On Sperner families in which no 3 sets have an empty intersection

By H.-D. O. F. Gronau

1. Introduction

Let $\mathscr{G}(r, k)$ denote the set of all Sperner families \mathscr{F} (i.e. $X \nsubseteq Y$ for all different $X, Y \in \mathscr{F}$) on $R=[1, r]$ (the interval of the first r natural numbers with $r \geqq 3$) satisfying $\bigcup_{i=1}^{k} X_{i} \subset R$ for all $X_{i} \in \mathscr{F}(i=1, \ldots, k)$ where \subset is used in the strong sense. Furthermore we use the following notations:

$$
\begin{aligned}
\mathscr{G}^{1}(r, k) & =\left\{\mathscr{F}: \mathscr{F} \in \mathscr{G}(r, k), \bigcup_{X \in \mathscr{F}} X=R\right\}, \\
\mathscr{G}^{0}(r, k) & =\left\{\mathscr{F}: \mathscr{F} \in \mathscr{G}(r, k), \bigcup_{X \in \mathscr{F}} X \subset R\right\}, \\
n(r, k) & =\max _{\mathscr{F} \in \mathscr{G}}|\mathscr{F}|, n^{1}(r, k)=\max _{\mathscr{F} \in \mathscr{G} 1}|\mathscr{F}| \quad \text { and } \quad n^{0}(r, k)=\max _{\mathscr{F} \in \mathscr{G} 0}|\mathscr{F}| .
\end{aligned}
$$

We notice that $\mathscr{G}^{1}(r, k)=\emptyset$ holds for $k \geqq r$.
$n(r, 2)$ was determined by E. C. Milner [6] (for the dual case) and later by A. Brace and D. E. Daykin [1], and $n(r, k)$ with $k \geqq 4$ was determined by the author [3].

For $n(r, 3)$ the following two configurations are known:

$$
\begin{equation*}
n(r, 3)=\binom{r-1}{\left[\frac{r-1}{2}\right]}+1 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
n(r, 3)=\binom{r-1}{\left[\frac{r-1}{2}\right]} \tag{2}
\end{equation*}
$$

P. Frankl [2] proved (1) for large enough even r (e.g. for $r>1000$) and (2) for large enough odd r (e.g. for $r>300$). The author [3] showed (1) for $r=7$ and even
$r>400$, and (2) for all odd r with the exception of the following 12 values: 7, 11, 13, $17,19,23,25,29,31,35,37$ and 43.

In the present paper we prove
(1) for $r=4,6,114$ and even $r \geqq 120$ and
(2) for $r=11,17,23,29,35,43$.

We observe that exchanging all $X \in \mathscr{F}$ by $R \backslash X$ we get analogous results for Sperner families in which no 3 sets have an empty intersection.

We shall sharpen Theorem 5 of [3] in the case $k=3$. There we divided a maximal family $\mathscr{F} \in \mathscr{G}(r, 3)$ to two families \mathscr{F}_{0} and \mathscr{F}_{1}, and showed

$$
\left|\mathscr{F}_{0}\right| \leqq\binom{ r-1}{\left[\frac{r-2}{2}\right]} \quad \text { and } \quad\left|\mathscr{F}_{1}\right| \leqq\binom{ r-1}{\left[\frac{r-1}{3}\right]-1} .
$$

In fact $\left|\mathscr{F}_{1}\right|$ depends on $\left|\mathscr{F}_{0}\right|$. For $k=3$ and even $r,\left|\mathscr{F}_{0}\right|=\left(\begin{array}{c}r-1 \\ {\left[\frac{r-2}{2}\right]}\end{array}\right]$ implies $\left|\mathscr{F}_{1}\right|=1$.
In section 2 we shall present our main results and give a new type estimation of families of sets, which will be used in section 3 to prove a theorem analogous to Theorem 5 [3]. Finally, in section 4 we shall prove our main result.

2. Main results

Throughout this paper let $a=\left[\frac{r-2}{2}\right]$ and $b=\left[\frac{r-1}{3}\right]$.
Theorem 1. $1^{\circ} n(r, 3)=\left(\begin{array}{c}r-1 \\ {\left[\frac{r-1}{2}\right]}\end{array}\right]+1$ for $r=4,6,114$ and even $r \geqq 120$,

$$
2^{\circ} n(r, 3)=\left(\begin{array}{c}
r-1 \\
{\left[\frac{r-1}{2}\right]}
\end{array}\right] \text { for } r=11,17,23,29,35,43 .
$$

Let $r \geqq 4$. Then $n(r, 3), n^{1}(r, 3)$ and $n^{0}(r, 3)$ exist and it holds $n(r, 3)=$ $=\max \left(n^{1}(r, 3), n^{0}(r, 3)\right)$.

