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1. Introduction 

In this paper we deal with effective solvability of the equivalence of frontier-
to-root tree transducers. T. V. Griffits has shown in [2] that the equivalence problem 
is unsolvable for I -free nondeterministic generalized sequential machines which 
are special frontier-to-root tree transducers, so the equivalence of the nondeter-
ministic frontier-to-root transducers is unsolvable, too. Then in a natural way one 
can raise the question whether the equivalence of deterministic frontier-to-root tree 
transducers is solvable. We show the answer is in the affirmative. The proof is based 
on the proof of the solvability of equivalence problem for X -free deterministic 
generalized sequential machines given by F. Gecseg (unpublished result). M. Steinby 
has called the author's attention to the fact that this result can be employed for 
minimalization of deterministic frontier-to-root tree transducers. In section 4 we 
give an algorithm for the minimalization. 

A systematic summary of further results concerning frontier-to-root and root-
to-frontier tree transducers can be found in [1], where they are called bottom-up 
and top-down tree transducers, respectively. 

2. Notions and notations 

L e t X ^ f o , ..-,*„, ...}, Y={y1, ...,ym, ...}and Z={z1, ...,zk, ...} be countable 
sets of variables kept fix in this paper. Denote by X„ the subset .. . , x„} of X. 
Consider a nonvoid set F and a mapping v of F into the set of all nonnegative inte-
gers. The pair (F, v) is called a type. Then the set TF (X) of polynomial symbols over 
X of type F is defined in the following way: 

(a) for each x (x£X), x£TF(X), 
(b) i f / € F , v ( f ) = k(^ 0), and A , ...,pkeTF(X) then f ( P l , ...,pk)cTF(X), 
(c) the polynomial symbols over X of type F are those and only those which 

we get from (a) and (b) in finite number of steps. 
Now we define the depth d(p) ofp£TF(X) as follows: 
(a) if p = x (x£X) then d(p) = 0, 
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(b) if p =f ( f t F) and V (f)=0 then d{p)=0, 
(c) if P=f(Pl, ...,Pk) (v(J)=k>0) then d(p)=max(d(p;)|i = l, ... ,fc) + l . 

.In the literature elements of TF(X) are called trees, or, in a more detailed form, 
/"-trees. 

Next we define the frontier f r (p) of a tree p € Tf(X) in the following way: 
(a) if p = x ( x £ X ) then fr(p) = x, 
(b) if p=RPl,...,pk) (v ( / ) = k) then fr(p) = ix(p1)...fr(pJk). 

We notice that if p=f and v ( / ) = 0 , then fr(p)=l, where /. denotes the empty word 
over X. 

We can define the set sub(p) of subtrees of pdTF(X) as follows: 
(a) if "p = x (x€ X) then sub(p) = {x}, 
(b) if p=f(pi,...,pk) ( v { f ) = k) then 
_ sub(p) = U(sub(Pi)\i = 1, , fc)U {p}. 

Let sub(p) = s u b ( p ) \ { p } be the set of proper subtrees of a tree p£TF(X). 
Next we define the concept of a substitution. Let piTF(X„) be an arbitrary 

tree and Tx, ...,T„QTF(Xn). T h e n / j f ^ - x ^ . . . , r „ - x „ ] is the set of trees obtained 
by replacing every occurrence of x l5 . . . , x„ by a tree in 7 \ , . . . . T„, respectively. 
Formally, 

(a) if p = X; (x ; e Xnj then - x 1 ; . . . , T„ - x„] = T-t, 
(b) if p = f ( P l , _ P k ) ( v ( f ) = k) then p[Tx ...,Tn - x„] = 

= {f(Pi, — x 1 ; ...,Tn - x „ ] , i = 1, ..., k}. 

Let , TF(XN) be arbitrary subsets and 6 X n . Then the xrproduct 
Tx-XiTz of by T2 is the set of trees which can be obtained by replacing every 
occurrence of x ; in some tree from 72 by a tree in TX. 

