
The generalised completeness of Horn predicate-logic
as a programming language*

B y H . A N D R É K A a n d I . N É M E T I

To the memory of Professor László Kalmár

Here we prove the "generalised" completeness of "Prolog-like" languages [1],
[2] or "Horn-predicate logic as a programming language" [3], [4], [5], [6].

More precisely we prove the following. Let Fr be an arbitrary Herbrand-universe
(in other words, Fr is a word algebra of an arbitrary finite type generated by the
constant symbols). For any f : Frn-*Fr Turing-computable partial function over
Fr, there is a finite set Cf of Horn clauses over Fr (that is there are no other func-
tion or constant symbols in Cs but only those which occur in Fr) and a relation
symbol F} such that Cf defines / over Fr, more precisely:

(Va , fiiFr)[f{S) = p iff C r N / } (« , / ?)]

where a is a vector of elements f rom Fr.
This means, that if we are given an arbitrary Herbrand-universe Fr and an

arbitrary computable task over Fr, then we can write a Prolog program which
solves this task and which does not contain other function or constant symbols
but only those which occur in Fr. This is somehow a statement about the ad-
equateness of Horn logic as a programming language: Any computable problem
can be formulated in Horn logic without using auxiliary function symbols. That
is without "coding" the data to be processed.

A special case of this theorem was proved by Robert Hill (unpublished, personal
communication). He proved the above statement for the case when Fr is the set
of natural numbers together with the successor function and constant 0. The proof
stated here is a generalisation of his one. In generalising any proof from the natural
numbers to arbitrary Herbrand universes Fr the difficulty originates f rom the un-
fortunate f a c t / t h a t — as far as we know — there is very little work done on the
"nice" characterisation of the computable functions over Fr.

Another related result has recently been proved by Tarnlund, c.f. "Sten Ake
Tarnlund: Logic Information Processing", University of Stockholm, report

*Part of the research for this paper was done during the author's stay in the Department of
Artificial Intelligence, University of Edinburgh. . . .

l

4 H. Andréka and I. Németi

TRITA—IBADB—1034, 1975—II—24. He proves that if we are given an arbi t rary
Herbrand-universe Fr together with a computable function / over it, then there
exists a set of binary Horn-clauses Cf defining / . However in Tarnlund 's paper
Cs is defined over a Herbrand-universe which is definitely larger than Fr. (In defining
Cf he makes extensive use of auxiliary function symbols.)*

The main result proved in this paper is that Cf can be defined over Fr itself;
in other words, that we can dispense with the auxiliary function symbols.

Remark. We believe that an alternative (perhaps more natural) proof can be
given by starting f rom Emden 's work [7] and investigating the generalisation of
Kleene's recursion equations to arbitrary word algebras. To this end first it should
be proved that any Turing-computable partial funct ion / over an arb i t ra ry word-
algebra Fr can be defined by such a finite system of Emden's modified recursion
equations (see [7]), in which system all the constant functions belong to Fr.

Theorem. Let Fr be an arbitrary Herbrand-universe (that is a word-algebra of
arbitrary finite type generated by the empty set, in other words: generated by the
constant symbols of the type).

Now, for any finitary Turing-computable partial function / over Fr
(/: Fr" — Fr) there is a finite set Cj of Horn clauses over Fr (that is all the funct ion
symbols occuring in Cf also occur in Fr), and a relation symbol Ff such tha t

(V f i , 0 € J r) [/ (a) = /J iff Cft=Ff(i,ft]
where a is a vector of elements of Fr.,

Moreover, Cf can be effectively computed f r o m the Turing-definition of f .
Proof. Let co denote the set of natural numbers. The idea of the proof is the

following:
g First we define a one-one func t ion

. -*• CO Q f r o m Fr onto co, such tha t Q as well
as Q~v are Turing-computable. N o w
if / : Frn—Fr is Turing-computable ,

~ Fr then g — QO/OQ'1 is a Tur ing-comput-
j " able funct ion on co, and / = { ? - 1 o g o g .

' But every Turing-computable func t ion
Fig-1 on co is recursive. Thus every Turing-

computable function f over Fr is the
image by Q of some recursive function g over co (/ = Q~1ogoQ). By this it is enough
to prove for any recursive function g over co, that the function Q'^^ogog is Horn -
definable over Fr (see figure).