For $\mathscr{F} \in \mathscr{G}^{0}(r, 3)$ there is an element $v \in R$ such that \mathscr{F} is a Sperner family on $R \backslash\{v\}$, and it follows by Sperner's theorem [7]:

Lemma 1. $n^{0}(r, 3)=\binom{r-1}{\left[\frac{r-1}{2}\right]}$.
We shall use the following lemma shown in more general form in [3] (Lemma 2).

Lemma 2. Let $\mathscr{F} \in \mathscr{G}^{1}(r, 3)$ such that $|\mathscr{F}|=n^{1}(r, 3)$ and $\max _{X \in \mathscr{F}}|X|$ is minimal. Then $|X| \leqq a$ holds for all $X \in \mathscr{F}$.

Lemma 3. Let $s \leqq \frac{r}{2}$ be an integer and let \mathscr{F}_{s} denote an arbitrary family of different s-element subsets of R. Finally, let $\mathscr{F}_{2 s}^{*}$ denote the largest family of $(2 s)$-element subsets of R such that for every $X \in \mathscr{F}_{2 s}^{*}$ there is at least one pair (Y, Z) of subsets of \mathscr{F}_{s} satisfying $Y \cup Z=X$. Then

$$
\left|\mathscr{F}_{2 s}^{*}\right| \geqq \frac{\binom{r-s}{s}}{\binom{2 s-1}{s}}\left|\mathscr{F}_{s}\right|-\binom{r}{2 s}
$$

Proof. Let us consider the following families:

$$
\begin{gathered}
\overline{\mathscr{F}_{s}}=\left\{X: X \subset R,|X|=s, X \nsubseteq \mathscr{F}_{s}\right\}, \\
\overline{\mathscr{F}_{2 s}^{*}}=\left\{X: X \subset R,|X|=2 s, X \nsubseteq \mathscr{F}_{2 s}^{*}\right\} .
\end{gathered}
$$

Then for any $X \in \overline{\mathscr{F}_{2 s}^{*}}$ there is no pair (Y, Z) of sets of \mathscr{F}_{s} with $Y \cup Z=X$. For every such $X \in \overline{\mathscr{F}_{2 s}^{*}}$ there exist exactly $\frac{1}{2}\binom{2 s}{s}=\binom{2 s-1}{s}$ unordered pairs (Y, Z) with $|Y|=|Z|=s$ and $Y \cup Z=X$. All these sets are mutually disjoint, i.e., at least $\binom{2 s-1}{s}$ s-element subsets belong to $\overline{\mathscr{F}_{s}}$ for every $X \in \overline{\mathscr{F}_{2 s}}{ }^{*}$.

On the other hand for every s-element set Y of R there exist exactly $\binom{c-s}{s}$ disjoint s-element sets Z. Hence

$$
\left|\overline{\mathscr{F}_{2 s}^{*} \mid}\binom{2 s-1}{s-1} \leqq|\overline{\mathscr{F}}|\binom{r-s}{s} .\right.
$$

$\begin{aligned} & \text { Using }\left|\overline{\mathscr{F}_{2 s}^{*}}\right|=\binom{r}{2 s}-\left|\mathscr{F}_{2 s}^{*}\right| \text { and }\left|\overline{\mathscr{F}_{s}}\right|=\binom{r}{s}-\left|\mathscr{F}_{s}\right| \text { we obtain the inequality of } \\ & \text { Lemma 3. } \square\end{aligned}$

3. An upper bound for $n^{1}(r, 3)$

Let $\mathscr{F} \in \mathscr{G}^{1}(r, 3)$ such that $|\mathscr{F}|=n^{1}(r, 3)$ and $\max _{X \in \mathscr{F}}|X|$ is minimal. By Lemma 2, we have $|X| \leqq a$ for all $X \in \mathscr{F}$. The numbers $p_{i}=|\{X: X \in \mathscr{F},|X|=i\}|(i=0, \ldots, r)$ are called parameters of the family $\mathscr{F} . \mathscr{S} \mathscr{F}$ denotes the canonical Sperner family (see A. J. W. Hilton [4]).