Let r" ' x> = {x;} and for every k > 0 

Tf-Xi =Tf-1'x'-xiT1. 
Obviously, 

T1-xiT2 = {p[{x1}^x1, . . . , { X i - J - X i - i , T^Xi, {xi + J - x , ^ ! , . . . , {x„}-x„] |peT 2 } . 
Let us note that a singleton will also be denoted by its element. 
Let (F, v) and (G, ¡£) be fixed finite types. Moreover, let A be a finite set of 

states. 
A frontier-to-root rewriting (TRJ rule is determined by a triple of the following 

two forms: 
(a) ( x , a , q ) , where x€ X, a£,A and q£TG(Y), 
(b) (/((fli .Zi), ...,(ak,zk)),a, q), where f£F, v ( / ) = k, 

(a„zj€AX {z,} (i = l , ...,/c), a£A and q£TG(Y<>Zk). 
In the sequel we write the F R rules in the form x-*aq and f(alz1, ..., akzk)—aq, 
respectively. 

A root-to-frontier rewriting (RF) rule is given by a triple of the following forms: 
(a) ( a , x , q ) where a£A, x£X and q£Tc(Y), 
(b) {a,f(zlt...,zj,q) where a£A, f£F, v ( f ) = k and qtTG(Y\JA XZk). 

Further on we write the R F rules in the form ax— q and a/(z l 5 . . . , zk)^q, respec-
tively. 

By a frontier-to-root tree (FRT) transducer we mean a system 2 1 = ( F , A, G, A', I ) , 
where A' is a subset of A called the set of final states and E is a finite set of F R rules. 
Since I is finite thus there is a number n such that the set of symbols x, for which 
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there exists a rule in Z with left hand side x, is a subset of X„. Similarly, there exists 
a number m such that right hand sides of rules from Z get into A X Ta( Ym U Z). 
Then we can restrict ourselves to X„ and Ym. 

For each a£A and p£TF(X„), the set of all a-translations of p, denoted by 
21 a(p), is defined as follows: 

(a) if p = xt (1 S i s n) , then 2I„G>) = {q\xt - aq£Z}, 
(b) if p = f ( p 1 , . . . , p k ) (v ( / ) = /c) then 

2ta(p) = {l\f(aizi' •••>akzk) - aqel, q£q[Hai(Pi) - zl5 ...,21 ak(pk) - zk]}. 
An F R T transducer 21 is deterministic (DFRT transducer) if 

(a) for all xt£X„, there is at most one rule with left hand side xt, 
(b) for all / £ F and a1, ..., ak£A, there is at most one rule with left hand side 

f ( f l i z i , ••••>akzk). 
By a root-to-frontier tree (RFT) transducer we mean a system 21 = (F, A, G, A', Z), 

where A' (Q A) is the set of initial states and I is a finite s e t o f R F rules. Similarly, 
in this case we can be restricted to X„ and Ym for some n and m. 

For each a£A and p£TF(X„), the set of all a-translations of p, denoted by 
2i„(/>), is defined as follows: 

(a) if p = xt ( l S i S n ) then 21 a(p) = {q\axt q£Z), 
(b) if p = f ( P l , ...,Pk) ( v ( / ) = k) then 

a(p) = ...,zk) ^q(...,aZi, qeq[...,Ms(Pi) -^aZi, ...]}. 
An R F T transducer 21 is deterministic (DRFT transducer) if 

(a) for all xi£X„ and a (¡A, there is at most one rule with left hand side axh 
(b) for a l l / 6 F { y ( f ) = k) and a£A, there is at most one rule with left hand side 

af(zt, ...,zk), 
(c) A' is a singleton. 
Let 2T = (F, A, G, A', I ) be a F R T (RFT) transducer and p£TF(X„). The trans-

lations of p induced by 21, denoted by 21 (p), is the set U OKJp^a^A'). 
We define the transformation induced by 21 to be the relation {(p, q)\p£TF(Xn), 

?€«(/>)} from TF(Xn) into Ta(Ym). 
If 21 is a deterministic FRT (RFT) transducer, then for each pdTF(X„) at most 

one element is in 2 l ( p ) . Therefore, the transformation induced by 21 is a (partial) 
mapping from TF(Xn) into TG(Ym), and it is denoted by 21, too. This mapping is 
called the mapping induced by 21. 

