The solvability of the equivalence problem for deterministic frontier-to-root tree transducers

By Z. Zachar

1. Introduction

In this paper we deal with effective solvability of the equivalence of frontier-to-root tree transducers. T. V. Griffits has shown in [2] that the equivalence problem is unsolvable for λ-free nondeterministic generalized sequential machines which are special frontier-to-root tree transducers, so the equivalence of the nondeterministic frontier-to-root transducers is unsolvable, too. Then in a natural way one can raise the question whether the equivalence of deterministic frontier-to-root tree transducers is solvable. We show the answer is in the affirmative. The proof is based on the proof of the solvability of equivalence problem for λ-free deterministic generalized sequential machines given by F. Gécseg (unpublished result). M. Steinby has called the author's attention to the fact that this result can be employed for minimalization of deterministic frontier-to-root tree transducers. In section 4 we give an algorithm for the minimalization.

A systematic summary of further results concerning frontier-to-root and root-to-frontier tree transducers can be found in [1], where they are called bottom-up and top-down tree transducers, respectively.

2. Notions and notations

Let $X=\left\{x_{1}, \ldots, x_{n}, \ldots\right\}, Y=\left\{y_{1}, \ldots, y_{m}, \ldots\right\}$ and $Z=\left\{z_{1}, \ldots, z_{k}, \ldots\right\}$ be countable sets of variables kept fix in this paper. Denote by X_{n} the subset $\left\{x_{1}, \ldots, x_{n}\right\}$ of X. Consider a nonvoid set F and a mapping v of F into the set of all nonnegative integers. The pair (F, v) is called a type. Then the set $T_{F}(X)$ of polynomial symbols over X of type F is defined in the following way:
(a) for each $x(x \in X), x \in T_{F}(X)$,
(b) if $f \in F, v(f)=k(\geqq 0)$, and $p_{1}, \ldots, p_{k} \in T_{F}(X)$ then $f\left(p_{1}, \ldots, p_{k}\right) \in T_{F}(X)$,
(c) the polynomial symbols over X of type F are those and only those which we get from (a) and (b) in finite number of steps.
Now we define the depth $d(p)$ of $p \in T_{F}(X)$ as follows:
(a) if $p=x(x \in X)$ then $d(p)=0$,
(b) if $p=f(f \in F)$ and $v(f)=0$ then $d(p)=0$,
(c) if $p=f\left(p_{1}, \ldots, p_{k}\right) \quad(v(f)=k>0)$ then $d(p)=\max \left(d\left(p_{i}\right) \mid i=1, \ldots, k\right)+1$.

In the literature elements of $T_{F}(X)$ are called trees, or, in a more detailed form, F-trees.

Next we define the frontier $\mathrm{fr}(p)$ of a tree $p \in T_{F}(X)$ in the following way:
(a) if $p=x \quad(x \in X)$ then $\operatorname{fr}(p)=x$,
(b) if $p=f\left(p_{1}, \ldots, p_{k}\right)(v(f)=k)$ then $\mathrm{fr}(p)=\operatorname{fr}\left(p_{1}\right) \ldots \mathrm{fr}\left(p_{k}\right)$.

We notice that if $p=f$ and $v(f)=0$, then $\operatorname{fr}(p)=\lambda$, where λ denotes the empty word over X.

We can define the set $\operatorname{sub}(p)$ of subtrees of $p \in T_{F}(X)$ as follows:
(a) if " $p=x \quad(x \in X)$ then $\operatorname{sub}(p)=\{x\}$,
(b) if $p=f\left(p_{1}, \ldots, p_{k}\right) \quad(v(f)=k)$ then

$$
\operatorname{sub}(p)=\bigcup\left(\operatorname{sub}\left(p_{i}\right) \mid i=1, \ldots, k\right) \cup\{p\}
$$

Let $\overline{\operatorname{sub}}(p)=\operatorname{sub}(p) \backslash\{p\}$ be the set of proper subtrees of a tree $p \in T_{F}(X)$.
Next we define the concept of a substitution. Let $p \in T_{F}\left(X_{n}\right)$ be an arbitrary tree and $T_{1}, \ldots, T_{n} \subseteq T_{F}\left(X_{n}\right)$. Then $p\left[T_{1} \rightarrow x_{1}, \ldots, T_{n} \rightarrow x_{n}\right]$ is the set of trees obtained by replacing every occurrence of x_{1}, \ldots, x_{n} by a tree in T_{1}, \ldots, T_{n}, respectively. Formally,
(a) if $p=x_{i}\left(x_{i} \in X_{n}\right)$ then $p\left[T_{1} \rightarrow x_{1}, \ldots, T_{n} \rightarrow x_{n}\right]=T_{i}$,
(b) if $p=f\left(p_{1}, \ldots, p_{k}\right) \quad(v(f)=k)$ then $p\left[T_{1} \rightarrow x_{1}, \ldots, T_{n} \rightarrow x_{n}\right]=$ $=\left\{f\left(\bar{p}_{1}, \ldots, \bar{p}_{k}\right) \mid \bar{p}_{i} \in p_{i}\left[T_{1} \rightarrow x_{1}, \ldots, T_{n} \rightarrow x_{n}\right], i=1, \ldots, k\right\}$.

Let $T_{1}, T_{2} \subseteq T_{F}\left(X_{n}\right)$ be arbitrary subsets and $x_{i} \in X_{n}$. Then the x_{i}-product $T_{1} \cdot x_{i} T_{2}$ of T_{1} by T_{2} is the set of trees which can be obtained by replacing every occurrence of x_{i} in some tree from T_{2} by a tree in T_{1}.

Let $T_{1}^{0, x_{i}}=\left\{x_{i}\right\}$ and for every $k>0$

$$
T_{1}^{k, x_{i}}=T_{1}^{k-1, x_{i}} \cdot x_{i} T_{1}
$$

Obviously,
$T_{1} \cdot x_{i} T_{2}=\left\{p\left[\left\{x_{1}\right\} \rightarrow x_{1}, \ldots,\left\{x_{i-1}\right\} \rightarrow x_{i-1}, T_{1} \rightarrow x_{i},\left\{x_{i+1}\right\} \rightarrow x_{i+1}, \ldots,\left\{x_{n}\right\} \rightarrow x_{n}\right] \mid p \in T_{2}\right\}$.
Let us note that a singleton will also be denoted by its element.
Let (F, v) and (G, μ) be fixed finite types. Moreover, let A be a finite set of states.

A frontier-to-root rewriting (FR) rule is determined by a triple of the following two forms:
(a) (x, a, q), where $x \in X, \quad a \in A$ and $q \in T_{G}(Y)$,
(b) $\left(f\left(\left(a_{1}, z_{1}\right), \ldots,\left(a_{k}, z_{k}\right)\right), a, q\right)$, where $f \in F, v(f)=k$, $\left(a_{i}, z_{i}\right) \in A \times\left\{z_{i}\right\} \quad(i=1, \ldots, k), \quad a \in A$ and $q \in T_{G}\left(Y \| Z_{k}\right)$.
In the sequel we write the FR rules in the form $x \rightarrow a q$ and $f\left(a_{1} z_{1}, \ldots, a_{k} z_{k}\right) \rightarrow a q$, respectively.

A root-to-frontier rewriting (RF) rule is given by a triple of the following forms:
(a) (a, x, q) where $a \in A, \quad x \in X$ and $q \in T_{G}(Y)$,
(b) $\left(a, f\left(z_{1}, \ldots, z_{k}\right), q\right)$ where $a \in A, f \in F, v(f)=k$ and $q \in T_{G}\left(Y \cup A \times Z_{k}\right)$. Further on we write the RF rules in the form $a x \rightarrow q$ and $a f\left(z_{1}, \ldots, z_{k}\right) \rightarrow q$, respectively.

