
A note on deadlocks

B y Z . LABORCZI

Introduction

A set of processes uses resources of several types concurrently. We assume that
there is only a limited number of resources from each type. The number of resources
can be characterized by a vector t, where ti is the total number of resources of type i.

Another constraint is that the processes cannot be forced to release resources
they currently use.

If we know nothing about the behaviour of the processes, then the only possible
way for scheduling the processes is the strictly sequential ordering. Real concurrency
could not be allowed because each concurrent process may request all the resources
at any time, and this request cannot be fullfilled if resources are allocated to other
processes.

Therefore, we must have information on the behaviour of the processes in form
of some kind of limitation the processes comply with.

One possible limitation among others [4] is the following: on entering the system,
a process p has to announce a vector goal(p) declaring that it will not use more than
goali (p) resources from the z'-th resource type. In order to be able to satisfy other
requests, processes are not allowed to work forever, that is, if we place goal(p)
resources at p's disposal and wait, p will terminate in finite time and return all the
resources allocated to it. When p starts, it usually does not need all goal (p) resources
immediately, and if we want to describe the current state of p, we have to introduce
the vector alloc (p) which tells us how many resources have been allocated to p.
It is clear that alloc (p)^ goal (p), and the difference

need(/>) = goal (p)—alloc (p)

shows how many resources p still needs in order to complete. We may assume that
there is no process in the system with need (p) — 0 for if that is the case, we wait until
p completes and continue the examination of the system only after the completion.

180 Z. Laborczi

1. Graphical representation of processes

We describe a graphical representation of competing processes, which will turn
out to be very useful later. The current need of a process may be represented by a
point of the /-dimensional space, where / is the number of different resource types.
A process p starts from goal (p) and currently stays at need(p), thus it is very natural

to think of p as an arrow from goal (p) to
/ = (7 , 6) n e e d (p) -

Figure 1 visualizes three processes com--
peting for resources of two different types.

The number of resources in the system
equals (7, 6), furthermore,

goal (ft) =(2,3) ,
need (ft) =(1, 1),
goal (ft) =(5, 4),
need (ft) = (4, 2),
goal (ft) =(5, 5),
need (ft) = (2, 4).
This kind of representation is applicable

only if 1=2. For greater values of I one
Figure 1 needs to be highly imaginative. .

2. The definition of deadlock

Informally speaking, a system of concurrent processes is in deadlock, if there
is no guarante that every process can complete. In other words the system is free of
deadlocks if all the processes can finish, even if they request all their needs immediately.
A formal definition of the latter assertion is the following:

Definition. The set of processes n is said to be free of deadlock (or deadlock-free)
if there exists a permutation ft,ft, . . . ,p k of the processes in 7t*such that

need 0;) s t - ^ alloc (ft)

for / = 1 , 2, . . . , k.
This inequality means that if ft, ft, ..., ft_t have completed and returned the

resources they used, then the need of ft does not exceed the amount of the currently
available free resources.

The following theorem is sometimes stated as another definition of the deadlock.

Theorem 1. The set of processes n contains a deadlock (or is in deadlock) if
and only if there exists a nonempty subset n' of n such that the following inequality
holds for every p in n': •

need {p) =ji free (n') (1)

where free(71') = t— 2 alloc(9) is the amount of the resources currently not used gin 71*
by the processes in n'.

A note on deadlocks 181

3. A condition and an algorithm

The definition of the deadlock and Theorem 1 speak about permutations and
subsets of the process set. It is desirable to find a necessary and sufficient condition
in which these notions do not occur, or in other words in which every process is
mentioned only once, and not as a member of a permutation or a subset. This is
accomplished by Theorem 2.

Theorem 2. Let n be a vector describing some amount of resources and n < t
(t is the total number of resources)1. A set of processes n is deadlock-free if and only
if for every such n we have:

2 alloc(/?) ^ t - n . (2)
p in jr and
[ict'd I/>) " • n

For a deadlock, we can not only state that we can find an n such that ^ holds in (2)
instead of but we can replace = by = , that is the following assertion holds:
7i is in deadlock if and only if there is an n < t such that

2 alloc (p) = t—n (3)
p in 7i and

nt't'd (p)n
Proof. It is sufficient to prove that
I. if k is deadlock-free, then (2) holds for each n;

II. if 7i contains a deadlock, then (3) holds for at least one n.

Proof of I. Let n be deadlock-free and n<t . We define

<P(n) = {q in 7r |need(p) ^ n}.

<i(n) contains exactly those processes for which (2) forms a sum, so if 4>(n) is empty,
(2) is true.

Otherwise we apply Theorem 1 for <P(n) and find a p in <f>(n) for which

need (p) S t - 2 alloc (q) (4)
q in <P(a)

For p as a member of <2>(n) we have also need (/?)^n, and replacing the left hand
side of this inequality by the right hand, side of (4) we get (2).

Proof of II. Let 7t be in deadlock and let n ' be a maximal subset of n which
statisfies Theorem 1, i.e., if we put a new element to 7i ' ,(l) will not be true. We
prove that (3) holds for

n = t - 2 alloc (q)
q in 7i'

by showing t h a t <£(n) = 7r'.
Assuming that p is in 4>(n), we recall the definition of and n

need (p) ^ t — 2 alloc (q).
q in 7c'

1 n < t means that ^ holds for every component and < holds for at least one component.

