
Mixed computation in the class of recursive program schemata

B y A . P . E R S H O V

T o the memory of Professor László Kalmár

Let some class 21 of algori thms be prescribed by a set 3P of programs P, a
domain 3C of input data X, a domain <y of results Y and a computa t ion V being
a universal process which is defined for any P and X and is either infinite or
resultless (yielding an abort) or yields some Y as a function of P and X: Y=V(P, X).
Mixed computation [1] in 21 is a universal process M which is defined for any
P, X and a parameter fi (specifically characterizing the process). The process is
either infinite or resultless or it generates some residual program M c (P , M, /()
and yields partial results M C (P , X, n). A mixed computa t ion is correct if for
any P, X and /i the following functional identity holds

V(P, X) = V (M c (P , X, fi), MC(P, X,n)).

It has been shown [2] that mixed computat ion and such related concepts as
partial evaluation [3], computat ion over incomplete information [4], " p r o g o n k a "
[5] may be a basis for solution of many programming problems where efficiency
has to be traded off with universality.

It is natural to seek a correct formalism of mixed computat ion for the mos t
common abstract models of program. The correctness of mixed computa t ion for
ALGOL-l ike programs has been shown in [6]. In this note a correct procedure
of mixed computa t ion in the class of recursive program schemata is presented. This
class reflects such properties of algorithmic languages as recursion and proceduring.

We shall introduce some notat ions. If Jt is a set of elements m then Mn is
an «-tuple of elements f rom Jt. The length of a tuple used as an argument of a
functional symbol / is always equal to its arity Q(f). x[B] is a term x constructed
over a set B of basic symbols, t (A) is a term r for which its arguments (variables
or constants) A are shown.

According to [7] a recursive program schema is specified as a system of equalities
(function declarations)

MX?<") = X i [X j , C, { / x , . . . , / J , n , 0] (i = 1 , ..., k),

2«

20 A. P. Ershov

where f are defined functions. % and "if are countable sets of variables x and con-
stants c, II and are finite sets of predicate and functional symbols, respectively,
of fixed arities.

Predicate terms n are used to define conditional terms { i [i i | i 2 } where tx and
r 2 are functional or conditional terms. Terms T; are arbitrary terms (function bodies)
over specified sets of symbols.

Let an interpretation of the basic symbols (constants, functions and pre-
dicates) converting a schema into a recursive program be given. A system of func-
tions (px, ..., (pk is called a fixed point of a recursive program if, having been com-
bined with the system of basic functions II and <P, it makes (after substituting
for each f) the function declarations identities.

We say that a function <px covers a function cp2 if the graph of (p1 contains that
of (p2. Under natural assumptions on basic functions and their regions of definiteness
each recursive program has a single so called lowest fixed point (LFP) covered by
any other fixed point of the program [7].

Let T and C be tuples of terms and constants respectively. A call is a term in
the form / (T) : a bound call is a term in the form / (C) ; a semi-bound call is a
term in the form f(Cn, Tn) where n+m = g (f) ; a transitively bound call is a
call having no variables. 1

Let one function declaration / (X)=x in a program be treated as a leading
declaration and C be a tuple of g (f) constants. A (sequential) computation V over
a program P is a step-wise process of constructing a sequence of terms T ° = / (C) ,

T1, T2, ... which either is developed infinitely or ends by an (resultless) abort or
(sucessfully) by a constant which is taken as the value <p(C) of the funct ion <p(X)
computed over the given program for its leading declaration.

Each step of the construction of t i + 1 f rom t ' consists of two parts.

1. Rewriting. In t1 somehow a call f j (T) is chosen. This call is replaced by
a term t. The latter is obtained f rom the function body t j of the declaration
f j (X j) = T j by replacement of variables f rom Xj by corresponding components
of the tuple T. Let T' be the rewritten term.

2. Simplification. Inductively, all such subterms in x' are evaluated which
contain only constants and basic functions and predicates. The evaluated func-
tional terms are replaced by their value, conditional terms are replaced by their
if- or else-part depending on the value of the predicate. If the simplification yields
either an abor t or a constant c then the process in terminated yielding either the
abort or c as a successful result. Otherwise, the simplified term is taken as T'+1.