By a frontier-to-root tree (FRT) transducer we mean a system $\mathfrak{A}=\left(F, A, G, A^{\prime}, \Sigma\right)$, where A^{\prime} is a subset of A called the set of final states and Σ is a finite set of FR rules. Since Σ is finite thus there is a number n such that the set of symbols x, for which
there exists a rule in Σ with left hand side x, is a subset of X_{n}. Similarly, there exists a number m such that right hand sides of rules from Σ get into $A \times T_{G}\left(Y_{m} \cup Z\right)$. Then we can restrict ourselves to X_{n} and Y_{m}.

For each $a \in A$ and $p \in T_{F}\left(X_{n}\right)$, the set of all a-translations of p, denoted by $\mathfrak{M}_{a}(p)$, is defined as follows:
(a) if $p=x_{i}(1 \leqq i \leqq n)$, then $\mathfrak{N}_{a}(p)=\left\{q \mid x_{i} \rightarrow a q \in \Sigma\right\}$,
(b) if $p=f\left(p_{1}, \ldots, p_{k}\right) \quad(v(f)=k)$ then

$$
\mathfrak{H}_{a}(p)=\left\{q \mid f\left(a_{1} z_{1}, \ldots, a_{k} z_{k}\right) \rightarrow a \bar{q} \in \Sigma, q \in \bar{q}\left[\mathfrak{U}_{a_{1}}\left(p_{1}\right) \rightarrow z_{1}, \ldots, \mathfrak{V}_{a_{k}}\left(p_{k}\right) \rightarrow z_{k}\right]\right\}
$$

An FRT transducer \mathfrak{H} is deterministic (DFRT transducer) if
(a) for all $x_{i} \in X_{n}$, there is at most one rule with left hand side x_{i},
(b) for all $f \in F$ and $a_{1}, \ldots, a_{k} \in A$, there is at most one rule with left hand side $f\left(a_{1} z_{1}, \ldots, a_{k} z_{k}\right)$.
By a root-to-frontier tree (RFT) transducer we mean a system $\mathfrak{U}=\left(F, A, G, A^{\prime}, \Sigma\right)$, where $A^{\prime}(\subseteq A)$ is the set of initial states and Σ is a finite set of RF rules. Similarly, in this case we can be restricted to X_{n} and Y_{m} for some n and m.

For each $a \in A$ and $p \in T_{F}\left(X_{n}\right)$, the set of all a-translations of p, denoted by $\mathfrak{U}_{a}(p)$, is defined as follows:
(a) if $p=x_{i} \quad(1 \leqq i \leqq n)$ then $\mathfrak{N}_{a}(p)=\left\{q \mid a x_{i} \rightarrow q \in \Sigma\right\}$,
(b) if $p=f\left(p_{1}, \ldots, p_{k}\right) \quad(v(f)=k)$ then

$$
\mathfrak{N}_{a}(p)=\left\{q \mid a f\left(z_{1}, \ldots, z_{k}\right) \rightarrow \bar{q}\left(\ldots, \bar{a} z_{i}, \ldots\right) \in \Sigma, q \in \bar{q}\left[\ldots, \mathscr{U}_{\bar{a}}\left(p_{i}\right) \rightarrow \bar{a} z_{i}, \ldots\right]\right\} .
$$

An RFT transducer \mathfrak{Y} is deterministic (DRFT transducer) if
(a) for all $x_{i} \in X_{n}$ and $a \in A$, there is at most one rule with left hand side $a x_{i}$,
(b) for all $f \in F(v(f)=k)$ and $a \in A$, there is at most one rule with left hand side $\mathfrak{a} f\left(z_{1}, \ldots, z_{k}\right)$,
(c) A^{\prime} is a singleton.

Let $\mathfrak{U}=\left(F, A, G, A^{\prime}, \Sigma\right)$ be a FRT (RFT) transducer and $p \in T_{F}\left(X_{n}\right)$. The translations of p induced by \mathfrak{H}, denoted by $\mathfrak{H}(p)$, is the set $\cup\left(\mathfrak{H}_{a}(p) \mid a \in A^{\prime}\right)$.

We define the transformation induced by \mathfrak{U} to be the relation $\left\{(p, q) \mid p \in T_{F}\left(X_{n}\right)\right.$, $q \in \mathfrak{N}(p)\}$ from $T_{F}\left(X_{n}\right)$ into $T_{G}\left(Y_{m}\right)$.

If \mathfrak{A} is a deterministic FRT (RFT) transducer, then for each $p \in T_{F}\left(X_{n}\right)$ at most one element is in $\mathfrak{N}(p)$. Therefore, the transformation induced by \mathfrak{A} is a (partial) mapping from $T_{F}\left(X_{n}\right)$ into $T_{G}\left(Y_{m}\right)$, and it is denoted by \mathfrak{N}, too. This mapping is called the mapping induced by \mathfrak{N}.

Let $\mathfrak{M}=\left(F, A, G, A^{\prime} \Sigma_{A}\right)$ and $\mathfrak{B}=\left(F, B, G, B^{\prime}, \Sigma_{\mathfrak{B}}\right)$ be FRT (RFT) transducers. We say that \mathfrak{A} and \mathfrak{B} are equivalent if and only if \mathfrak{A} and \mathfrak{B} induce the same transformation. The FRT (RFT) transducer \mathfrak{A} is minimal if and only if for all FRT (RFT) transducer $\mathbb{C}=\left(F, C, G, C^{\prime}, \Sigma_{C}\right)$ equivalent to $\mathfrak{A l},|A| \leqq|C|$ holds.

We say that \mathfrak{P} is a minimal transducer belonging to \mathfrak{B} if and only if \mathfrak{O} and \mathfrak{B} are equivalent and \mathfrak{G} is minimal.

3. The equivalence of deterministic frontier-to-root tree transducers

Let $\mathfrak{A}=\left(F, A, G, A^{\prime}, \Sigma_{A}\right)$ and $\mathfrak{B}=\left(F, B, G, B^{\prime}, \Sigma_{B}\right)$ be deterministic frontier-toroot tree transducers such that the mappings induced by \mathfrak{A} and \mathfrak{B} are from $T_{F}\left(X_{n}\right)$ into $T_{G}\left(Y_{m}\right)$. Let us construct, for the states $a \in A$ and $b \in B$, two DFRT transducers

$$
\mathfrak{\mathfrak { L } ^ { a }}=\left(F, A, B, A^{\prime}, \Sigma_{A} \cup\{\# \rightarrow a \#\}\right)
$$

and

$$
\mathfrak{B}^{b}=\left(F, B, G, B^{\prime}, \Sigma_{B} \cup\{\# \rightarrow b \#\}\right) .
$$