Now we decompose \mathscr{F} to the subfamilies \mathscr{D}, \mathscr{E} and \mathscr{H} defined as follows. - \mathscr{D} is a subfamily of \mathscr{F} with $\mathscr{S} \mathscr{D}=\{X: X \in \mathscr{S} \mathscr{F}, r £ X\}$.
$-\mathscr{E}=\{X: X \in \mathscr{F} \backslash \mathscr{D},|X| \leqq r-2 a-1\}$.
$-\mathscr{H}=\{X: X \in \mathscr{F} \backslash \mathscr{D},|X| \geqq r-2 a\}$.

1. It has been proved by A. J. W. Hilton [4] that all $X \in \mathscr{F}$ with $|X|>b$ belong to $\mathscr{D} . \mathscr{S} \mathscr{D}$ is a Sperner family on $R \backslash\{r\}$. Using $\binom{r-1}{|X|} \leqq\binom{ r-1}{a-1}$ for $|X| \leqq a-1<\frac{r-1}{2}$, by LubeLl's inequality [5] we obtain

$$
\begin{aligned}
\sum_{x \in \mathscr{\mathscr { D }}} \frac{1}{\binom{r-1}{|X|}}= & \sum_{\substack{x \in \mathscr{\mathscr { G } G} \\
|X|=a .}} \frac{1}{\binom{r-1}{a}}+\sum_{\substack{X \in \mathscr{Y} \mathscr{\mathscr { O }} \\
|X| \leqq a-1}} \frac{1}{\binom{r-1}{|X|}} \leqq 1 \\
& \frac{p_{a}}{\binom{r-1}{a}}+\frac{|\mathscr{P} \mathscr{D}|-p_{a}}{\binom{r-1}{a-1}} \leqq 1
\end{aligned}
$$

and

$$
|\mathscr{D}|=|\mathscr{S O}| \leqq \frac{a}{r-a}\binom{r-1}{a}+\frac{r-2 a}{r-a} p_{a}
$$

2. $\mathscr{J}=\{X: X \cup\{r\} \in \mathscr{S}(\mathscr{D} \cup \mathscr{E}), r \notin X\}$ is a Sperner family of cardinality $|\mathscr{E}|$ on $R \backslash\{r\}$ and $|X| \leqq r-2 a-2$ holds for all $X \in \mathscr{J}$.

By Lubell's inequality [5] we obtain

$$
\sum_{x \in \mathscr{g}} \frac{1}{\binom{r-1}{|X|}} \leqq 1, \quad \frac{|\mathscr{J}|}{\binom{r-1}{r-2 a-2}} \leqq 1 \quad \text { and } \quad|\mathscr{E}|=|\mathscr{I}| \leqq\binom{ r-1}{r-2 a-2}
$$

3. Let $\mathscr{F}_{2 a}^{* *}=\left\{X: R \backslash X \in \mathscr{F}_{2 a}^{*}\right\}$. Then $\mathscr{D} \cup \mathscr{H} \cup \mathscr{F}_{2 a}^{* *}$ is a Sperner family. We notice that $|X| \geqq r-2 a$ holds for all $X \in \mathscr{D} \cup \mathscr{H}{ }^{1}$ and $|X|=r-2 a$ holds for all $X \in \mathscr{F}_{2 a}^{* *}$. Clearly, $\mathscr{D} \cup \mathscr{H}$ and $\mathscr{F}_{2 a}^{* *}$ are Sperner families themselves. We have only to show that there is no pair (Y, Z) with $Y \in \mathscr{F}_{2 a}^{* *}$ and $Z \in \mathscr{D} \cup \mathscr{H}$ satisfying $Y \subseteq Z$. Let us assume the contrary. Then there are two sets $Y_{1}, Y_{2} \in \mathscr{D}$ with $Y_{1} \cup Y_{2}=\bar{R} \backslash Y$. Hence for the sets $Y_{1}, Y_{2}, Z \in \mathscr{F}$ it follows $Y_{1} \cup Y_{2} \cup Z=(R \backslash Y) \cup Z \supseteqq(R \backslash Y) \cup Y=R$, which is impossible for $\mathscr{F} \in \mathscr{G}(r, 3)$.
$\mathscr{J}^{\prime}=\left\{X: X \cup\{r\} \in \mathscr{P}\left(\mathscr{D} \cup \mathscr{H} \cup \mathscr{F}_{2 a}^{* *}\right), r \notin X\right\}$ is a Sperner family on $R \backslash\{r\}$. If q_{i}, q_{i}^{\prime} and $q_{i}^{\prime \prime}$ are the parameters of the families $\mathscr{J}^{\prime}, \mathscr{H}$ and $\mathscr{F}_{2 a}^{* *}$, respectively, then $q_{i}=q_{i+1}^{\prime}+$ $+q_{i+1}^{\prime \prime}$ holds. By LUBELL's inequality [5], using $\binom{r-1}{$ we get }$\leqq\binom{ r-1}{b}$ for $|X| \leqq b<\frac{r-1}{2}$,

