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Introduction 

A set of processes uses resources of several types concurrently. We assume that 
there is only a limited number of resources from each type. The number of resources 
can be characterized by a vector t, where ti is the total number of resources of type i. 

Another constraint is that the processes cannot be forced to release resources 
they currently use. 

If we know nothing about the behaviour of the processes, then the only possible 
way for scheduling the processes is the strictly sequential ordering. Real concurrency 
could not be allowed because each concurrent process may request all the resources 
at any time, and this request cannot be fullfilled if resources are allocated to other 
processes. 

Therefore, we must have information on the behaviour of the processes in form 
of some kind of limitation the processes comply with. 

One possible limitation among others [4] is the following: on entering the system, 
a process p has to announce a vector goal(p) declaring that it will not use more than 
goali (p) resources from the z'-th resource type. In order to be able to satisfy other 
requests, processes are not allowed to work forever, that is, if we place goal(p) 
resources at p's disposal and wait, p will terminate in finite time and return all the 
resources allocated to it. When p starts, it usually does not need all goal (p) resources 
immediately, and if we want to describe the current state of p, we have to introduce 
the vector alloc (p) which tells us how many resources have been allocated to p. 
It is clear that alloc (p)^ goal (p), and the difference 

need(/>) = goal (p)—alloc (p) 

shows how many resources p still needs in order to complete. We may assume that 
there is no process in the system with need (p) — 0 for if that is the case, we wait until 
p completes and continue the examination of the system only after the completion. 
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1. Graphical representation of processes 

We describe a graphical representation of competing processes, which will turn 
out to be very useful later. The current need of a process may be represented by a 
point of the /-dimensional space, where / is the number of different resource types. 
A process p starts from goal (p) and currently stays at need(p), thus it is very natural 

to think of p as an arrow from goal (p) to 
/ = ( 7 , 6 ) n e e d ( p ) -

Figure 1 visualizes three processes com--
peting for resources of two different types. 

The number of resources in the system 
equals (7, 6), furthermore, 

goal (ft) =(2,3) , 
need (ft) =(1, 1), 
goal (ft) =(5, 4), 
need (ft) = (4, 2), 
goal (ft) =(5, 5), 
need (ft) = (2, 4). 
This kind of representation is applicable 

only if 1=2. For greater values of I one 
Figure 1 needs to be highly imaginative. . 

2. The definition of deadlock 

Informally speaking, a system of concurrent processes is in deadlock, if there 
is no guarante that every process can complete. In other words the system is free of 
deadlocks if all the processes can finish, even if they request all their needs immediately. 
A formal definition of the latter assertion is the following: 

Definition. The set of processes n is said to be free of deadlock (or deadlock-free) 
if there exists a permutation ft,ft, . . . ,p k of the processes in 7t*such that 

need 0;) s t - ^ alloc (ft) 

for / = 1 , 2, . . . , k. 
This inequality means that if ft, ft, ..., ft_t have completed and returned the 

resources they used, then the need of ft does not exceed the amount of the currently 
available free resources. 

The following theorem is sometimes stated as another definition of the deadlock. 

Theorem 1. The set of processes n contains a deadlock (or is in deadlock) if 
and only if there exists a nonempty subset n' of n such that the following inequality 
holds for every p in n': • 

need {p) =ji free (n') (1) 

where free(71') = t— 2 alloc(9) is the amount of the resources currently not used gin 71* 
by the processes in n'. 
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3. A condition and an algorithm 

The definition of the deadlock and Theorem 1 speak about permutations and 
subsets of the process set. It is desirable to find a necessary and sufficient condition 
in which these notions do not occur, or in other words in which every process is 
mentioned only once, and not as a member of a permutation or a subset. This is 
accomplished by Theorem 2. 

Theorem 2. Let n be a vector describing some amount of resources and n < t 
(t is the total number of resources)1. A set of processes n is deadlock-free if and only 
if for every such n we have: 

2 alloc(/?) ^ t - n . (2) 
p in jr and 
[ict'd I/>) " • n 

For a deadlock, we can not only state that we can find an n such that ^ holds in (2) 
instead of but we can replace = by = , that is the following assertion holds: 
7i is in deadlock if and only if there is an n < t such that 

2 alloc (p) = t—n (3) 
p in 7i and 

nt't'd (p)n 
Proof. It is sufficient to prove that 
I. if k is deadlock-free, then (2) holds for each n; 

II. if 7i contains a deadlock, then (3) holds for at least one n. 

Proof of I. Let n be deadlock-free and n<t . We define 

<P(n) = {q in 7r |need(p) ^ n}. 

<i(n) contains exactly those processes for which (2) forms a sum, so if 4>(n) is empty, 
(2) is true. 

Otherwise we apply Theorem 1 for <P(n) and find a p in <f>(n) for which 

need (p) S t - 2 alloc (q) (4) 
q in <P(a) 

For p as a member of <2>(n) we have also need (/?)^n, and replacing the left hand 
side of this inequality by the right hand, side of (4) we get (2). 