Let 2I = (F, A, G, A' ZA) and 93 = (F, B, G, B', ZB) be FRT (RFT) transducers. 
We say that Si and 23 are equivalent if and only if 2t and © induce the same trans-
formation. The F R T (RFT) transducer 21 is minimal if and only if for all F R T (RFT) 
transducer & = (F, C, G, C', Zc) equivalent to 21, \A\^\C\ holds. 

We say that 21 is a minimal transducer belonging to © if and only if 2t and © are 
equivalent and 21 is minimal. 

3. The equivalence of deterministic frontier-to-root tree transducers 

Let 21 = (F, A, G, A', ZA) and S = (F, B, G, B', ZB) be deterministic frontier-to-
root tree transducers such that the mappings induced by 21 and © are from TF(Xn) 
into TG(Ym). Let us construct, for the states a£A and b£B, two DFRT transducers 

= (F,A,B,A',ZAU{# ->«#}) 
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and 
& = (F,B, G, B',r„U{# -b*}). 

Then № and 93" induce mappings from TF(X„U {#}) into r c ( y m U { # } ) . 
We define the # -depth R(p) of a tree p£ TF(Xn) in the following way: 

(a) if p=Xi ( l ^ / S r t ) then cl(p) is undefined, 
(b) iip= # then 3(p)=0, 
(c) if p=f(pi, . . . , P k ) ( v ( f ) = k ) and 3(pi) (i= 1, ..., k) are undefined then d(p) 

is undefined, 
(d) if p=f(p1} (v(f)=k) and one of 3(Pi) (1 ̂ i^k) is defined, then 

d(p) = max (d{pi)\3(pi) is defined, + 
Let T be the set of all trees p£TF(Xn) for which both 910) and 93 (p) are defined. 
Take a tree p£T and an arbitrary subtree pgsub (p). Let p£TF(X„ U { # }) be 

the tree obtained by replacing a fix occurrence of p by # . Obviously, p contains 
exactly one symbol # on its frontier and p=p-p, where p • p denotes the #-product of 
p by p. Since p£T, there exist exactly one state of A and B denoted respectively by 
A? and Bp, such that both 91AP(P) and are defined. 

The following two lemmas hold under these notations. 

Lemma 1. For e a c h p £ T a n d p€sub 

91Q0 = 
and 

hold. 

Proof is obvious. 

Next let \A\=M and = 

Lemma 2. Let pdT be an arbitrary tree and p^sub (p). Then there exists 
a tree t&TF(X„\J { # }) containing exactly one symbol # on its frontier such that 
3(t)<MN, d(t)<2MN-l and p-t^T. 

Proof. First we give a tree t, for which d (;) < MN. Construct a sequence 
..., ts, ... of trees as follows: Set t0=p. Then consider the sequence q0, ...,qt 

of maximal length, for which q0 = ts, qt= # and sub ( /=1, ..., /). If 1<MN 
then 3(i s)<MA r , and in this case let t — t5. Otherwise, we can find two indices 
j and k such that 0 a n d Aq.=Aqk, Bq. = BQk. Then let i s + 1 be the tree obtained 
from ts by replacing the subtree q} in ts by qk. It is clear that 2( / s + 1 )<3( i s ) . Thus, 
continuing this process in a finite number of steps we arrive at the desired tree t. 
If d(t)<2MN—l then let t=t. In the opposite case there exists a sequence q0, ..., qt 
of subtrees of t with l ^ M N , #(£ sub (q0), qtiX„ and sub 0/;-i) 0 = 1 , . . , / ) • 
We construct a tree t from t by means of the sequence q0, ..., qt in the same way 
as t has been constructed from p. The tree t contains less occurrences of symbols 
from F than I does. It follows that the procedure can be continued till the depth 
of the resulting tree is not less than 2MN—\. The constructed tree satisfies the 
conclusions of Lemma 2. 