Let the type t be denoted as: t = { (f j , i)'.i = k, y '^w,}. In other words : there
are numbers k and mi (for every i^k) such tha t f j is the y'-th /-ary funct ion symbol
for k ^ i , j ^ m i . Note that { / ? : j = m 0 } is the set of constant symbols.

Now we define the function Q. To this end we first define the auxiliary func-
tions F and Sz by a simultaneous recursion.

* Thus Tarnlund's result is different from Hill's one in two respects:
1. Tarnlund says more than Hill by allowing arbitrary Herbrand-universes and using only

binary Horn-clauses.
2. On the other hand Tarnlund says less than Hill, since he says nothing about the number

of auxiliary functions symbols.

The generalised completeness of Horn predicate-logic as a programming language 5

The intuition behind the following definitions of F and Sz is explained later
in the proof of the first lemma.

The only important property of F is that F enumerates the word algebra Fr.
Any other recursively defined function with this property could be substituted for
F without changing the rest of the proof. The function Sz is only an auxiliary func-
tion in the definition of F. That is, we use Sz only to define F.

We define F by a definition scheme which can be translated into a definition
for any given type, that is for any fixed numbers k and m ; . In this scheme the
text: " for i ^ k , 0 / . . . " is written in a metalanguage and can be
translated by copying " / . . . " as many times as Vs, j's and p's are possible.

F (0)= /„°

F(n + l) i

for i S k,j ^ mi and 0 < p S i :
fj{F(ni), ..., F (n p +1) , F(0), ..., F(0)) if

d
= 1

for . i S k, j < mk:
/ j + 1 (F (0) , ..., F(0))

for / < k:
M+1(F{0), ..., F(0))

if

if

F(n)=pJ(F(n1),...,F(nl)) and
(\ f p < z s i) Sz(nz + 1) Sz(ri)
and Sz(np+\)<Sz(n)

\

F(n)=f)(F{nJ,...,F{nj) and
(V 0 < z ̂ i) Sz (n2 +1) ^ Sz (n)

/o°

S z (n + 1) =

if

F(n)=f^(F(ni),...,F(ni)) and
(V 0 < z ¿) S z (n z + 1) S Z (/ J)

F(n)=f*k(F(n1),...,F(nk))<md
(V0 -=z^k)Sz(nz+l)^Sz(n)

Sz(0)=0,

if F(n)=fX(F(n1),...,F(nk)) and
(V1 ^ z < k)Sz(nz+1) Sz(n),

otherwise.

I t is easy to see that the above simultaneously recursive definition is correct,
that is it really defines the functions F and Sz.

In the following definitions we use the recursion theoretic ¿¿-operator. Remember
that nx{R{x)) is the smallest number x for which R(x) is true.

E(W T r u e ' i f < ")F0') * F(n),
iFalse, if otherwise

S (T) = F(fin(pk(F(k) = T) < « & £ («))) ,

S z (n) + 1 ,

Sz{n),

£(0) = F(0),

£(« + 1) = 5(^(n)),

e(z)=fin(^n) = T).

6 H. Andréka and I. Németi

Lemma, a) Q: Fr-~(O is one-one and onto,
b) Q and Q~1 are Turing computable.

Proof, ad a) Note, that any total function / with domain co can be con-
sidered as a "l ist ing" or an enumerat ion of the range of / .

' N o w , we define a system of subsets H t (i£co).

H U S , •••'/mo)'

#/ + i = { / j (T i ' •••' t.-):ti, ..., t ¡ £ H , , / S k , j =S m , |

For each i£co, on the set Ht a linear ordering can be defined in a natura l way:
For H_l: f ° < f f iff i<j. To define the ordering on Hl + l , suppose, that the order-
ing on Hi has been defined.
: . Now for any two elements o f / / , + 1 :

/jC-Tj , . . . , T,) < / j : (t i , . . . , Tr) iff </, j , r1, ..., t;> < </', / , , ..., t,'>

according to the lexicographic ordering obtained f rom the ordering on natura l
numbers and the ordering < defined on Ht.