Then \mathfrak{Y}^{a} and \mathfrak{B}^{b} induce mappings from $T_{F}\left(X_{n} \cup\{\#\}\right)$ into $T_{G}\left(Y_{m} \cup\{\#\}\right)$.
We define the \#-depth $\bar{d}(p)$ of a tree $p \in T_{F}\left(X_{n}\right)$ in the following way:
(a) if $p=x_{i}(1 \leqq i \leqq n)$ then $d(p)$ is undefined,
(b) if $p=\#$ then $d(p)=0$,
(c) if $p=f\left(p_{1}, \ldots ; p_{k}\right)(v(f)=k)$ and $\bar{d}\left(p_{i}\right)(i=1, \ldots, k)$ are undefined then $\bar{d}(p)$ is undefined,
(d) if $p=f\left(p_{1}, \ldots, p_{k}\right)(v(f)=k)$ and one of $\bar{d}\left(p_{i}\right)(1 \leqq i \leqq k)$ is defined, then $\bar{d}(p)=\max \left(d\left(p_{i}\right) \mid \vec{d}\left(p_{i}\right)\right.$ is defined, $\left.1 \leqq i \leqq k\right)+1$.
Let T be the set of all trees $p \in T_{F}\left(X_{n}\right)$ for which both $\mathfrak{H}(p)$ and $\mathfrak{B}(p)$ are defined.
Take a tree $p \in T$ and an arbitrary subtree $\bar{p} \in \operatorname{sub}(p)$. Let $\bar{p} \in T_{F}\left(X_{n} \cup\{\#\}\right)$ be the tree obtained by replacing a fix occurrence of \bar{p} by \#. Obviously, \bar{p} contains exactly one symbol $\#$ on its frontier and $p=\bar{p} \cdot \bar{p}$, where $\bar{p} \cdot \bar{p}$ denotes the \#-product of \vec{p} by \bar{p}. Since $p \in T$, there exist exactly one state of A and B denoted respectively by $A_{\bar{p}}$ and $B_{\bar{p}}$, such that both $\mathfrak{N}_{A_{\bar{p}}}(\bar{p})$ and $\mathfrak{B}_{B_{\bar{p}}}(\bar{p})$ are defined.

The following two lemmas hold under these notations.
Lemma 1. For each $p \in T$ and $\bar{p} \in \operatorname{sub}(p)$,

$$
\mathfrak{U}(p)=\mathfrak{Q}_{\boldsymbol{A}_{\bar{p}}}(\bar{p}) \cdot \mathfrak{V}^{\boldsymbol{A}_{\bar{p}}}(\bar{p})
$$

and

$$
\mathfrak{B}(p)=\mathfrak{B}_{B_{\bar{p}}}(\bar{p}) \cdot \mathfrak{B}^{B_{\bar{p}}}(\bar{p})
$$

hold.
Proof is obvious.
Next let $|A|=M$ and $|B|=N$.
Lemma 2. Let $p \in T$ be an arbitrary tree and $\bar{p} \in \operatorname{sub}(p)$. Then there exists a tree $t \in T_{F}\left(X_{n} \cup\{\#\}\right)$ containing exactly one symbol \# on its frontier such that $\bar{d}(t)<M N, d(t)<2 M N-1$ and $\bar{p} \cdot t \in T$.

Proof. First we give a tree \bar{t}, for which $\bar{d}(\bar{t})<M N$. Construct a sequence $t_{1}, \ldots, t_{s}, \ldots$ of trees as follows: Set $t_{0}=\bar{p}$. Then consider the sequence q_{0}, \ldots, q_{t} of maximal length, for which $q_{0}=t_{s}, q_{l}=\#$ and $q_{i} \in \operatorname{sub}\left(q_{i-1}\right)(i=1, \ldots, l)$. If $l<M N$ then $\bar{d}\left(t_{s}\right)<M N$, and in this case let $\bar{t}=t_{s}$. Otherwise, we can find two indices j and k such that $0 \leqq j<k \leqq l$ and $A_{q_{j}}=A_{q_{k}}, B_{q_{j}}=B_{q_{k}}$. Then let t_{s+1} be the tree obtained from t_{s} by replacing the subtree q_{j} in t_{s} by q_{k}. It is clear that $d\left(t_{s+1}\right)<d\left(t_{s}\right)$. Thus, continuing this process in a finite number of steps we arrive at the desired tree \bar{t}. If $d(\bar{t})<2 M N-1$ then let $t=\bar{t}$. In the opposite case there exists a sequence q_{0}, \ldots, q_{t} of subtrees of \bar{t} with $l \geqq M N$, \#も $\operatorname{sub}\left(q_{0}\right), q_{l} \in X_{n}$ and $q_{i} \in \operatorname{sub}\left(q_{i-1}\right)(i=1, \ldots, l)$. We construct a tree \bar{t} from \bar{t} by means of the sequence q_{0}, \ldots, q_{i} in the same way as \bar{i} has been constructed from \vec{p}. The tree \bar{i} contains less occurrences of symbols from F than \bar{t} does. It follows that the procedure can be continued till the depth of the resulting tree is not less than $2 M N-1$. The constructed tree satisfies the conclusions of Lemma 2.

Notice that if the frontier of $\mathfrak{M}^{A \bar{p}}(\bar{p})$ contains the symbol \#, then it occurs in the frontier of $\mathfrak{Q}^{A \bar{p}}(t)$. Similar statement is valid for $\mathfrak{B}^{B \bar{p}}(\bar{p})$ and $\mathfrak{B}^{B \bar{p}}(t)$.

Lemma 3. Let $p \in T$ and $d(p) \geqq 4 M N$. Then there exist trees $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6} \in$ $\in T_{F}\left(X_{n} \cup\{\#\}\right)$ such that $p_{2}, p_{3}, p_{4}, p_{5}, p_{6}$ contain exactly one symbol \# in their frontiers. Moreover, $p=p_{1} \cdot p_{2}: p_{3} \cdot p_{4} \cdot p_{5} \cdot p_{6}, \quad d\left(p_{i}\right) \geqq 1 \quad(i=2,3,4,5) \quad$ and $d\left(p_{1} \cdot p_{2} \cdot p_{3} \cdot p_{4} \cdot p_{5}\right) \leqq 4 M N$. Finally, the following equations hold:

$$
\begin{gathered}
A_{p_{1}}=A_{\left(p_{1} \cdot p_{2}\right)}=A_{\left(p_{1} \cdot p_{2} \cdot p_{3}\right)}=A_{\left(p_{1} \cdot p_{2} \cdot p_{3} \cdot p_{4}\right)}=A_{\left(p_{1} \cdot p_{2} \cdot p_{3} \cdot p_{4} \cdot p_{5}\right)}=a, \\
B_{p_{1}}=B_{\left(p_{1} \cdot p_{2}\right)}=B_{\left(p_{1} \cdot p_{2} \cdot p_{3}\right)}=B_{\left(p_{1} \cdot p_{2} \cdot p_{3} \cdot p_{4}\right)}=B_{\left(p_{1} \cdot p_{2} \cdot p_{3} \cdot p_{4} \cdot p_{5}\right)}=b, \\
\quad \mathfrak{H}(p)=\mathfrak{A}_{a}\left(p_{1}\right) \cdot \mathfrak{G}_{a}^{a}\left(p_{2}\right) \cdot \mathfrak{Q}_{a}^{a}\left(p_{3}\right) \cdot \mathfrak{V}_{a}^{a}\left(p_{4}\right) \cdot \mathfrak{H}_{a}^{a}\left(p_{5}\right) \cdot \mathfrak{Q}^{a}\left(p_{6}\right), \\
\mathfrak{B}(p)=\mathfrak{B}_{b}\left(p_{1}\right) \cdot \mathfrak{B}_{b}^{b}\left(p_{2}\right) \cdot \mathfrak{B}_{b}^{b}\left(p_{3}\right) \cdot \mathfrak{B}_{b}^{b}\left(p_{4}\right) \cdot \mathfrak{B}_{b}^{b}\left(p_{5}\right) \cdot \mathfrak{B}^{b}\left(p_{6}\right) .
\end{gathered}
$$

Proof. Let \bar{p} be an arbitrary subtree of p with depth $4 M N$. Then there exists a sequence $q_{0}, \ldots, q_{4 M N}$ of trees with $q_{0}=\bar{p}$ and $q_{i} \in \overline{\operatorname{sub}}\left(q_{i-1}\right)(i=1, \ldots, 4 M N)$. Consider the pairs of states $\left(A_{q_{i}}, B_{q_{i}}\right)(i=0, \ldots, 4 M N)$. Obviously, there exist indices $j_{1}, j_{2}, j_{3}, j_{4}, j_{5}\left(4 M N \geqq j_{1}>j_{2}>j_{3}>j_{4}>j_{5} \geqq 0\right)$ having the same pairs of states.