The solvability of the equivalence problem for deterministic frontier-to-root tree transducers 171 

Notice that if the frontier of 2tAp(p) contains the symbol # , then it occurs 
in the frontier of %A'{t). Similar statement is valid for and 5BB'(i). 

Lemma 3. Let p £ T and d(p) ^ 4MN. Then there exist trees pt, p2, p3, /?4, p&, p6 £ 
eTfCA'nUi*}) such that pz ,pz ,p i ,ps ,p<j contain exactly one symbol # in their 
frontiers. Moreover, />=7>i ,/V'/>3'/V/V/>6> ^(P;) —1 ( ¿ = 2 , 3 , 4 , 5 ) and 
d(Pi'P2'P3'Pi'Ps)—4MN. Finally, the following equations hold: 

^ P l — ^(Pl-P2> ^ (P l P2 P3) _ ^ (P l PZ PrPi) ~ ^(Pl-P2'P3 P4-P5) _ 

Rpi ~ B(.PVPS) = B(Pl P2 Ps) — B(Pl P2 P3'Pi) ~ -®(Pl P2 P3-P4 P5) ~ 

91 (?) = Ka(Pl) • mP2) ' Wa(P3) ' 2 t M • Wa(Ps) • 91 "(Pe), 

®(p) = ®>(Pi) • niPz) • ®S(p3) • • ®Hp5) : »"(Po)-
Proof. Let p be an arbitrary subtree of p with depth 4 M N . Then there exists 

a sequence qo,...,qiMN of trees with g0=p and sub (qt_j) (7=1, ..., AMN). 
Consider the pairs of states (AQi, Bg) (i=0, ..., AMN). Obviously, there exist indices 
./i> ji , Js , ji , 75 ( 4 M N > J 3 > / 4 sr 0) having the same pairs of states. 

Let p1 = qjl. Construct the tree pk by replacing the subtree qjk_1 in the tree 
qjk by the symbol # (k=2, 3, 4, 5). Finally, let ps be the tree obtained from p by 
replacing its subtree qh by # . From the construction and Lemma 1, it is clear that 
the trees px, p2, Pz, Pi, Ps, Pa constructed in this way satisfy the conditions of 
Lemma 3. 

Let Z, = max (rf(2I (/>)), dQ8(j>))\p^T, d(p)^6MN) and K=4(L + 2)MN. 

Lemma 4. Take a tree p(rT. Moreover, let pi,p2,ps,pt, p5,pe£TF(XnU{#}) 
be trees and a£A and b^ B states satisfying the conditions of Lemma 3. If Ut(p) ^ ©(/?) 
and d(W(p4-p5-p6)) is undefined, then there is a tree p£T, for which d(p)~=-K 
and 2l(p)^23(p) . 

Proof. Let S be the set of trees with minimal depth satisfying the conditions 
of Lemma 4. Let p(£ S) be a tree which has minimal number of occurrences of 
symbols from F among all trees in S. Assume that d(p)^K. 

The . #-depth of the tree ^Bb(p3 ~Pn • -Pe) is defined and 2(S£(p 3 ) )>0 , for 
otherwise 

9I(Pi-P3-P4-P5-P6) = 9I(p) ^ ®(p) = ^ ( P i - P a - h ' P s - P e ) 
or 

(Pi -Pi-Pi-Pi- Pe) = 9l(p) ^ ® (P) = ® (P i -P2 'Pi -Pi - Ps) 

holds, which contradicts the minimality of p. Next we define a tree t, for which 

d(t)<3MN-l and E(t)-<2MN—l. 
First we consider the sequence qQ, ...,ql of subtrees with maximal length for 

which q0 =p 4 • p5 • p6, qt = # and q^ sub (qt _ j) (i = 1, . . . , / ) . Then for each q{ there is 
exactly one state a^A such that 912, (<7;) is defined. Let i be the maximal index, for 
which a (9 t - ( 9 j ) ) is undefined. Since 212„(<?o) = 9l"(/>4-/>5 "Pe), d(W-(Pi-p5-pe)) is 
undefined and 2I",(i?,)= # thus O s / s / — 1 holds. Now we consider the tree t2 given 
by Lemma 2 for the tree p and the subtree p^'pi-p^-qi- Let qi~f{ri, ...,rk) 
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(v(/)=A:). Then there exists an index j (1 =j=k) such that rj = qi + 1. Let us construct 
the tree f j from rj in exactly that way as the tree t has been constructed from the 
tree p in the proof of Lemma 2. 

