
vertices (i.e., the 2-trees contain these 
points in different components). 
From the latter statement it follows 
that to determine Bu the closed 

graph of the universal 
network model parameter 

(printing oil \ 

the f ' J 

Fig. 4 

Fig. 5 
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network model contains a unique nullator—norator pair each degenerate element 
of which is connected to the input and output. It is not a problem to generate fc-trees 
for the denominator of (14) (see the first example). We remark that similar A-trees 
are needed for producing Fu as in the case of Bu. 

Network containing controlled generator 

As a concrete example let us consider the two port network in Fig. 6 consisting 
of an ideal operational amplifier, and set as a task to generate A-trees necessary 

tA 

Fig. 6 

to the calculation of the transfer voltage function of the network by topological 
formulas from the suitable network model. 

From the inverse hybrid characteristics of a two port network whose output 
is closed by a break it follows: 

U» 
(15) 

Ui / ,=0 

Taking into account the definitions of the universal parameters, from (15) 
we'get 

Au = % - (16) . 

After using the nullator—norator equivalent network of the ideal operational 
amplifier we can see the network model in Fig. 7. To determine the denominator 
of (1.6) close the input of the network model by a parallel connected nullator—-
norator pair. Thus we get the task discussed in paper [4], and the results are 3-trees 

(01400), (03400), (04200), (04400) and (05400) 
in order. 

To determine the numerator of (16) close the network model shown in Fig. 7 
by a norator on the input and by a nullator on the output. The modified network 
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model is shown by Fig. 8. It can be seen, if we search the trees of the modified graph 
containing all the norator edges and left the norator edges from them, that the 
obtained 3-trees are equivalent to the 3-trees before the short circuiting listed in 
paper [4]: 

• (01200), (01400), (03400), (04200), (04400), (05200), (05400). 
t 

But at present the condition of the short circuiting differs from the earlier 
one. Namely, 

a = 3 = 4 = 5 

in respect to the unique symbol element. 

To decide which subgraphs are circuitless write in a table the row vector rep-
resentations. The first common row of the representations is 

12 a a a, 

while the second rows are in order 

0 1 2 0 0 
0 1 a 0 0 
0 a a 0 0 
0 a 2 0 0 
0 a a 0 0 
0 a 2 0 0 
0 a a 0 0 

Performing their complete cycle check, only the first yrepresentation leads' 
to a finite outcome and the suitable reduced graph is circuitless as well. 

We get that the numerator of (16) needs only one 3-tree with representation 
i01200). According to topological formula (16), taking into account the sign of 
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the edge admittance products, after some calculation we have got for the active 
network 

U* ^ 

U x J ; 5 0 l + .V2 + J ' 3 + J , 4 ) + J ; 3 > , 5 ' 

RESEARCH G R O U P ON M A T H E M A T I C A L LOGIC 
A N D T H E O R Y O F A U T O M A T A O F T H E 
H U N G A R I A N A C A D E M Y O F SCIENCES 
H-6720 SZEGED, H U N G A R Y 
SOMOGYI U. 7. -
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