Let $p_{1}=q_{j_{1}}$. Construct the tree p_{k} by replacing the subtree $q_{j_{k-1}}$ in the tree $q_{j_{k}}$ by the symbol $\#(k=2,3,4,5)$. Finally, let p_{6} be the tree obtained from p by replacing its subtree $q_{j_{5}}$ by \#. From the construction and Lemma 1, it is clear that the trees $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}$ constructed in this way satisfy the conditions of Lemma 3.

Let $L=\max (d(\mathfrak{A}(p)), d(\mathfrak{B}(p)) \mid p \in T, d(p) \leqq 6 M N)$ and $K=4(L+2) M N$.
Lemma 4. Take a tree $p \in T$. Moreover, let $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6} \in T_{F}\left(X_{n} \cup\{\#\}\right)$ be trees and $a \in A$ and $b \in B$ states satisfying the conditions of Lemma 3. If $\mathfrak{A}(p) \neq \mathfrak{B}(p)$ and $\bar{d}\left(\mathfrak{A}^{a}\left(p_{4} \cdot p_{5} \cdot p_{6}\right)\right)$ is undefined, then there is a tree $\bar{p} \in T$, for which $d(\bar{p})<K$ and $\mathfrak{H}(\bar{p}) \neq \mathfrak{B}(\bar{p})$.

Proof. Let S be the set of trees with minimal depth satisfying the conditions of Lemma 4. Let $p(\in S)$ be a tree which has minimal number of occurrences of symbols from F among all trees in S. Assume that $d(p) \geqq K$.

The \#-depth of the tree $\mathfrak{B}^{b}\left(p_{3} \cdot p_{4} \cdot p_{5} \cdot p_{6}\right)$ is defined and $\vec{d}\left(\mathfrak{B}_{b}^{b}\left(p_{3}\right)\right)>0$, for otherwise

$$
\mathfrak{H}\left(p_{1} \cdot p_{3} \cdot p_{4} \cdot p_{5} \cdot p_{6}\right)=\mathfrak{H}(p) \neq \mathfrak{B}(p)=\mathfrak{B}\left(p_{1} \cdot p_{3} \cdot \dot{p}_{4} \cdot p_{5} \cdot p_{6}\right)
$$

or

$$
\mathfrak{A}\left(p_{1} \cdot p_{2} \cdot p_{4} \cdot p_{5} \cdot p_{6}\right)=\mathfrak{A}(p) \neq \mathfrak{B}(p)=\mathfrak{B}\left(p_{1} \cdot p_{2} \cdot p_{4} \cdot p_{5} \cdot p_{6}\right)
$$

holds, which contradicts the minimality of p. Next we define a tree t, for which

$$
d(t)<3 M N-1 \text { and } d(t)<2 M N-1 .
$$

First we consider the sequence q_{0}, \ldots, q_{l} of subtrees with maximal length for which $q_{0}=p_{4} \cdot p_{5} \cdot p_{6}, q_{l}=\#$ and $q_{i} \in \overline{\operatorname{sub}}\left(q_{i-1}\right)(i=1, \ldots, l)$. Then for each q_{i} there is exactly one state $a_{i} \in A$ such that $\mathfrak{H}_{a_{i}}^{a}\left(q_{i}\right)$ is defined. Let i be the maximal index, for which $\bar{d}\left(\mathfrak{N a}_{a_{i}}^{a}\left(q_{i}\right)\right)$ is undefined. Since $\mathfrak{N}_{a_{0}}^{a}\left(q_{0}\right)=\mathfrak{H}^{a}\left(p_{4} \cdot p_{5} \cdot p_{6}\right), \bar{d}\left(\mathfrak{U}^{a}\left(p_{4} \cdot p_{5} \cdot p_{6}\right)\right)$ is undefined and $\mathfrak{Q}_{a_{l}}^{a}\left(q_{l}\right)=\#$ thus $0 \leqq i \leqq l-1$ holds. Now we consider the tree t_{2} given by Lemma 2 for the tree p and the subtree $p_{1} \cdot p_{2} \cdot p_{3} \cdot q_{i}$. Let $q_{i}=f\left(r_{1}, \ldots, r_{k}\right)$
$(v(f)=k)$. Then there exists an index $j(1 \leqq j \leqq k)$ such that $r_{j}=q_{i+1}$. Let us construct the tree \bar{r}_{j} from r_{j} in exactly that way as the tree \bar{i} has been constructed from the tree \bar{p} in the proof of Lemma 2.

Furthermore, let t_{1} be the tree arising from the tree $f\left(r_{1}, \ldots, r_{j-1}, \bar{r}_{j}, r_{j+1}, \ldots, r_{k}\right)$ in the same way as the tree t has been obtained from the tree \bar{t} in Lemma 2. Let $t=t_{1} \cdot t_{2}$.

Consider the tree $q=p_{1} \cdot p_{3}^{L+1} \cdot t$, where $p_{3}^{L+1}=\left\{p_{3}\right\}^{L+1, \#}$. It is clear that $q \in T$, and

$$
\mathfrak{Q}(q)=\mathfrak{Q}^{a}(t)
$$

and

$$
\mathfrak{B}(q)=\mathfrak{B}_{b}\left(p_{1}\right) \cdot\left(\mathfrak{B}_{b}^{b}\left(p_{3}\right)\right)^{L+1} \cdot \mathfrak{B}^{b}(t)
$$

hold by Lemma 1. Since $d(\mathfrak{H}(q)) \leqq L$ and $d(\mathfrak{B}(q))>L$ thus $\mathfrak{Y}(q) \neq \mathfrak{B}(q)$. But $d(q)<K$, which contradicts the minimality of p.

Lemma 5. Let $p \in T$ be a tree for which $\mathfrak{P}(p) \neq \mathfrak{B}(p)$. Assume that there exist trees $p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}, p_{4}^{\prime}, p_{5}^{\prime}, p_{6}^{\prime} \in T_{F}\left(X_{n} \cup\{\#\}\right)$ and states $a \in A$ and $b \in B$ satisfying the conditions of Lemma 3. If $\bar{d}\left(\mathfrak{U}^{a}\left(p_{4}^{\prime} \cdot p_{5}^{\prime} \cdot p_{6}^{\prime}\right)\right)$ is defined, then there exists a tree $\bar{p} \in T$ such that $d(\bar{p})<K$ and $\mathfrak{H}(\bar{p}) \neq \mathfrak{B}(\bar{p})$.

Proof. Let S be the set of trees with minimal depth satisfying the conditions of Lemma 5. Let $p(\in S)$ be a tree which has minimal number of occurrences of symbols from F among all trees in S. Assume that $d(p) \geqq K$.

