Strongly connected digraphs in which each edge is contained in exactly two cycles

By B. Zelinka

In [1] A. ÁdÁM suggests a problem to characterize strongly connested digraphs without cut vertices with the property that each edge of such a graph is contained at most in two cycles. (See Problem 2, p. 189 in [1].) In this note we do nct solve this problem in general, but we consider a particular case when each edge is contained exactly in two cycles. We consider finite digraphs without loops and without pairs of equally oriented edges joining the same pair of vertices.

We start by a definition.
Definition. Let $A_{1}, A_{2}, \ldots, A_{n}$ for $n \geqq 2$ be pairwise disjoint cycles. On each A_{i} for $i=1, \ldots, n$ choose two distinct vertices $a_{i} ; b_{i}$. Then identify b_{i} with a_{i+1} for all $i=1, \ldots, n-1$ and b_{n} with a_{1}. The class of all digraphs obtained in this way will be denoted by \mathscr{A} (Fig. 1).

Further, by a diagonal path of a cycle C we shall mean a directed path whose initial and terminal vertices are in C, while its edges and inner vertices (if any) are not.

Fig. I

Theorem. Let G be a strongly connected finite digraph without cut vertices. Then the following two assertions are equivalent:
(i) $G \in \mathscr{A}$.
(ii) Each edge of G is contained in exactly two cycles of G.

Proof: (i) \Rightarrow (ii). Let $G \in \mathscr{A}$. Let e be an edge of G. The edge e is contained in some cycle A_{i} for $\mathrm{l} \leqq i \leqq n$. The cycle A_{i} is the union of two directed paths $P_{1}^{(i)}, P_{-2}^{(i)}$,
where $P_{1}^{(i)}$ is the path from a_{i} into b_{i} in A_{i} and $P_{2}^{(i)}$ is the path from b_{i} into a_{i} in A_{i}; these two paths are edge-disjoint. If e belongs to $P_{1}^{(i)}$ then, evidently, each cycle containing e contains the whole $P_{1}^{(i)}$, therefore, it must contain also a directed path from b_{i} into a_{i} in G. There are exactly two such paths; one of them is $P_{2}^{(i)}$, the other is the union of all $P_{1}^{(j)}$ for $1 \leqq j \leqq n, j \neq i$, where $P_{1}^{(j)}$ is defined analogously as $P_{1}^{(i)}$. Therefore, there are exactly two cycles in G which contain e. For the case when e is in $P_{2}^{(i)}$ the proof is analogous, obtained from this proof by interchanging subscripts 1 and 2.
(ii) \Rightarrow (i). Let G satisfy (ii). Let C_{0} be a cycle in G. Let $\overrightarrow{u_{1} u_{2}}$ be an edge of C_{0}. As $\overline{u_{1} u_{2}}$ must be contained in two cycles, there exists a cycle C_{1} containing $\overrightarrow{u_{1} u_{2}}$ and distinct from C_{0}. Evidently, there exists the longest directed path P_{1} which contains $\overrightarrow{u_{1} u_{2}}$ and is contained in both C_{0} and C_{1}. Let this path go from a vertex u_{3} into a vertex u_{4}. Let P_{1}^{\prime} be the path in C_{1} from u_{4} into u_{3}. Suppose that P_{1}^{\prime} contains a vertex u^{\prime} of C_{0} distinct from u_{3} and u_{4}; let u_{1}^{\prime} be the first vertex of P_{1}^{\prime} with this property. Then there exists a cycle which is the union of P_{1}, the subpath of P_{1}^{\prime} from u_{4} into u_{1}^{\prime} and the path in C_{0} from u_{1}^{\prime} into u_{3}. This cycle is evidently distinct from both C_{0} and C_{1} and contains $\overrightarrow{u_{1} u_{2}}$, which is a contradiction. Thus P_{1}^{\prime} is a diagonal path of C_{0}. Let u_{5} be the terminal vertex of the edge of C_{0} whose initial vertex is u_{4}. There exists a cycle C_{2} distinct from C_{0} and C_{1} which contains the edge $\overline{u_{4} u_{5}}$. Let P_{2} be the longest path which contains ${\overline{u_{4}}}_{5}$ and is contained in both C_{0} and C_{2}, let it go from a vertex u_{6} into a vertex u_{7}. Let P_{2}^{\prime} be the path in C_{2} from u_{7} into u_{6}; it is a diagonal path of C_{0}. Suppose that P_{1}^{\prime} and P_{2}^{\prime} have a common inner vertex; and let v be the first inner vertex of P_{2}^{\prime} belonging to P_{1}^{\prime}. If $u_{7} \neq u_{3}$, then any edge belonging to the intersection of the paths in C_{0} from u_{6} into u_{4} and from u_{3} into u_{7} belongs to three cycles, namely C_{0}, C_{1} and the cycle which is the union of the path from u_{3} into u_{7} in C_{1}, the subpath of P_{2}^{\prime} from u_{7} into v and the subpath of P_{1}^{\prime} from v into u_{3}, which is a contradiction. An analogous contradiction will be obtained for $u_{6} \neq u_{4}$. Therefore P_{1}^{\prime} and P_{2}^{\prime} can have a common inner vertex only if $u_{7}=u_{3}$ and $u_{6}=u_{4}$; this case will be denoted by ($*$), the opposite case by ($* *$).