$$
\sum_{x \in \mathscr{g}^{\prime}} \frac{1}{\binom{r-1}{|X|}} \leqq 1, \quad \sum_{X \in \mathscr{P}} \frac{1}{\binom{r-1}{|X|-1}}+\sum_{X \in \mathscr{F}_{2 a}^{* *}} \frac{1}{\binom{r-1}{r-2 a-1}} \leqq 1
$$

and

$$
\frac{|H|}{\binom{r-1}{b-1}}+\frac{\left|\mathscr{F}_{2 a}^{* *}\right|}{\binom{r-1}{r-2 a-1}} \leqq 1
$$

By Lemma 3 using $|\mathscr{F}|=n^{1}(r, 3)$ and the estimations for \mathscr{D}, \mathscr{E} and \mathscr{H} we obtain

[^0]
Theorem 2.

$$
\leqq \max _{p_{a}}\left(\frac{a}{r-a}\binom{r-1}{a}+\frac{r-2 a}{r-a} p_{a}+\binom{r-1}{r-2 a-2}+\binom{r-1}{b-1} \frac{2(r-a)}{r-2 a}\left(1-\frac{p_{a}}{(r-1} \begin{array}{c}
a
\end{array}\right)\right)
$$

4. Proof of Theorem 1

Clearly, $n(r, 3)=\max \left(n^{1}(r, 3),\left(\left[\frac{r-1}{2}\right]\right)\right)$: holds by. Lemma 1.
$\mathbf{1}^{\circ}$. Let r be even. Then all a-element subsets of $R \backslash\{r\}$ and the set $\{r\}$ form a family $\mathscr{F} \in \mathscr{G}(r, 3)$ having the cardinality $\binom{c-1}{a}+1$. So we have only to show that the right side of the inequality of Theorem 2 has the value $\binom{-1}{a}+1$, too.

For $r=4$ it is easy to see that $n^{1}(4,3)=4$ holds.
Now let $r=6,114$ or $r \geqq 120$.
The function $f\left(p_{a}\right)$, of which we consider the maximum in Theorem 2 ; is a linear function in p_{a}. We have to take the maximum over the interval $\left[0,\binom{r-1}{a}\right]$, as an immediate consequence of A. J. W. Hilton's result [4] which we used in the definition of \mathscr{D}. We have $f\left(\binom{r-1}{a}\right)=\binom{r-1}{a}+1$: We have only to show that the factor of p_{a} in $f\left(p_{a}\right)$ is positive (or equal to o), i.e., using $r-2 a=2$,

$$
\begin{equation*}
\frac{2}{r-a}-(r-a) \frac{\binom{r-1}{b-1}}{\binom{r-1}{a}}>0 \tag{3}
\end{equation*}
$$

(3) is equivalent to

$$
\begin{equation*}
M(r)=\frac{2(r-b)(r-b-1) \ldots(r-a+1)}{(r-a) a(a-1) \ldots b}>1 \tag{4}
\end{equation*}
$$

$$
M(6)=\frac{5}{4} \quad \text { and } \quad M(124)=\frac{35047435882784}{34511088479301}>1
$$

Furthermore,

$$
\frac{M(6 t+10)}{M(6 t+4)}=\frac{2^{10}}{3^{6}} \frac{t+\frac{7}{4}}{t+2} \frac{t+\frac{3}{2}}{t+2} \frac{t+\frac{5}{4}}{t+\frac{5}{3}}\left(\frac{t+1}{t+\frac{4}{3}}\right)^{2} \frac{t+\frac{1}{2}}{t+\frac{2}{3}}=g(t)
$$

is monotonically increasing, because $\frac{t+x}{t+y}$ is monotonically increasing for fixed
x and y with $x<y$.