Let t be the tree given by Lemma 2 to the tree p and the subtree $p_{1}^{\prime} \cdot p_{2}^{\prime} \cdot p_{3}^{\prime} \cdot p_{4}^{\prime} \cdot p_{5}^{\prime}$. We introduce the following notations:

$$
\begin{gathered}
p_{\mathbf{1}}=p_{1}^{\prime} \cdot p_{2}^{\prime} \cdot p_{3}^{\prime}, \quad p_{2}=p_{4}^{\prime}, \quad p_{3}=p_{5}^{\prime}, \quad p_{4}=p_{6}^{\prime} \\
\mathfrak{U}_{a}\left(p_{1}\right)=q_{1}, \quad \mathfrak{B}_{b}\left(p_{1}\right)=r_{1}, \\
\mathfrak{V}_{a}^{a}\left(p_{2}\right)=q_{2}, \quad \mathfrak{B}_{b}^{b}\left(p_{2}\right)=r_{2}, \\
\mathfrak{U}_{a}^{a}\left(p_{3}\right)=q_{3}, \quad \mathfrak{B}_{b}^{b}\left(p_{3}\right)=r_{3}, \\
\mathfrak{Q}^{a}\left(p_{4}\right)=q_{4}, \quad \mathfrak{B}^{b}\left(p_{4}\right)=r_{4}, \\
\mathfrak{U}^{a}(t)=\bar{q}_{4}, \quad \mathfrak{B}^{b}(t)=\bar{r}_{4} .
\end{gathered}
$$

First let us illustrate the idea of the proof in a special case. Assume that $v(f)=1$ and $\mu(g)=1$ for all $f \in F$ and $g \in G$. Then the DFRT transducers \mathfrak{A} and \mathfrak{B} may be considered as deterministic generalized sequential machines.

In Figure 1 we indicate the trees $p, \mathfrak{O}(p), \mathfrak{B}(p)$. Now let us consider the trees $=p_{1} \cdot p_{2}^{l} \cdot t$ and $\mathfrak{Y}\left(t_{l}\right), \mathfrak{B}\left(t_{i}\right)(l=1, \ldots, L+1)$ (see, Figure 2).

Since $\mathfrak{H}\left(t_{l}\right)=\mathfrak{B}\left(t_{l}\right) \quad(l=1, \ldots, L+1)$, thus Figure 2 shows that the same tree is constructed in two different ways. As it appears from Figure 2, and it can be readily verified, too, $q_{2}=\bar{r}_{2} \cdot \bar{q}_{2}$ and $r_{2}=\bar{q}_{2} \cdot \bar{r}_{2}$. The idea behind the proof of Lemma 5 is similar, but more involved.

The \#-depth of $\mathfrak{B}^{b}\left(p_{4}^{\prime} \cdot p_{5}^{\prime} \cdot p_{6}^{\prime}\right)$ is defined, for otherwise, by Lemma 4, there exists a tree $\bar{p} \in T$, for which $d(\bar{p})<K$ and $\mathfrak{M}(\bar{p}) \neq \mathfrak{B}(\bar{p})$ hold contradicting the minimality of p. Since both $\bar{d}\left(\mathfrak{A}^{a}\left(p_{2} \cdot p_{3} \cdot p_{4}\right)\right)$ and $\bar{d}\left(\mathfrak{B}^{b}\left(p_{2} \cdot p_{3} \cdot p_{4}\right)\right)$ are defined thus all the trees q_{2}, q_{3}, q_{4} and r_{2}, r_{3}, r_{4} contain the symbol \# in their frontiers. Moreover, by the note following Lemma 2, the frontiers of the trees \bar{q}_{4} and \vec{r}_{4} contain it, too.

Fig. 1

Fig. 2
Assume that $\bar{d}\left(q_{2}\right)=\bar{d}\left(r_{2}\right)=0$. Then
and

$$
\mathfrak{H}(p)=q_{1} \cdot q_{3} \cdot q_{4}=\mathfrak{M}\left(p_{1} \cdot p_{3} \cdot p_{4}\right)
$$

$$
\mathfrak{B}(p)=r_{1} \cdot r_{3} \cdot r_{4}=\mathfrak{B}\left(p_{1} \cdot p_{3} \cdot p_{4}\right) .
$$

i.e. $\mathfrak{X}\left(p_{1} \cdot p_{3} \cdot p_{4}\right) \neq \mathfrak{B}\left(p_{1} \cdot p_{3} \cdot p_{4}\right)$, which is a contradiction.

In the same way we obtain that if $\lambda\left(q_{3}\right)=\lambda\left(r_{3}\right)=0$, then $\mathfrak{N l}\left(p_{1} \cdot p_{2} \cdot p_{4}\right) \neq$ $\neq \mathfrak{B}\left(p_{1} \cdot p_{2} \cdot p_{4}\right)$, which is impossible.

Now we consider the trees

$$
t_{l}=p_{1} \cdot p_{2}^{l} \cdot t \quad \text { and } \quad s_{l}=p_{1} \cdot p_{3}^{l} \cdot t \quad(l=0, \ldots, L+1)
$$

By Lemma 1, it follows that

$$
\begin{array}{ll}
\mathfrak{N}\left(t_{l}\right)=q_{1} \cdot q_{2}^{l} \cdot \bar{q}_{4}, & \mathfrak{B}\left(t_{l}\right)=r_{1} \cdot r_{2}^{l} \cdot \bar{r}_{4} \\
\mathfrak{H}\left(s_{l}\right)=q_{1} \cdot q_{3}^{l} \cdot \bar{q}_{4}, & \mathfrak{B}\left(s_{l}\right)=r_{1} \cdot r_{3}^{l} \cdot \bar{r}_{4} \quad(l=0, \ldots, L+1) .
\end{array}
$$

Since $d\left(t_{l}\right), d\left(s_{l}\right)<K$ thus $\mathfrak{H}\left(t_{l}\right)=\mathfrak{B}\left(t_{l}\right)$ and $\mathfrak{A}\left(s_{l}\right)=\mathfrak{B}\left(s_{l}\right)(l=0, \ldots, L+1)$. If exactly one of $d\left(q_{2}\right)$ and $d\left(r_{2}\right)$ is equal to zero, say $\vec{d}\left(q_{2}\right)=0$ and $d\left(r_{2}\right)>0$, then $d\left(\mathfrak{X}\left(t_{L+1}\right)\right)<d\left(\mathfrak{B}\left(t_{L+1}\right)\right)$, consequently, $\mathfrak{X}\left(t_{L+1}\right) \neq \mathfrak{B}\left(t_{L+1}\right)$, which contradicts the minimality of p. It means that the following equalities are true:
and

$$
d\left(\mathfrak{N}\left(t_{1}\right)\right)=\bar{d}\left(\bar{q}_{4}\right)+(l-1) \bar{d}\left(q_{2}\right)+d\left(q_{1} \cdot q_{2}\right)
$$

$$
d\left(\mathfrak{B}\left(t_{l}\right)\right)=\bar{d}\left(\bar{r}_{4}\right)+(l-1) \bar{d}\left(r_{2}\right)+d\left(r_{1} \cdot r_{2}\right) \quad(l=L, L+1)
$$

This implies that $\bar{d}\left(q_{2}\right)=\bar{d}\left(r_{2}\right)>0$. Similarly, we get that $\bar{d}\left(q_{3}\right)=\bar{d}\left(r_{3}\right)>0$.
The tree $\mathfrak{H}\left(t_{L+1}\right)$ is obtained from the tree \bar{q}_{4} by replacing all occurrences of the subtree $\#$ by the tree $q_{1} \cdot q_{2}^{L+1}$, while $\mathfrak{B}\left(t_{L+1}\right)$ is given by replacing all occurrences of $\#$ in \bar{r}_{4} by the tree $r_{1} \cdot r_{2}^{L+1}$.

We have that $d\left(\bar{q}_{4}\right) \leqq L, d\left(\bar{r}_{4}\right) \leqq L$ and $d\left(q_{1} \cdot q_{2}^{L+1}\right)>L, d\left(r_{1} \cdot r_{2}^{L+1}\right)>L$. Thus the equality $\mathfrak{A}\left(t_{L+1}\right)=\mathfrak{B}\left(t_{L+1}\right)$ implies that $r_{1} \cdot r_{2}^{L+1} \in \operatorname{sub}\left(q_{1} \cdot q_{2}^{L+1}\right)$ or $q_{1} \cdot q_{2}^{L+1} \in$ $\in \operatorname{sub}\left(r_{1} \cdot r_{2}^{L+1}\right)$.