Consider the case (*). Each edge of the path in C_{0} from \dot{u}_{3} into u_{4} is contained in C_{0} and C_{1}, each edge of the path in C_{0} from u_{4} into u_{3} is contained in C_{0} and C_{2}. Let v_{1} be the first vertex of P_{1}^{\prime} distinct from u_{4} and belonging to P_{2}^{\prime}. The subpath of P_{1}^{\prime} from u_{4} into v_{1} and the subpath of P_{2}^{\prime} from v_{1} into u_{4} form a cycle D_{1}. Each edge of D_{1} is contained in two cycles only, therefore, an inner vertex neither of the subpath of P_{1}^{\prime} from v_{1} into u_{3}, nor of the subpath of P_{2}^{\prime} from u_{3} into v_{1} can belong to D_{1}. If $v_{1} \neq u_{3}$, we repeat this consideration with the subpath of P_{1}^{\prime} from v_{1} into u_{3} instead of P_{1}^{\prime} and with the subpath of P_{2}^{\prime} from u_{3} into v_{1} instead of P_{2}^{\prime}, and analogously as we have obtained v_{1} and D_{1} we obtain v_{2} and D_{2}. Thus we proceed further, until we obtain $v_{k}=u_{3}$ for some k (this will be performed after a finite number of steps). The cycles $C_{0}, D_{1}, \ldots, D_{k}$ correspond to the cycles $A_{1}, A_{2}, \ldots, A_{n}$ from the definition of \mathscr{A}. The graph G evidently cannot contain further vertices or edges, because then (ii) would be violated. Therefore $G \in \mathscr{A}$ (Fig. 2).

Now consider the case (**). Suppose that $u_{6} \neq u_{4}$. As C_{2} must contain $\vec{u}_{4} u_{5}$, the vertex u_{4} lies on the path in C_{0} from u_{6} into u_{7}. As $u_{6} \neq u_{4}$, also the edge of C_{0} whose terminal vertex is u_{4} is contained in this path and in the cycle C_{2}. Then this edge is contained in three cycles C_{0}, C_{1}, C_{2}, which is a contradiction. Therefore, $u_{6}=u_{4}$. If u_{7} is an inner vertex of P_{1}, then an arbitrary edge of the path in C_{0} from u_{3} into u_{7} is contained in C_{0}, C_{1} and the cycle which is the union of $P_{2}^{\prime}, P_{1}^{\prime}$ and the
path in C_{0} from u_{3} into u_{7}, which is a contradiction. Therefore, u_{7} lies on the path in C_{0} from u_{4} into u_{3}. We see that C_{1} and C_{2} have only one common vertex u_{4}. Thus we may proceed further and we obtain further cycles C_{3}, \ldots, C_{k}. The cycles C_{1}, C_{2}, \ldots, \ldots, C_{k} then correspond to the cycles $A_{1}, A_{2}, \ldots, A_{n}$ from the definition of \mathscr{A}. As G cannot contain further vertices and edges, we have $G \in \mathscr{A}$ (Fig. 3).

Fig. 2

Fig. 3

Сильно связные орграфы, в которых каждая дуга принадлежит точно двум циклам

В статье характеризован класс всех конечньх сильно связных ориентированных графов, в которых каждая дуга принадлежит точно двум циклам. Это является частичным решением одной проблемы предложенной A. Ádám-ом.

DEPARTMENT OF MATHEMATICS,
INSTITUTE OF MECHANICAL
AND TEXTILE TECHNOLOGY,
KOMENSKÉHO 2.
46001 LIBEREC, CZECHOSLOVAKIA

Reference

[1] ÁdÁm, A., On some open problems of applied automaton theory and graph theory (suggested by the mathematical modelling of certain neuronal networks), Acta Cybernetica, v. 3, 1977, pp. 187-214.