Proof of II. Let 7t be in deadlock and let n ' be a maximal subset of n which 
statisfies Theorem 1, i.e., if we put a new element to 7i ' ,(l) will not be true. We 
prove that (3) holds for 

n = t - 2 alloc (q) 
q in 7i' 

by showing t h a t <£(n) = 7r'. 
Assuming that p is in 4>(n), we recall the definition of and n 

need (p) ^ t — 2 alloc (q). 
q in 7c' 

1 n < t means that ^ holds for every component and < holds for at least one component. 
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It is now easy to verify that (1) holds for the subset n'U {p} and as n' is a maximal 
subset in deadlock, p is in n'. 

Starting from the other end, assume that p is in n'. From (1) we get 

n e e d ( p ) $ t - 2 alloc (?), 
g ill it' 

that is need(/>)^n and this means that p is in 
After completing the proof of Theorem 2, we append the following remark to 

the last step of the proof: 
At the very end we showed that n is a subset of <Kn). This means that 

t - n = 2 a l loc0>)s 2 alloc(p), 
p in JI' p in 0(a) 

and this is exactly the negation of (2). If n happens to be a maximal subset, then 
the equality will hold. 

If we write the formula of Theorem 2 in the following way 

t - 2 alloc (p) ^ II (5) 
p in i>(n) 

we might formulate the meaning of Theorem 2 in terms of the arrows introduced 
earlier. Choosing an n we select the members of n which (as arrows) lie outside the 
rectangle consisting of the points less than or equal to n. This set is $(n). (5) states 
that if we start at t and decrease our coordinates by alloc (p) for each p in </>(n), 
we eventually reach a point lying still outside the rectangle. 

For a deadlock state there must be an n such that the resultant point is not only 
within the rectangle but is identical to n. 

Exploiting these facts we may devise an algorithm to decide whether a set of 
processes is in deadlock or not. The algorithm runs as follows: 

I. We define the function f: 
f(n) = t - n 

for every n-=t. 
II. For every p in n, decrease the value of f by alloc (p) in the points of its 

domain for which 

n ^ need (/7) and n s t—alloc (p) (6) 

III. Test after each decrease, whether the new value of f is 0. If so, we have a 
deadlock situation, otherwise if no 0 occured while performing II the system 
is free of deadlocks. 

Condition (6) in step II needs some explanation. Requiring n ^ need (p) guaran-
tees that p is in i>(n). However, not all such n-s have to be taken into consideration, 
because the decrease of f may result in 0 only for n-s for which n s t - a l l o c ( / 7 ) is 
also true. 

The small circles on Figure 2 indicate the points for which f has to be decreased 
in connection with p:i. For the point n=(3, 3) we have initially f (n)=(4, 3). On 
executing step II f o r p 2 a n d p s , f ( n ) becomes 0, so these two processes are in deadlock 
independently of the existence of p x . 

The algorithm as described above detects deadlock within a system. A slight 
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modification makes it capable of handling the deadlock avoidance problem. Let us 
assume that n is deadlock-free and a process p requests some more resources. If we 
update f(n) by performing step II and step III for p only, it can be decided whether 
the fulfilling of the new request leads to a 

t-alloc(p3) 
t=( 7,6) 

Figure 2 

deadlock state. 
Unfortunately this algorithm is not 

suitable for being incorporated into a real 
system, because it requires a great amount 
of space and time. Let us assume that we 
have 256 memory pages and 4—4 pe-
ripheral devices from two different types 
as resources at our disposal. In this case t 
becomes (256, 4, 4) and the number of n-s 
is ( 2 5 6 + l ) * ( 4 + l ) * ( 4 + l ) —1 =6424. 

Therefore we need almost 100,000 
bits for representing the function f, and 
we have mentioned nothing about the time 
needed to update such amount of infor-
mation. Therefore, we conclude that the 
general algorithms for detecting and avoid-
ing deadlock [2, 3] have to be applied 
in the general case. 

In one dimension, that is for one resource type, however, everything becomes 
very simple. There are no vectors, thus we may replace ^ and ^ by > and < 
respectively. In addition f becomes a scalar to scalar function. The updating of / 
is also less complicated: for a process p, f has to be decreased in those n-s where 
n<need(p) holds. In fact we have arrived at a modified version of Habermann's 
theorem on detecting deadlocks for one resource type [1], thus this paper generalizes 
his results. 

Conclusion 

On investigating whether a simple theorem on detecting deadlock with one re-
source type can be generalized to more resource types, we found that the answer is 
yes, but the new theorem still needs further works to develop a practically usable 
algorithm. 
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Abstract 

According to a paper by A. N. Habermann there is a simple necessary and sufficient condi-
tion whether a set of processes utilizing a limited number of resources of the same type is in dead-
lock. We show that this condition may be generalized to the case of more than one resource types. 
This result can be illustrated graphically in a clear way. The question of constructing algorithms 
on the basis of the extended condition is considered as well. 
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