Similarly, a partial computation is defined which allows r° to be an arbi trary
term with variables. Partial computation is terminated when the simplified term
contains no available transitively bound calls.

A variety of computations is determined by the method of selection of sub-
terms subjected to rewriting. In the general case a computat ion provides with a
function covered by the L F P of a given recursive program. A computat ion which
guarantees L F P is called safe. An example of safe computat ion is the execution
of the "lef t outermost" call that corresponds to the "call by name". An unsafe
computation is the execution of the "left innermost" call (call by value).

Let the first function declaration / 1 (A r
1)= t 1 of a recursive program P be

leading and let a partition n of variables (X ^ X ' U X) and a semi-bound call

Mixed computation in the class of recursive program schemata 21

/г(В, X) be given. Let a computat ion V provide the leading declaration with a func-
tion (p (X' , X). A correct mixed computat ion M of the program P for the given
partition ц and tuple of constans В is an arbitrary process of t ransformation of
the program P in to a program PB with a leading declaration fa(X)=x0 such that
the function cpB(X) provided by V for the program PB satisfies the identity <p(B, X) =
= <pB(X).

We shall describe a t ransformation of P which we call an execution of the
semi-bound call fx (В, X). Let us take a copy of the term x1 and replace in it all
occurences of variables f r o m X' by the corresponding constants f r o m В with all
subsequent simplifications; we will obtain a term т0 as a result. Then we take a
new functional symbol / „ of a defined funct ion f0(X) and replace, in all terms
To,?!, ..., xk, all semi-bound calls in the fo rm A(B, T) by the calls f0(T), thus
obtaining the terms Го,т*, Let us denote by P* the program which is
obtained f rom P by at taching to it the equality fo(X)=Xo as leading declaration
and by replacing the bodies х г , . . . , x k by the terms . . . , x k .

Lemma 1. Let (рг(Х',Х), (p2, ..., <pK and i//0, fa, . . . , fa-be L F P of the prog-
rams P and P*, respectively. Then </>¡=<¡0; (7=1, . . . , к) and ф0(Х) = (р1(В,'Х).

The proof is based on Kleene's theorem on recursion [8]: it can be shown that
subsequent approximations of P and P " to their LFPs satisfy the lemma at each step.

Let us introduce a reachability relation over the defined funct ions f1, ...,fk
of a recursive p rogram: f } is reachable f r o m if the body of / г contains calls
for f j . We will also consider the transitive closure of the reachability.

We shall formulate two obvious lemmas.

Lemma 2. Deleting f rom a program P the declaration of a function, which
is transitively unreachable f rom the function of the leading declaration preserves
the 1st component of the L F P of P.

Lemma 3. Replacing in P a call / (T) for the funct ion with a declaration
f (X) — x(X) by the term т (T) preserves the 1st component of the L F P of P.
• i . N o w we can describe a correct mixed computat ion with respect to some com-

putat ion V.
Initial step. A semi-bound call fx(B, X) is given. It is declared to be the start

of the first cyclic step.
Cyclic step (t ransformation of P into P'). Let a start f (В, X) be given, The

corresponding declaration in P is considered as the leading one. P is t ransformed
into P* with the leading declaration f0(X)=т0 according to the rules of execution
of a semi-bound call. A par t ia l ' computa t ion V with r 0 as the initial term and x%
as the result (if any) is undertaken. P * is then transformed into P ' by replacing r 0
by the term to, : in the declaration fn(X) = x{). '

After each cyclic step we look at TJ whether it contains a semi-bound call
/ (С , T). If so then the term f(C, Y), where У are variables f r o m the declaration
of / which correspond the terms T, is taken as a start for the next cyclic step.
Otherwise the mixed computat ion is terminated yielding the program after the last
step with the leading declaration f rom the first cyclic step as the residual program.
Afterwards, the residual program may be simplified according to lemmas 2 and 3.