For $t \geqq 20$ we obtain $g(t) \geqq g(20)=\frac{127766373}{99866624}>1$. By induction it follows that $M(6 t+4)>1$ for $t \geqq 20$.

Moreover we have

$$
\frac{M(6 t+2)}{M(6 t+4)}=\frac{9}{8} \frac{t+1}{t+\frac{3}{4}} \frac{t+1}{t+\frac{2}{3}} \frac{t+\frac{1}{3}}{t}>\frac{9}{8}>1
$$

and

$$
\frac{M(6 t)}{M(6 t+4)}=\frac{3^{4}}{2^{6}} \frac{t+1}{t+\frac{3}{4}} \frac{t+1}{t+\frac{1}{2}} \frac{t+\frac{2}{3}}{t-\frac{1}{2}}>\frac{81}{64}>1
$$

which proves $M(2 t)>1$ for $t \geqq 60$.
Finally we complete our proof by $\frac{M(114)}{M(124)}=\frac{59025914157^{\circ}}{53793208352}>1$.
2°. In [3] the author proved the following estimation for $|\mathscr{E} \cup \mathscr{H}|:|\mathscr{E} \cup \mathscr{H}| \leqq$ $\leqq\binom{ r-1}{b-1}$. Using our estimation for $|\mathscr{D}|$ we obtain $|\mathscr{F}| \leqq\binom{ r-1}{a} \frac{a}{r-a}+\frac{r-2 a}{r-a} p_{a}+$ $+\binom{r-1}{b-1}$. Both, this estimation and the bound given in Theorem 2 are valid for each $|\mathscr{F}|$. It suffices to show that for every p_{a} one of our upper bounds is less than $\binom{r-1}{a+1}$, because in this case r is odd, i.e. $\left[\frac{r-1}{2}\right]=a+1$. We distinguish the following cases.

1. $p_{a}<\frac{a+3}{3}\left\{\binom{r-1}{a+1}-\binom{r-1}{a-1}-\binom{r-1}{b-1}\right\}$. Then $|\mathscr{F}|<\binom{r-1}{a+1}$ follows from our last estimation.
2. $p_{a} \geqq \frac{a+3}{3}\left\{\binom{r-1}{a+1}-\binom{r-1}{a-1}-\binom{r-1}{b-1}\right\}=\frac{2}{3} \frac{2 a+3}{a+1}\binom{r-1}{a}-\frac{a+3}{3}\binom{r-1}{b-1}$.

Then we use the estimation of Theorem 2. First we prove that the factor of p_{a} in $f\left(p_{a}\right)$ is negative, i.e.
(5) is equivalent to

$$
\begin{equation*}
\frac{r-2 a}{r-a}-\frac{2(r-a)}{r-2 a} \frac{\binom{r-1}{b-1}}{\binom{r-1}{a}}<0 \tag{5}
\end{equation*}
$$

$$
N(r)=\frac{9(r-b)(r-b-1) \ldots(a+4)}{2(a+3) a(a-1) \ldots b}<1
$$

We have that

$$
\frac{N(6 t+5)}{N(6 t-1)}=\frac{2^{10}}{3^{6}} \frac{t+\frac{3}{4}}{t+\frac{4}{3}} \frac{t+\frac{1}{2}}{t+\frac{4}{3}} \frac{t+\frac{1}{4}}{t+\frac{2}{3}} \frac{t-\frac{1}{2}}{t-\frac{1}{3}}=g^{\prime}(t)
$$

is monotonically increasing by our remark above.
For $2 \leqq t \leqq 5$ we obtain $g^{\prime}(t) \leqq g^{\prime}(5)=\frac{6072}{6137}<1$. From $N(11)=\frac{3}{7}, N(6 t-1)<1$ follows by induction for $2 \leqq t \leqq 6$. Finally, we get $N(43)=\frac{10179}{59432}<1 . f\left(p_{a}\right)$ takes the maximum in the described interval at $p_{a}=\frac{a+3}{3}\left\{\binom{r-1}{a+1}-\binom{r-1}{a-1}-\binom{r-1}{b-1}\right\}$, consequently. We will complete our proof by showing the following inequality.