Furthermore, let t1 be the tree arising from the tree f(rl,..., rJ_1,rj, rj+1,..., rk) 
in the same way as the tree t has been obtained from the tree t in Lemma 2. Let 
t=h-ts. 

Consider the tree q=p1-p%+1 • t, where Ps+1 = {ps}L+1-*. It is clear that q£T, 
and 

2 1 ( f ) = 2 l " ( 0 
and 

hold by Lemma 1. Since d(<H(q))sL and d(<B(qj)>L thus 21(f) ̂ 23 fa). But 
d(q)<K, which contradicts the minimality of p. 

Lemma 5. L e t p £ T b e a tree for which 210?)?^©(/?)• Assume that there exist 
trees p[,Pi,p'z,Pi,p'b,p'^Tj(Xn\J{^}) and states a£A and b£B satisfying the 
conditions of Lemma 3. If d(<tHa(p'i-p,

5-p'6)) is defined, then there exists a tree T 
such that d(p)^K and SH(p)^(p). 

Proof. Let S be the set of trees with minimal depth satisfying the conditions 
of Lemma 5. Let p (£ S) be a tree which has minimal number of occurrences of symbols 
from F among all trees in S. Assume that d(p)^K. 

Let t be the tree given by Lemma 2 to the tree p and the subtree p'x • p'2-p^ -pi-p'b. 
We introduce the following notations: 

Pi = Pi 'Pi-PS, Pl = Pi» P3 = P'o, Pi = Ps 

. 2I . (PI) = ? I , » 6 (P.) = I"!, 

8C(P2) = ?2, ®b(P 2 ) = 

ars(Pa) = ®2(P3) = r8 , 

Wipt) = q4, ©fc(p4) = r4, 

2 I " ( 0 =qt, » 6 ( 0 = r 4 . 

First let us illustrate the idea of the proof in a special case. Assume that v ( / ) = 1 
and / i (g )= l for all f£F and Then the D F R T transducers 21 and 23 may be 
considered as deterministic generalized sequential machines. 

In Figure 1 we indicate the trees p, 2I(/>), ©(/?). Now let us consider the trees 
=p1-pl

2-t and 2I(/,), »( / , ) ( /=1, .. . , L + l ) (see, Figure 2). 
Since 21 (?,)=©(?,) ( /=1, .. . , L+1) , thus Figure 2 shows that the same tree is 

constructed in two different ways. As it appears from Figure 2, and it can be readily 
verified, too, q2=r2-q2 and r2=q2-r2. The idea behind the proof of Lemma 5 is 
similar, but more involved. 

The #-depth of ^(pi • p'-, • pd is defined, for otherwise, by Lemma 4, there 
exists a tree p£T, for which d(p)<K and 2t(p)^23(p) hold contradicting the mini-
mality of p. Since both d('ii''(p2-p3-pi)) and d(3Sb(p2 • p^ • p4)) are defined thus all 
the trees q2, qs, #4 and r2, r3, r4 contain the symbol # in their frontiers. Moreover, 
by the note following Lemma 2, the frontiers of the trees qi and r4 contain it, too. 
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Assume that d(q.2)=cl(r2) = 0. Then 

9I(p) = qi • 9s ' = (Pi • Ps • Pi) 

®(P) = »"î->V4 = ^(Pi-Ps-PÙ-
i.e. 9I(/71-/73-j!74)?iS(/71-7?3'/74), which is a contradiction. 