3 Acta Cybernetica 1V/2

182 Z. Laborczi

It is now easy to verify that (1) holds for the subset n'U {p} and as n' is a maximal
subset in deadlock, p is in n'.

Starting from the other end, assume that p is in n'. From (1) we get

n e e d (p) $ t - 2 alloc (?),
g ill it'

that is need(/>)^n and this means that p is in
After completing the proof of Theorem 2, we append the following remark to

the last step of the proof:
At the very end we showed that n is a subset of <Kn). This means that

t - n = 2 a l loc0>)s 2 alloc(p),
p in JI' p in 0(a)

and this is exactly the negation of (2). If n happens to be a maximal subset, then
the equality will hold.

If we write the formula of Theorem 2 in the following way

t - 2 alloc (p) ^ II (5)
p in i>(n)

we might formulate the meaning of Theorem 2 in terms of the arrows introduced
earlier. Choosing an n we select the members of n which (as arrows) lie outside the
rectangle consisting of the points less than or equal to n. This set is $(n). (5) states
that if we start at t and decrease our coordinates by alloc (p) for each p in </>(n),
we eventually reach a point lying still outside the rectangle.

For a deadlock state there must be an n such that the resultant point is not only
within the rectangle but is identical to n.

Exploiting these facts we may devise an algorithm to decide whether a set of
processes is in deadlock or not. The algorithm runs as follows:

I. We define the function f:
f(n) = t - n

for every n-=t.
II. For every p in n, decrease the value of f by alloc (p) in the points of its

domain for which

n ^ need (/7) and n s t—alloc (p) (6)

III. Test after each decrease, whether the new value of f is 0. If so, we have a
deadlock situation, otherwise if no 0 occured while performing II the system
is free of deadlocks.

Condition (6) in step II needs some explanation. Requiring n ^ need (p) guaran-
tees that p is in i>(n). However, not all such n-s have to be taken into consideration,
because the decrease of f may result in 0 only for n-s for which n s t - a l l o c (/ 7) is
also true.

The small circles on Figure 2 indicate the points for which f has to be decreased
in connection with p:i. For the point n=(3, 3) we have initially f (n)=(4, 3). On
executing step II f o r p 2 a n d p s , f (n) becomes 0, so these two processes are in deadlock
independently of the existence of p x .

The algorithm as described above detects deadlock within a system. A slight

A note on deadlocks 183

modification makes it capable of handling the deadlock avoidance problem. Let us
assume that n is deadlock-free and a process p requests some more resources. If we
update f(n) by performing step II and step III for p only, it can be decided whether
the fulfilling of the new request leads to a

t-alloc(p3)
t=(7,6)

Figure 2

deadlock state.
Unfortunately this algorithm is not

suitable for being incorporated into a real
system, because it requires a great amount
of space and time. Let us assume that we
have 256 memory pages and 4—4 pe-
ripheral devices from two different types
as resources at our disposal. In this case t
becomes (256, 4, 4) and the number of n-s
is (2 5 6 + l) * (4 + l) * (4 + l) —1 =6424.

Therefore we need almost 100,000
bits for representing the function f, and
we have mentioned nothing about the time
needed to update such amount of infor-
mation. Therefore, we conclude that the
general algorithms for detecting and avoid-
ing deadlock [2, 3] have to be applied
in the general case.

In one dimension, that is for one resource type, however, everything becomes
very simple. There are no vectors, thus we may replace ^ and ^ by > and <
respectively. In addition f becomes a scalar to scalar function. The updating of /
is also less complicated: for a process p, f has to be decreased in those n-s where
n<need(p) holds. In fact we have arrived at a modified version of Habermann's
theorem on detecting deadlocks for one resource type [1], thus this paper generalizes
his results.

Conclusion

On investigating whether a simple theorem on detecting deadlock with one re-
source type can be generalized to more resource types, we found that the answer is
yes, but the new theorem still needs further works to develop a practically usable
algorithm.

Acknowledgement. I am indebted to Mr. J. Somogyi for many fruitful discussi-
ons on the subject of this paper and related areas.

Abstract

According to a paper by A. N. Habermann there is a simple necessary and sufficient condi-
tion whether a set of processes utilizing a limited number of resources of the same type is in dead-
lock. We show that this condition may be generalized to the case of more than one resource types.
This result can be illustrated graphically in a clear way. The question of constructing algorithms
on the basis of the extended condition is considered as well.

RESEARCH INSTITUTE FOR
APPLIED COMPUTER SCIENCES
H—1536 BUDAPEST, HUNGARY
P. O. BOX 227.

3*

184 Z. Laborczi: A note on deadlocks

References

[1] HABERMANN, A. N., A new approach to avoidance of system deadlocks, Operating Systems,
Proceeding of an International Symposium, Lecture Notes in Computer Science, v. 16, 1974.

[2] HABERMANN, A . N . , Efficient deadlock avoidance algorithms, Unpublished paper, Intended
to present at the Winter School, Budapest. 1977.

[3] HOLT, R . C., Some deadlock properties of computer systems, Operating System Review, v. 6,
June 1972.

[4] DEVILLERS, R., Game interpretation of the deadlock avoidance problem, Comm. ACM, v. 20,
No. 10, 1977.

(Received April 14, 1978)