It is easy to check, by the definition of F, that the function F first enumerates
H0 in accordance with the above defined ordering on H0, then enumerates similarly

Hx, then H2... etc. Since (J H—Fr, the function F enumerates the whole Fr.
¡=i

However, unfortunately, F might enumerate an. element of Fr more than once,
in other words, the function F is not one-one. To deal with this, the relation E
marks those places in co where an element occurs (is listed) first. The funct ion £
picks out only those occurrences (of elements of Fr) which are marked by E. Thus
£ is already one-one, while since F is onto, ^ is also onto.

ad b) F rom the fact that c is one-one it follows that o = t _ 1 , and f r o m their
definition it is easy to see that both Q and £ are Turing-computable. (For , f r o m
their definition it is easy to construct a computer program which computes Q and f .)
And by this the lemma is proved.

Lemma. To every partial recursive function g over co g: co, the funct ion
f=Q~1ogoQ is Horn-definable over Fr, that is there is a set of Horn-clauses Ct
and a relation symbol Ff such that

(V ^ p e F r X g - ^ o g o Q (a) = P iff Cf\=Fr{a,/?)].

Proof. By the definition of recursive functions, it suffices to prove the above
statement for the:

d
zero function Z (x) = 0 ;

d
the successor function S(x) = x +1;

d
the projection functions ¡Ht{x1, ..., xn) = xm,

The generalised completeness of Horn predicate-logic as a programming language 7

and to prove that if the above statement holds for the functions h, g,gi, • ••• g„
then it also holds for the functions obtained f rom these by

substitution f (x) = h (g, (x) , . . . , g„ O))
d

recursion f(x,0)=g(x)
r & f i x , n+I) = h(x, n,f{x, n))

the ¿«-operator f(x)==ny(g(x,y) = 0).

Note , that N has already been defined in the definition of the function Q. In writing
Horn-clauses we use the notat ion of Kowalski [3].

a) the zero function:
Q~1OZOQ is . H o r n d e f i n a b l e :

C z = { F z (x , / °) ~ }

It is easy to see that Cz defines exactly the function Q~1OZOQ. Here we give
the detailed proof of this statement, but we shall omit the proofs of the following
statements about the successor function, etc. because they are mechanical analogiies
of the present one. -

Now we prove that C, 1= Fz(T, a) iff o=fo-
-1. for all r £Fr, we immediately have CZL= Fz(T , /0°).
2. To prove the implication in the other direction.
Let o-^/o0, and t , o ^ F r .
In this case Cz^.F,(T, <T), because we can construct a model of Cz in which

Fz(T, ff) fails. Let on the Herbrand-universe Fr the interpretation of the relation

symbol Fz be the relation R={(r, z^Fr). In the model obtained this way
Cz is valid while Fz(x, O) is clearly false. Thus, C:!^Fz(T, <T).

b) the successor function:
Q~1OSOQ is H o r n d e f i n a b l e :
This is the only more laborious step: Here we need an explicit and constructive

description of the function Q. We shall, not do anything but translate the definition
of Q into Horn-clausal form. To this end however we first have to "code" the natural
numbers by elements of Fr. For any number the symbol « stands for the code
of n in Fr. We define the code recursively:

0 = / „ ° , and ¿ + 1 =/ c}{n).- ...

Remark. If m^ — 1 then let / be the smallest number such that «J,SO.

Now n + X==fj (n, f £ , ..., f£).

- (x, y) - == (f i x , y),'

< (x, y) - =s (f i x , y)}U-
{ F (/ o 0 , / o °) - } U

10 H. Andréka and I. Németi

W y , f j (x l t ..., *р_г, »,/?, ...,/«)) - F(y,f}(Xl,..., xi))A A F(yz, x:)A

ASz(ßyz\yvz)ASz(y,w)A Д = (w, w,)A
2 = 1 Z= p+1

wp)A F(fiy, v)

F(yJ}(Xl,...,Xi))A A jF(y„*s)A
Z = 1

A Sz(/oV2, W 2)ASZ(J>, W)A Л' — К W Z)
2 = 1 2 = 1

->*,))A A F(yz,xZ)A
2 = 1

A 5z(/'v2, wz)ASz(y, w)A A = (w, w2)

m„ 0 i }U

{ F W y J j n W , . . . , / ?)) -

k,j < m,}U

- Jo0)) -

{^(/ ¿b /o 0) -

U'