Assume that $r_{1} \cdot r_{2}^{L+1} \in \operatorname{sub}\left(q_{1} \cdot q_{2}^{L+1}\right)$. Let j be the minimal number, for which $r_{1} \cdot r_{2}^{L+1} \in \operatorname{sub}\left(q_{1} \cdot q_{2}^{j}\right)$. Since $r_{1} \cdot r_{2}^{L+1} \in \operatorname{sub}\left(q_{1} \cdot q_{2}^{L+1}\right)$ and $d\left(r_{1} \cdot r_{2}^{L+1}\right)>d\left(q_{1} \cdot q_{2}\right)$ thus $2 \leqq j \leqq L+1$.

Let \bar{q}_{2} be the tree obtained from the tree $q_{1} \cdot q_{2}^{j}$ by replacing all occurrences of $r_{1} \cdot r_{2}^{L+1}$ by the symbol \#. Therefore, $r_{1} \cdot r_{2}^{L+1} \cdot \bar{q}_{2}=q_{1} \cdot q_{2}^{j}$ and $r_{1} \cdot r_{2}^{L+1} \notin \operatorname{sub}\left(\bar{q}_{2}\right)$. Since j is minimal, it follows that $r_{1} \cdot r_{2}^{L+1} \notin \operatorname{sub}\left(q_{1} \cdot q_{2}^{j-1}\right)$. On the other hand $r_{1} \cdot r_{2}^{L+1} \cdot \bar{q}_{2}=$ $=q_{1} \cdot q_{2}^{j-1} \cdot q_{2}$ and $r_{1} \cdot r_{2}^{L+1} \notin \operatorname{sub}\left(q_{2}\right)$. Therefore, $q_{1} \cdot q_{2}^{j-1} \in \operatorname{sub}\left(r_{1} \cdot r_{2}^{L+1}\right)$.

Let \vec{r}_{2} be the tree given from $r_{1} \cdot r_{2}^{L+1}$ by replacing all occurrences of $q_{1} \cdot q_{2}^{j-1}$ by the symbol \#. Thus $q_{1} \cdot q_{2}^{j-1} \cdot \bar{r}_{2}=r_{1} \cdot r_{2}^{\mathrm{L}+1}$ and $q_{1} \cdot q_{2}^{j-1} \bigoplus \operatorname{sub}\left(\bar{r}_{2}\right)$. It means that $q_{1} \cdot q_{2}^{j-1} \cdot \bar{r}_{2} \cdot \bar{q}_{2}=q_{1} \cdot q_{2}^{j-1} \cdot q_{2}$.

Next we show that $\dot{q}_{1} \cdot q_{2}^{j-1} \uplus \operatorname{sub}\left(\bar{r}_{2} \cdot \bar{q}_{2}\right)$ holds, too. Indeed, if $q_{1} \cdot q_{2}^{j-1} \in$ $\in \operatorname{sub}\left(\bar{r}_{2} \cdot \bar{q}_{2}\right)$, then $q_{1} \cdot q_{2}^{j-1} \in \operatorname{sub}\left(\bar{q}_{2}\right)$ because of $q_{1} \cdot q_{2}^{j-1} \notin \operatorname{sub}\left(\bar{r}_{2}\right)$ and $\bar{r}_{2} \notin \operatorname{sub}\left(q_{1} \cdot q_{2}^{j-1}\right)$. Thus, in $q_{1} \cdot q_{2}^{j-1} \cdot q_{2}$ there exists a subtree $q_{1} \cdot q_{2}^{j-1}$, which is not a subtree of $r_{1} \cdot r_{2}^{L+1}$. But this is impossible since in this case one can show that $r_{1} \cdot r_{2}^{L+1} \in \operatorname{sub}\left(q_{1} \cdot q_{2}^{j-1}\right)$. Therefore, one have

$$
\bar{r}_{2} \cdot \bar{q}_{2}=q_{2}
$$

Since $\mathfrak{A}\left(t_{L+1}\right)=\mathfrak{B}\left(t_{L+1}\right)$ thus

$$
r_{1} \cdot r_{2}^{L+1} \cdot \bar{r}_{4}=q_{1} \cdot q_{2}^{L+1} \cdot \bar{q}_{4}=q_{1} \cdot q_{2}^{j} \cdot q_{2}^{L+1-j} \cdot \bar{q}_{4}=r_{1} \cdot r_{2}^{L+1} \cdot \bar{q}_{2} \cdot q_{2}^{L+1-j} \cdot \bar{q}_{4}
$$

Furthermore, $r_{1} \cdot r_{2}^{L+1}$ is not a subtree of any of the trees $\bar{q}_{4}, q_{2}, \bar{q}_{2}, \bar{r}_{4}$. Thus the preceding equality implies

$$
\bar{r}_{4}=\bar{q}_{2} \cdot q_{2}^{L+1-j} \cdot \bar{q}_{4} .
$$

We have $\mathfrak{M}\left(t_{0}\right)=\mathfrak{B}\left(t_{0}\right)$. Thus $q_{1} \cdot \bar{q}_{4}=r_{1} \cdot \bar{r}_{4}=r_{1} \cdot \bar{q}_{2} \cdot q_{2}^{L+1-j} \cdot \bar{q}_{4}$. Therefore,

$$
q_{1}=r_{1} \cdot \bar{q}_{2} \cdot q_{2}^{L+1-j}
$$

Using the equality $\mathfrak{H}\left(t_{\mathrm{L}}\right)=\mathfrak{B}\left(t_{1}\right)$ we get

$$
\begin{gathered}
q_{1} \cdot q_{2} \cdot \bar{q}_{4}=r_{1} \cdot \bar{q}_{2} \cdot\left(\bar{r}_{2} \cdot \bar{q}_{2}\right)^{L+1-j} \cdot\left(\bar{r}_{2} \cdot \bar{q}_{2}\right) \cdot \bar{q}_{4}, \\
r_{1} \cdot r_{2} \cdot \bar{r}_{4}=r_{1} \cdot r_{2} \cdot \bar{q}_{2} \cdot\left(\bar{r}_{2} \cdot \bar{q}_{2}\right)^{L+1-j} \cdot \bar{q}_{4} .
\end{gathered}
$$

This implies that $r_{1} \cdot \bar{q}_{2} \cdot \bar{r}_{2}=r_{1} \cdot r_{2}$. Furthermore, from the equalities $\mathfrak{H}\left(t_{1}\right)=\mathfrak{B}\left(t_{1}\right)$ $(l=0, \ldots, L+1)$, by induction, we obtain $r_{1} \cdot\left(\bar{q}_{2} \cdot \bar{r}_{2}\right)^{L+1}=r_{1} \cdot\left(\bar{q}_{2} \cdot \bar{r}_{2}\right)^{L} \cdot r_{2}$. Since $2 \leqq d\left(\mathfrak{H}\left(p_{1} \cdot p_{2} \cdot p_{3} \cdot t\right)\right) \leqq L$, thus $d\left(r_{1} \cdot\left(\bar{q}_{2} \cdot \bar{r}_{2}\right)^{L}\right)>d\left(r_{1} \cdot \bar{q}_{2} \cdot \bar{r}_{2}\right)=d\left(r_{1} \cdot r_{2}\right) \geqq d\left(r_{2}\right)$. Therefore, $r_{1} \cdot\left(\bar{q}_{2} \cdot \bar{r}_{2}\right)^{L} f \operatorname{sub}\left(r_{2}\right)$, implying

$$
\bar{q}_{2} \cdot \bar{r}_{2}=r_{2}
$$

Now consider the trees $s_{l}=p_{1} \cdot p_{3}^{l} \cdot t(l=0, \ldots, L+1)$. Then $r_{1} \cdot r_{3}^{L+1} \in \operatorname{sub}\left(q_{1} \cdot q_{3}^{L+1}\right)$ because of $\bar{r}_{4}=\bar{q}_{2} \cdot q_{2}^{L+1-j} \cdot \bar{q}_{4}$. In the above way we get that there are trees \bar{q}_{3}, \bar{r}_{3} and a number $i(2 \leqq i \leqq L+1)$ such that

$$
\begin{aligned}
& q_{1}=r_{1} \cdot \bar{q}_{3} \cdot q_{3}^{L+1-i} \\
& q_{3}=\bar{r}_{3} \cdot \bar{q}_{3} \\
& r_{3}=\bar{q}_{3} \cdot \bar{r}_{3}
\end{aligned}
$$