In the same way we obtain that if d(q3)=d(r3) = 0, then Ul (/>, • • p4) ^ 
^^{Pi 'Pz 'PÙ> which is impossible. 

Now we consider the trees 

h = Pi'PÏ't and s, = ( / = 0, . . . , L + l ) . 
By Lemma 1, it follows that 

9I(i,) = qx -ql-qt, »(*,) = ^ • r|-r4, 

SI(sl) = î i - ? i - 9 4 , ®(s/) = » i - i i - r , (i = 0 , . . . , L + 1 ) . 



174 Z. Zachar 

Since d(tt), d(st)<K thus 9I(i,) = ®(ii) and 21 fa) = »(>,) ( /=0, ...,L+1). If exactly 
one of 3(q2) and 3(r2) is equal to zero, say 3(q2)=0 and 3(r 2 )>0, then 
i / (2I( ; i + i ))<i/(©(/L + i )) , consequently, which contradicts the 
minimality of p. It means that the following equalities are true: 

4<Jt(f,)) = 3(qi) + (l- 1 )d(q2) + d(q1 • q2) 
and 

d(®(td) = a(rJ+Q- l)*(rj+d(ri-rj (/ = L, L+1). 

This implies that 3(q2)=3(r2)>0. Similarly, we get that 3(f3)=3(/-3)>0. 

The tree 2 l ( / i + 1 ) is obtained from the tree q4 by replacing all occurrences of the 
subtree # by the tree q1 • q2

+1, while ® ( / i + 1 ) is given by replacing all occurrences 
of # in r4 by the tree rx • r2

L+1. 
We have that d(q4)^L, d(r4)^L and d(qx-q%+v)>L, d(rx-if+1)>L. Thus the 

equality 2I(/L+1) = S ( / £ + 1 ) implies that ^ • r 2
t + 1€sub (qx-q2

+1) o r <7i• qt+id 
esub (rx • r2

i+1). 
Assume that / v r ^ + 1 £ s u b (<7i*<72

 + 1). Let j be the minimal number, for which 
ri • r2

i + 1€sub (qx • q{). Since rx • /-2
L+1(;sub (qx • q2

+1) and d(rx • rl'+1) >d(ql- q2) thus 

Let q2 be the tree obtained from the tree q1 • q{ by replacing all occurrences of 
rx • r2

 + 1 by the symbol #. Therefore, r2
+1 -q2 = q1- qJ

2 and rx-r2
+1§ sub (q2). Since 

j is minimal, it follows that rx • r2
+1$_ sub (qy • ql'1). On the other hand rx • r2

+1 -q2 = 
= and /•1- r2

L+1$sub (q2). Therefore, (rx-rk+l). 
Let r2 be the tree given from rx • r2

+1 by replacing all occurrences of qx • q{_1 

by the symbol # . Thus qx-q{~1 •r2=rx-r^JrX and <7i*?| - 1$sub(r2). It means that 

Next we show that qx •qi'1^ sub (r2 -q2) holds, too. Indeed, if q1 • 
6sub (r2 • q2), then qx • sub (q2) because of qx • qi"1^ sub (r2) and r2$ sub (qx • q{~1 j. 
Thus, in qx • ql-1 • q2 there exists a subtree qx • q{~x, which is not a subtree of rx • r2

+1. 
But this is impossible since in this case one can show that r1-/-2

i ,+16sub 
Therefore, one have 

r2-q2 = q2. 
Since Vl(tL+1) = &(tL+1) thus 

rx-r%+1-r4 = qx-q^-qi = qx-qi • q2
L+1~J-qt = rx • r2

t+1 -q2 • • q4. 

Furthermore, rx-r2
+1 is not a subtree of any of the trees q4, q2, q2,r4. Thus the 

preceding equality implies 

h = q2-q2+1~j-Vi-

We have 21 (/„) = ©(/„). Thus ql-qi = r1-ri = r1-q2-q[+l--'-qi. Therefore, 

qx = rx-q2-qt+1~i. 