$$
\begin{gathered}
\left\{\frac{3}{2} \frac{2 a+3}{a+1}\binom{r-1}{a}-\frac{a+3}{3}\binom{r-1}{b-1}\right\}\left\{\frac{3}{a+3}-\frac{2}{3}(a+3) \frac{\binom{r-1}{b-1}}{\binom{r-1}{a}}\right\}+\frac{a}{a+3}\binom{r-1}{a}+ \\
+(r-1)+\frac{2}{3}(a+3)\binom{r-1}{b-1}<\binom{r-1}{a+1} .
\end{gathered}
$$

This inequality is equivalent to

$$
\begin{aligned}
& w(r)=\binom{r-1}{b-1}\left\{1+\frac{2(a+3)^{2}}{9(a+1)}\left(1-(a+1) \frac{\binom{r-1}{b-1}}{\binom{r-1}{a}}\right)\right\}-(r-1)>0 \\
& w(11)=112>0
\end{aligned}
$$

Furthermore we prove the inequality $w^{\prime}(r)=\frac{(a+3)(a+1)}{(2 a+13)} \frac{\binom{r-1}{b-1}}{\binom{r-1}{a}} \leqq \frac{1}{2}$ for $r=$ $=17,23,29,35,43$ by referring to the following table:

r	17	23	29	35	43
$w^{\prime}(r)$	$\frac{140}{297}$	$\frac{1}{2}$	$\frac{154}{323}$	$\frac{442}{1035}$	$\frac{9044}{19981 .}$

Using this estimation of $w^{\prime}(r)$ we get first

$$
\begin{aligned}
w(r) & \geqq\binom{ r-1}{b-1}\left(1+\frac{2(a+3)^{2}}{9(a+1)}\left(1-\frac{2 a+13}{2(a+3)}\right)\right)-(r-1) \\
& \geqq\binom{ r-1}{b-1} \frac{2(a-6)}{9(a+1)}-(r-1),
\end{aligned}
$$

then $w(17) \geqq \frac{311}{9}>0$. $r \geqq 17$ implies $\frac{a-6}{a+1} \geqq \frac{1}{8}$ and for $2 \leqq i \leqq b-1$ we have $\frac{r-b-1+i}{i}>3$. Hence for $r \in\{23,29,35,43\}$:

$$
\begin{aligned}
w(r) & \geqq(r-1) \frac{2(a-6)}{9(a+1)} \prod_{i=2}^{b-1} \frac{r-b-1+i}{i}-(r-1) \\
& \geqq(r-1) \frac{2}{9} \frac{1}{8} 3^{b-2}-(r-1) \\
& \geqq(r-1) \frac{1}{4} 3^{3}-(r-1) \\
& >0 \quad \text { follows }
\end{aligned}
$$

5. Concluding remark

The author conjectures that (1) holds for the remaining even r and (2) holds for the remaining odd r, i.e. $13,19,25,31$ and 37.

WILHELM-PIECK-UNIVERSITĀT
SEKTION MATHEMATIK'
UNIVERSITÄTSPLATZ 1
DDR-25 ROSTOCK

References

[1] Brace, A. and D. E. Daykin, Sperner type theorems for finite sets, Combinatorics, Proc. Conf. Combinatorial Math. Inst. Oxford, 1972, pp. 18-37.
[2] Frankl, P., On Sperner families satisfying an additional condition, J. Combinatorial Theory, v. 20, 1976, pp. 1-11.
[3] Gronau, H.-D. O. F., On Sperner families in which no k sets have an empty intersection, J. Combinatorial Theory, to appear.
[4] Hilton, A. J. W., Some results on Sperner families, J. 'Combinatorial Theory, to appear.
[5] Lubell, D., A short proof of Sperner's lemma, J. Combinatorial Theory v. 1 1966, p. 299.
[6] Milner, E. C., A combinatorial theorem on systems of sets, J. London Math. Soc., v. 43, 1968, pp. 204-206.
[7] Sperner, E., Ein Satz über Untermengen einer endlichen Menge, Math. Z., v. 27, 1928, pp. 544-548.
(Received March 6, 1978)

[^0]: ${ }^{1}$ as $\min _{x \in \mathscr{D} \cup \mathscr{H}}|X| \leqq r-2 a-1$ would imply $\mathscr{H}=\emptyset$ and, together with 1 . and 2 ., the estimation given in Theorem 2.