Since p is minimal thus

$$
\mathfrak{G}\left(p_{1} \cdot p_{4}\right)=\mathfrak{B}\left(p_{1} \cdot p_{4}\right) \quad \text { and } \quad \mathfrak{H}\left(p_{1} \cdot p_{2} \cdot p_{4}\right)=\mathfrak{B}\left(p_{1} \cdot p_{2} \cdot p_{4}\right)
$$

i.e.,

$$
q_{1} \cdot q_{4}=r_{1} \cdot r_{4} \quad \text { and } \quad q_{1} \cdot q_{2} \cdot q_{4}=r_{1} \cdot r_{2} \cdot r_{4}
$$

The first equality implies that $r_{1} \cdot r_{4}=r_{1} \cdot \bar{q}_{2} \cdot\left(\bar{r}_{2} \cdot \bar{q}_{2}\right)^{L+1-j} \cdot q_{4}$. Consequently, r_{4} can differ from $\bar{q}_{2} \cdot\left(\bar{r}_{2} \cdot \bar{q}_{2}\right)^{L+1-j} \cdot q_{4}$ in the tree r_{1} only, i.e. whenever $\#$ is a subtree in one of them then the corresponding subtree in the other one should be r_{1} or \#. By the above second equality we get

$$
r_{1} \cdot \bar{q}_{2} \cdot \bar{r}_{2} \cdot r_{4}=r_{1} \cdot \bar{q}_{2} \cdot\left(\bar{r}_{2} \cdot \bar{q}_{2}\right)^{L+1-j} \cdot\left(\bar{r}_{2} \cdot \bar{q}_{2}\right) \cdot q_{4}
$$

Thus r_{4} and $\bar{q}_{2} \cdot\left(\bar{r}_{2} \cdot \bar{q}_{2}\right)^{L+1-j} \cdot q_{4}$ can differ only in $r_{1} \cdot r_{2}$. Thus, by $r_{1} \cdot r_{2} \neq r_{1}$, we have

$$
r_{4}=\bar{q}_{2} \cdot\left(\bar{r}_{2} \cdot \bar{q}_{2}\right)^{L+1-j} \cdot q_{4} .
$$

Similarly, using the trees $p_{1} \cdot p_{4}$ and $p_{1} \cdot p_{3} \cdot p_{4}$, we obtain

$$
r_{4}=\bar{q}_{3} \cdot\left(\bar{r}_{3} \cdot \bar{q}_{3}\right)^{L+1-i} \cdot q_{4} .
$$

Therefore, $\bar{q}_{2} \cdot\left(\bar{r}_{2} \cdot \bar{q}_{2}\right)^{L+1-j} \cdot q_{4}=\bar{q}_{3} \cdot\left(\bar{r}_{3} \cdot \bar{q}_{3}\right)^{L+1-i} \cdot q_{4}$ implying

$$
\bar{q}_{2} \cdot\left(\bar{r}_{2} \cdot \dot{\bar{q}}_{2}\right)^{L+1-j}=\bar{q}_{3} \cdot\left(\bar{r}_{3} \cdot \bar{q}_{3}\right)^{L+1-i}
$$

Finally, using the above equalities, we get

$$
\begin{gathered}
q_{1} \cdot q_{2} \cdot q_{3} \cdot q_{4}=r_{1} \cdot \bar{q}_{2} \cdot\left(\bar{r}_{2} \cdot \bar{q}_{2}\right)^{L+1-j} \cdot\left(\bar{r}_{2} \cdot \bar{q}_{2}\right) \cdot q_{3} \cdot q_{4}= \\
=r_{1} \cdot\left(\bar{q}_{2} \cdot \bar{r}_{2}\right) \cdot \bar{q}_{2} \cdot\left(\bar{r}_{2} \cdot \bar{q}_{2}\right)^{L+1-j} \cdot q_{3} \cdot q_{4}=r_{1} \cdot r_{2} \cdot \bar{q}_{3} \cdot\left(\bar{r}_{3} \cdot \bar{q}_{3}\right)^{L+1-i} \cdot\left(\bar{r}_{3} \cdot \bar{q}_{3}\right) \cdot q_{4}= \\
=r_{1} \cdot r_{2} \cdot\left(\bar{q}_{3} \cdot \bar{r}_{3}\right) \cdot \bar{q}_{3} \cdot\left(\bar{r}_{3} \cdot \bar{q}_{3}\right)^{L+1-i} \cdot q_{4}=r_{1} \cdot r_{2} \cdot r_{3} \cdot r_{4},
\end{gathered}
$$

i.e., $\mathfrak{V r}(p)=\mathfrak{B}(p)$ contradicting our assumption.

Similarly, we arrive at a contradiction by assuming

$$
q_{1} \cdot q_{2}^{L+1} \in \operatorname{sub}\left(r_{1} \cdot r_{2}^{L+1}\right)
$$

This means that the depth of p is smaller than K ending the proof of this lemma.

Theorem 6. The equivalence problem of deterministic frontier-to-root tree transducers is effectively solvable.

Proof. Consider two arbitrary DFRT transducers $\mathfrak{A}=\left(F, A, G, A^{\prime}, \Sigma_{A}\right)$ and $\mathfrak{B}=\left(F, B, G, B^{\prime}, \Sigma_{B}\right)$. The set of all trees p, for which $\mathfrak{A}(p)$ and $\mathfrak{B}(p)$ are defined, is a regular set of trees, which can be given effectively (see, Corollary 3.12. in [1]). Thus, the problem whether or not the domains of mappings induced by \mathfrak{A} and \mathfrak{B} are equal is solvable. If they are not equal, then the transducers are not equivalent. In the opposite case, by Lemmas 4 and 5 it is sufficient to check whether their translations coincide on a finite number of trees. This ends the proof of Theorem 6.

Finally, we present a result concerning the equivalence problem in a special class of deterministic root-to-frontier tree transducers.

Let \mathfrak{M} be the set of deterministic root-to-frontier tree (DRFT) transducers $\mathfrak{U}=\left(F, A, G, A^{\prime}, \Sigma\right)$ with the following property: if $a f\left(z_{1}, \ldots, z_{k}\right) \rightarrow q$ is in $\Sigma(v(f)=$ $=k, k>0)$, then there are states $a_{1}, \ldots, a_{k} \in A$ such that $q \in T_{G}\left(Y \cup\left\{\left(a_{i}, z_{i}\right) \mid i=1, \ldots, k\right\}\right)$. For such DRFT transducers one can prove Lemmas $1-5$. Thus we have

Theorem 7. The equivalence problem of DRFT transducers in \mathfrak{M} is effectively solvable.