Using the equality 91 ( i i )=® we get 

. = rx-q2-(f2.q2)L+1-J-(f2-q2)-q4, 

rx.r2-r4 = rx-r2-q2-(r2'q2)L+1-->'q4. 
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This implies that r1-q2-r2 = r1-r2. Furthermore, from the equalities (/,) = ©(?,) 
{/=0, .. . , L+l), by induction, we obtain r1-(q2-r2)L+1=r1'(q2-r2)L-r2. Since 
2 si (/>! • p2 -p3 -J)) ==L, thus d(i\ • (q2 • r2)L) > d(r1-q2-r2) = ¿/(^ • r2) ^ ¿(r2). 
Therefore, rx • (q2 • r2)L$ sub (>2), implying 

q2-fz = r2. 

Now consider the trees i • t (1=0, ..., L +1). Then rt • r3
L+1£sub (q1 • q^+1) 

because of ri=q2-q^+x~j-qi. In the above way we get that there are trees q3, ra 
and a number i (2si^L + l) such that 

= r1-q3-qji+1-i, 
q3 = f3-q3, 

r3 = qs'rs-
Since p is minimal thus 

91 (Pi • Pd = ® (Pi • p^ and 91 • p2 • p4) = 23 ( P l - p 2 • p4), 
i.e., 

^i-<li = r1'ri and qi-qi-qi = r1-r2-r4L. 

The first equality implies 'that ( f 2 ' q 2 ) L + 1 ~i ' q t . Consequently, 
¡\ can differ from q2-(r2-q2)L+1~J • q^ in the tree rx only, i.e. whenever # is a 
subtree in one of them then the corresponding subtree in the other one should be 
i\ or #. By the above second equality we get 

• q2 • f2 - r4 = r± • q2 • (r2 • • ( f 2 • q2) • q4. 
Thus ri and q2-(r2'q2)L+1~j-q^can differ only in rx • r2. Thus, by r1~r29ir1, we have 

Similarly, using the trees p i ' p t and Px 'P 3 ' P \ , we obtain 

Therefore, q2 • (r2 • q2)L+1~J • qt=q3 • (r3 • q3)L+1~'• 9«. implying 

Finally, using the above equalities, we get 

= r1-q2-(r2-q2)L+1-]'-(r2-q2)- q3- qt = 

= »'i • (<z2 • r2) • q2 • (h • i2)t+1_J'»• 94 = •r2-q3• (F3 • q3)L+1'~i • (r3 • q3) • = 

= ri • r2 • (q3 • f3) • q3 • (r3 • ¿/3)i+1_i • = r1-r2-r3-ri, 

i.e., 21[(/>) = 93(/j) contradicting our assumption. 
Similarly, we arrive at a contradiction by assuming 

<7i-#2
 + 1£sub (r1-A-

2
+1). 

This means that the depth of p is smaller than K ending the proof of this lemma. 
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Theorem 6. The equivalence problem of deterministic frontier-to-root tree 
transducers is effectively solvable. 

Proof. Consider two arbitrary DFRT transducers 2 l= (F , A, G, A', IA) and 
93 = OF, B, G, B', IB). The set of all trees p, for which 210) and S O ) are defined, 
is a regular set of trees, which can be given effectively (see, Corollary 3.12. in [1]). 
Thus, the problem whether or not the domains of mappings induced by 21 and 23 
are equal is solvable. If they are not equal, then the transducers are not equivalent. 
In the opposite case, by Lemmas 4 and 5 it is sufficient to check whether their trans-
lations coincide on a finite number of trees. This ends the proof of Theorem 6. 

Finally, we present a result concerning the equivalence problem in a special 
class of deterministic root-to-frontier tree transducers. 

Let 9JI be the set of deterministic root-to-frontier tree (DRFT) transducers 
2t = (F, A, G, A', I ) with the following property: if af(z1, ..., zk)-*q is in I ( v ( f ) = 
=k, K> 0), then there are states a , , . . . , ak£A such that q£ TG(YU {(a;, z;)|/ = 1, . . . , A:}). 
For such D R F T transducers one can prove Lemmas 1—5. Thus we have 

Theorem 7. The equivalence problem of D R F T transducers in 9Ji is effectively 
solvable. 