Example A. (Power function x")

pow (x,ri) = {n = 0|1|{и is even |pow2(x, « / 2) | x X p o w (x, n— !)}}. - ' I*'

22 A. P. Ershov

Let pow (x, N) = N(x). The residual p rogram for pow (.v, 5) before simpli-
fication

5 0) = x X 4 (x) ;

4(x) = (2 (x))2;

2(x) = (l (x)) 2 ;

l W ^ x X O W ;

0(x) = l ;

pow(x , n) = {/i = 0|11 {n is even |pow 2 (x , n / 2) | x X p o w (x, n — 1)}}.

The residual program after simplification:

5(x) = x X ((x X l)2)2.

Let pow (5, «) = e x p (n). The residual program pow (5, n) a f te r simplifi-
cation :

exp(n) = {« = 0111 {n is even |exp 2 (« /2) |5Xexp(n —1)}}.

Example B. (Akkerman funct ion)

A(x,y) = {x = = 0 | / i (x - l , l) M (x - l , / f (x , y - l)) } } .

Let A(3, y) = exp(y) ; A(2,y) = mult 0 0 ; A(l, y) = add (y) , A(m,n) = amn.

The Tesidual program for A (3, y) af ter simplification:

e x p C) = U = 0 | a 2 1 | m u l t (e x p (y - l)) } ;

mult (y) = {y = 0 |a 11 |add (mult (y - 1)) } ;

add (y) = {y = 0 | a 0 1 | a d d (y - l) + l } .

Let A(x, N)=aN(x). The residual program for A(x, 3) before s implif icat ion:

a3(x) = {x = 0 | 4 | ^ (x - 1 , a2(x))};

a2(x) = {x = 0 | 3 | , 4 (x - l , a l (x)) } ;

a l (x) = { x = 0 | 2 | ^ (x - l , a 0 (x)) } ;

aO(x) = {x = 0 | l | a l (x — 1) } ;

A(x, y) = {x = 0\y+1 \{y = 0|a 1 (x - (x - 1 , A(x, y-1))}}.

Notice, tha t elimination of non-recursive declarations can be made in different
ways due to the mutual recursion of aO and a\. Eliminating aO and a2 we obta in
(exploiting the logical dependencies):

a3(x) = {x = 0|4|/4(x— 1, A(x-1, fll(*)))};

a l (x) = {x = 0 | 2 | / l (x - l , f l l (x - l)) } ;

. / f (x , y) = {x = 0 | y + l | { y = 0 | a l (x - l) | , 4 (x - l , / t (x , j > - l)) } } :

COMPUTING CENTRE
SIBERIAN BRANCH OF THE USSR AC. SCI.
NOVOSIBIRSK 630090, USSR

Mixed computation in the class of recursive program schemata 23

References

[1] ERSHOV, A. P., Об одном теоретическом принципе системного программирования
Dokl. Akad. Nauk SSSR, v. 223, N o . 2, 1977, pp. 272—275.

[2] Е р ш о в , А. П., О сущности трансляции, Программирование, No . 5, 1977, pp. 21—39.
3] BECKMAN, L . , A . HARALDSON, O . OSKARSSON, E. SANDEWALL., A p a r t i a l e v a l u a t o r , a n d i t s

use as a programming tool, Artificial Intelligence, v. 7, No. 4, 1976, pp. 319—357.
[4] Бабич , Г. X., JI. Ф. Ш т е р н б е р г , Т. И. Ю г а н о в а , Алгоритмический язык инкол для

выполнения вычислений с неполной информацией, Программирование, N o . 4, 1976, pp.
24—32.

[5] Турчин, В. Ф., Эквивалентные преобразования программ на Рефале, Автоматизирован-
ная система управления строительством, Труды ЦНИПИАСС, Moscow, No . 6? 1974, р. 36.

6] ERSHOV, А. P. and V. Е. ITKIN, Correctness of mixed computation in Algol-like programs,
Lecture Notes in Computer Science, v. 53, 1977, pp. 59—77.

7] MANNA, Z., S. NESS, J. VUILLEMIN, Inductive methods for proving properties of programs,
Comm. ACM, v . 16, N o . 8 , 1 9 7 3 , p p . 4 9 1 — 5 0 2 .

[8] KLEENE, S. C., Introduction to metamathematics, Amsterdam—Groningen, 1952.

(Received August 1, 1978)