•Sz(fèyJèw) - F{y,f^{x1, ...,xk))A A F(yz,xz)A A SzCtf j , , wz)A5z(y, w)A
2 = 1 2 = 1

к
A < (w, wz)}

ф . A (* i , • • • , х*))Л л Я у . - , л '
2 = 1

A SZ(/О wz)ASz(y, W)A A ^ (W, WZ)}
«

A
2 = 1

и

* (/j(xl5 ...,xd,fï(yi, ...,yv)) - :<U и <«',/>}U

* (/](*!, ...,Х1)Л(У1, ...,y¡)) - i ^ k,j i}U

Л^Си, /о1
 w) - и') Л ^ (*, v)A F (у, х)А F(w, v),

E(y) ^ NE(y, у)} U

{Н £(>,) - < (г , y)AF(z, W)A W),

Ж*,/о0)- ,

М{х,у)~ N(x,y)AF(y,x),

The generalised completeness of Horn predicate-logic as a programming language 9

N>(y,fS) -

N^yJ^z)^ N1(y,z)A S(z,y),

MAy,fiz) - NAy, z)A^E(z),

S(x, w) - M(x, z)AMl(z, y)AF(y, w)}.

c) the projection function:
Q~1OI£OQ is Horn definable:

Ci — {F, (xj, ..., x„, xm) — }.

Now for the following steps suppose that Ch, Cg, CBl, ..., CSn define
Q~1ohog, g~1ogoQ, ... respectively.
d) substitution:

f^Q-^oSuih, g 1 ; . . . ,g„)og is Horn definable; where Su(h, g, , ...,g„) is the func-
tion defined by substitution from h , g i , . . . , g„ .

Cf={Ff(x,y) - Fh(y1,...,yn,y)AFgi(x,y1)A...AFgn(x,yn)}(J

Ch{JCg[J...UCgn.

To prove that Cf really defines f note that

g~1oSu(h, g l , ..., g„)oq(x) = Q-^hig^Qixj), ..., g„(e(x))) =
= Q-1 ohoQ^Q'1 ogog(x), ..., Q~1og„og(x)).

(Similar remarks will , be omitted in the following.)
e) recursion:

f=Q~loR(g,h)oQ is Horn definable, where R(g,h) is the function defined by
recursion from g and h.

Cf=={Ff(x,fv, y) — Fg(x, y),

Ff(x, w, y) - Fs(z, w)/\ Ff(x, z, yi)AF,,(x, z, ylt y)}U

C , U C , U C 4 .

Remember that Cs defines the function o'^Sog, where S is the successor func-
tion on CO.

f) the ^-operator:
f == g~1oMygog is Horn definable, where Myg is the function defined by the
/¿-operator f rom g.

Ct= {N(fS) - , N(w) - S(z, w)A N(z)A Ft(x, z, y)AS(yi, 3»),

F,(x, y) - N(y)A Fa(x, >',/0
0)} U C 9 U C r

10 H. Andréka and I. Németi

Abstract

The adequacy of Horn clauses as a programming language is demonstrated by proving that
any computable problem can be formulated in Horn logic without' using auxiliary function
symbols.

MATHEMATICAL INSTITUTE O F THE
H U N G A R I A N A C A D E M Y OF SCIENCES
REÁLTANODA U. 13—15.
BUDAPEST, H U N G A R Y
H—1053

References

[1] WARREN, D. WARPLAN, A system for generating plans, DCL Memo, No . 76, 1974.
(2] BATTANI, G., H. MELONI, Interpreteur du language de programmation PROLOG, Université

d'Aix Marseille, 1973. 1

]3] KOWALSKI, R., Predicate logic as programming language DCL Memo, No. 70. University of
Edinburg, 1973, and Proc. IFIP Congr. 1974.

[4] KOWALSKI, R., Logic for problem solving. DCL Memo, No. 75, University of Edinburg, 1974.
[5] VAN EMDEN, M., First-order predicate logic as a high-level program language. School of AI,

University of Edinburg, MIP—R—106, 1974.
[6] VAN EMDEN, M., R. KOWALSKI, The semantics of predicate logic as a programming language,

DCL Memo, No. 73, University of Edinburg, 1974.
[7] VAN EMDEN, M., Recursion equations as predicate-logic programs, to be published.

(Received Jan. 13, 1978)