4. Minimalization of DFRT transducers

Take a DFRT transducer $\mathfrak{H}=\left(F, A, G, A^{\prime}, \Sigma_{A}\right)$ such that the mapping induced by \mathfrak{A} is from $T_{F}\left(X_{n}\right)$ into $T_{G}\left(Y_{m}\right)$. Moreover, let p be an arbitrary tree, for which $\mathfrak{U}(p)$ is defined, i.e., $p \in \mathfrak{A}^{-1}\left(T_{G}\left(Y_{m}\right)\right)$. In this case for any $\bar{p} \in \operatorname{sub}(p)$ of the form $\bar{p}=f\left(p_{1}, \ldots, p_{k}\right)$ or $\bar{p}=x_{i}$, there is exactly one rule in Σ_{A}, denoted by $\sigma(\bar{p})$ such that if $\sigma(\tilde{p})=f\left(a_{1} z_{1}, \ldots, a_{k} z_{k}\right) \rightarrow A_{\bar{p}} q$ then

$$
\mathfrak{U}_{A_{\bar{p}}}(\bar{p})=q\left[\mathfrak{U}_{a_{1}}\left(p_{1}\right) \rightarrow z_{1}, \ldots, \mathfrak{V}_{a_{k}}\left(p_{k}\right) \rightarrow z_{k}\right],
$$

and

$$
\mathfrak{N 1}_{A_{\bar{p}}}(\bar{p})=q \quad \text { if } \quad \sigma(\bar{p})=x_{i} \rightarrow A_{\bar{p}} q .
$$

Lemma 8. Let $p \in \mathfrak{H}^{-1}\left(T_{G}\left(Y_{m}\right)\right)$ and $\bar{p} \in \operatorname{sub}(p)$ be arbitrary. Then there exist a $p^{\prime} \in \mathfrak{H}^{-1}\left(T_{G}\left(Y_{m}\right)\right)$ and a $\bar{p}^{\prime} \in \operatorname{sub}\left(p^{\prime}\right)$, such that $\sigma(\bar{p})=\sigma\left(\bar{p}^{\prime}\right)$ and $d\left(p^{\prime}\right)<2|A|$.

Proof. Let \bar{p} denote the tree obtained by replacing the subtree \bar{p} in p by \#. Let \bar{p}^{\prime} be the tree given by Lemma 2 to the tree p and its subtree \bar{p}. Assume, that $\bar{p}=f\left(p_{1}, \ldots, p_{k}\right)$. Let us construct the tree \bar{p}_{i} from $p_{i}(i=1, \ldots, k)$ in exactly that way as the tree \bar{t} has been constructed from the tree \bar{p} in the proof of Lemma 2 $(i=1, \ldots, k)$. Let $\bar{p}^{\prime}=f\left(\bar{p}_{1}, \ldots, \bar{p}_{k}\right)$ and $p^{\prime}=\bar{p}^{\prime} \cdot \bar{p}^{\prime}$. From the construction it is clear, that the trees p^{\prime} and \bar{p}^{\prime} satisfy the conditions of Lemma 8. A similar argument can be used in the case $\bar{p}=x_{i}$.

Let $L=\max \left(d(\mathfrak{H}(p))\left|p \in \mathfrak{H}^{-1}\left(T_{G}\left(Y_{m}\right)\right), d(p)<2\right| A \mid\right)$.
Lemma 9. There exists a minimal DFRT transducer $\mathfrak{B}=\left(F, B, G, B^{\prime}, \Sigma_{B}\right)$ belonging to \mathfrak{H} such that if $x_{i} \rightarrow b q$ or $f\left(b_{1} z_{1}, \ldots, b_{k} z_{k}\right) \rightarrow b q$ is in Σ_{B} then $d(q) \leqq L$.

Proof. Let \mathfrak{B} be a minimal DFRT transducer belonging to \mathfrak{H}. Assume that there exist $p \in \mathfrak{B}^{-1}\left(T_{G}\left(Y_{m}\right)\right)$ and $\bar{p} \in \operatorname{sub}(p)$ such that the depth of the right hand side of
$\sigma(\bar{p})$ is greater, than L. We show that $\bar{d}(\mathfrak{B}(\bar{p}))$ is undefined, where \bar{p} is obtained by replacing \bar{p} in p by \#.

Indeed, by Lemma 8, there exist trees p^{\prime} and $\bar{p}^{\prime}, \bar{p}^{\prime}$, for which $p^{\prime}=\bar{p}^{\prime} \cdot \bar{p}^{\prime}, \sigma(\bar{p})=$ $=\sigma\left(\bar{p}^{\prime}\right), p^{\prime} \in \mathfrak{B}^{-1}\left(T_{G}\left(Y_{m}\right)\right)$ and $d\left(p^{\prime}\right)<2|B| \leqq 2|A|$.

By the note following Lemma 2, if $\bar{d}(\mathfrak{B}(\bar{p}))$ is defined then so is $d\left(\mathfrak{B}\left(\bar{p}^{\prime}\right)\right)$. But $d\left(\mathfrak{B}\left(p^{\prime}\right)\right) \geqq \bar{d}\left(\mathfrak{B}\left(\overline{\bar{p}}^{\prime}\right)\right)+d\left(\mathfrak{B}\left(\bar{p}^{\prime}\right)\right)$. Furthermore, by our assumption $d\left(\mathfrak{B}\left(\bar{p}^{\prime}\right)\right)>L$. Thus $d\left(\mathfrak{B}\left(p^{\prime}\right)\right)>L$ which is a contradiction since $\mathfrak{B}\left(p^{\prime}\right)=\mathfrak{A}\left(p^{\prime}\right)$ and $d\left(p^{\prime}\right)<2|B| \leqq$ $\leqq 2|A|$.

Now for all $\sigma=f\left(b_{1} z_{1}, \ldots, b_{k} z_{k}\right) \rightarrow b q$ and $\sigma=x_{i} \rightarrow b q$ with $d(q)>L$, let us replace σ in Σ_{B} by $\bar{\sigma}=f\left(b_{1} z_{1}, \ldots, b_{k} z_{k}\right) \rightarrow b y_{1}$ and $\bar{\sigma}=x_{i} \rightarrow b y_{1}$, respectively, and denote the resulting set of rules by $\bar{\Sigma}_{B}$. Then the DFRT transducer $\overline{\mathfrak{B}}=\left(F, B, G, B^{\prime}, \bar{\Sigma}_{B}\right)$ is equivalent to \mathfrak{B}, completing the proof of Lemma 9.

Theorem 10. There exists an algorithm for determining to any DFRT transducer $\mathfrak{H}=\left(F, A, G, A^{\prime}, \Sigma_{A}\right)$ a minimal DFRT transducer belonging to \mathfrak{H}.

Proof. Let $|A|=M$ and $L=\max \left(d(\mathscr{H}(p)) \mid p \in \mathcal{U}^{-1}\left(T_{G}(Y)\right), d(p)<2 M\right)$. Then for a minimal DFRT transducer belonging to \mathfrak{N}, it holds that the number of its states is less than or equal to M. Furthermore, by Lemma 9, we can assume that the depths of right hand sides of rules of a minimal DFRT transducer belonging to $\mathfrak{Q C}$ are less than or equal to L. But there is only a finite number of DFRT transducers satisfying these two assumptions. This means that it is enough to check only for finitely many DFRT transducers whether they are equivalent to \mathfrak{N}.

After determining all such DFRT transducers equivalent to \mathfrak{Y}, we choose one of them with minimal number of states.

References

[1] Engelfriet, J., Bottom-up and top-down tree transformations - a comparison, Math. Systems Theory, v. 9, 1975, pp. 198-231.
[2] Griffiths, T. V., The unsolvability of the equivalence problem for λ-free nondeterministic generalized machines, J. Assoc. Comput. Mach., v. 15, 1968, pp. 409-413.
(Received Feb. 22, 1978)