4. Minimalization of DFRT transducers 

Take a D F R T transducer 21= (F , A, G, A', IA) such that the mapping induced 
by 21 is from TF(X„) into TG(YM). Moreover, let p be an arbitrary tree, for which 
210) is defined, i.e., / ' 62 t _ 1 ( r G (y m ) ) . In this case for any p g s u b O ) of the form 
p=f(p1, ...,pk) or p = Xi, there is exactly one rule in SA, denoted by a(p) such, 
that if ff^^/fezj, . . . , akzk)-+Apq then 

Wap(P) = mai(Pi) - - , ^ M ) - zk], 
and 

^ap(P) = 9 if = Xi~ A.q. 

Lemma 8. Let /?62i_1(T'G(rm)) and p£sub (p) be arbitrary. Then there exist 
a / € 2 I - 1 ( r c ( 7 J ) and a p ' e s u b O ' X such that a(p) = a(p') and d(p')^2\A\. 

Proof. Let p denote the tree obtained by replacing the subtree p in p by # . 
Let p' be the tree given by Lemma 2 to the tree p and its subtree p. Assume, tha t 
j?=/Oi, •••,Pk)- Let us construct the tree P i from pt 0 '=1, ..., k) in exactly tha t 
way as the tree t has been constructed from the tree p in the proof of Lemma 2 
( /=1, ...,k). Let p'—f(p i, Pk) and p'=p' • p'. From the construction it is clear, 
that the trees p' and p' satisfy the conditions of Lemma 8. A similar argument can 
be used in the case 

LetL=max(42IO))b€2I-1(rc(yj), d(p)^2\A\). 

Lemma 9. There exists a minimal D F R T transducer © = (F, B, G, B', IH) be-
longing to 21 such that if x^bq or f(b1z1,bkzk)-^bq is in IB then d(q)^L. 

Proof Let S be a minimal D F R T transducer belonging to 21. Assume that there 
exist /7 6© _ 1 (J ' G (y m ) ) and p i sub (p) such that the depth of the right hand side of 
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c(p) is greater, than L. We show that 5(33 (p)) is undefined, where p is obtained 
by replacing p in p by # . 

Indeed, by Lemma 8, there exist trees p' and p', p', for which p'=p' • p\ o(p) = 
= a(p% p'tX-HToCrJ) and d(p')^2\B\^2\A\. 

By the note following Lemma 2, if d(35 (p)) is defined then so is (p')). But 
¿/(23(p'))=3(© (p')) + (P'))- Furthermore, by our assumption d(T>(p'j)>L. 
Thus d(®(p'))>L which is a contradiction since S(/>') = 210 ' ) a n d d(p')<.2\B\^ 

Now for all <r=f(b1z1, ..., bkzk)—bq and a=Xi-*bq with d(q)>L, let us replace 
<r in IB by (j=f(b1z1, ..., bkzk)^by1 and a — xi^by1, respectively, and denote the 
resulting set of rules by IB. Then the D F R T transducer ^B — (F,B,G,B',IB) is 
equivalent to 23, completing the proof of Lemma 9. 

Theorem 10. There exists an algorithm for determining to any DFRT trans-
ducer 21 = (F, A, G,A',IA) a minimal D F R T transducer belonging to 21. 

Proof. Let \A\ = M and L = max ( ¿ / ( U l ( / ; ) ) | p € 9 1 ( Y ) ) , d(p)<2M). Then 
for a minimal D F R T transducer belonging to 21, it holds that the number of its 
states is less than or equal to M. Furthermore, by Lemma 9, we can assume that 
the depths of right hand sides of rules of a minimal D F R T transducer belonging to 21 
are less than or equal to L. But there is only a finite number of DFRT transducers 
satisfying these two assumptions. This means that it is enough to check only for 
finitely many D F R T transducers whether they are equivalent to 2i. 

After determining all such DFRT transducers equivalent to 21, we choose one 
of them with minimal number of states. 
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