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Abstract 

A new model of neurons and neural processes is proposed which aims at pro-
viding a framework for treating the phenomena of statistical nature in the nervous 
system. Its conceptual base is the quantum-mechanical theory of measurement and 
some general characteristics of the interactions between systems. The simpler form 
of the model takes into account two observables, the stimulus intensity and length, 
measured by individual neurons, with only one threshold for each. By considerations 
analogous to those of quantum mechanics an' uncertainty relation is derived between 
the possible accuracy of the measured intensity and time length values. The model 
is extended to the case of many thresholds and to measurements made by neuron 
populations which, in fact, generally occur in the nervous system. 

Introduction 

The paradigms of various sciences, particularly that of biology, have always 
shown characteristic relationships to the current theories of physics. Approaches 
to the problem of neural processes have in all ages, and today as well, depended on 
the generally accepted physical model of the world. 

In classical considerations the changes of state of the units are always related 
to some interactions — "stimulation — excitation" — but there is no attention 
paid for the unique character of this interaction, namely that it means a kind of 
measurement, too. In our present knowledge, the measuring interaction is in general 
not. negligible to the interaction determining the change of state. The principle of 
strict individuality of neural objects results, however, in an essentially dynamic 
treatment in which the neural units — like the organism as a whole — behave as 
the subject in the interaction with their own environment and remain separable 
from it during the process. Therefore, the states and their transitions belong to the 
units themselves and not to the interactions. 

. In constrast to this dynamic picture the recent use of some methods of statistical 
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mechanics in the theoretical approach to neural systems was a serious step forward 
{Wiener, 1965; Cowan, 1968; Cowan, 1970, Amari, 1974). 

Today the application of techniques developed in statistical mechanics seems 
unavoidable in the study of the nervous system and these techniques meet quite 
general acceptance. One can, nevertheless, expect that in the light of further experiences 
these statistical concepts would not be satisfactory enough, and the group of available 
theoretical methods should again be enlarged by developing ideas more departed 
f rom those of classical physics. 

In our opinion three important features of the neural phenomena point to this 
•direction. First, the discrete character of the structural and functional organization 
of the nervous system on various levels. Second, the probabilistic character of the 
distribution of activity in space and time. Third, last but not least, the existence of 
the above mentioned "measuring process" itself. 

Generalization of the concept of "measurement" 

Before trying to describe any hypothetical "measuring process" in the nervous 
•system it is worth discussing the meaning of some general terms to be used. If we 
want to generalize the concept of measurement we must be aware that, in the defini-
tion and quantitative characterization of any measurable quantity — i.e. any observ-
able —, the task of finding an appropriate device for the measurement can not be 
rejected. At the first steps of generalization, however, we need not identify these 
devices immediately with some concrete physical objects, in particular if we start 
with empirical experiences in the cases when objects and events are not separable 
f rom each other. 

Let us try first to find a mathematical model that is fairly general to serve as 
a framework for any possible structure of events. Mathematically, the concept of 
an event is considered a primitive notion that is not otherwise defined; our ultimate 
aim is to get to a formalism for treating the systems of events taking place in the 
nervous system. Thus every object will be defined only by the system of events 
belonging to it. 

Fortunately, there is already existing a general model of physical systems which 
applies not only to physical but any other systems as well and is adequate for the 
description of the measuring process (Mackey, 1963). Let us now sum it up briefly. 

Suppose the structure of our system is not changing in time and the values of 
all the observable quantities are real numbers. The distribution of any of these quan-
tities can be determined by measurements, i.e., by processes which select out a subset 
of the sample set given for the observables. The observables can have several different 
distributions; the state a of the system determines which one of them would result 
as the outcome of the measurement. Thus a real-numbered random variable cp 
belongs to each observable. Mathematically, \p is a Borel function mapping an 
(Q, S, P) measurable space into the set R of real numbers: 

cp: Q R (1) 

where (Í2, S) is the set of events being subsets of the sample set Q and P is a proba-
bility measure defined on (£2, S). 
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Now, let (p be assigned to a given observable 0 and let £ be a given subset of 
the a -algebra B of the Borel sets in the set R of real numbers, i.e., E£B. In simple 
cases E is an interval. The question, then, arises: what is the probability that the 
value of q> falls into the set El 

According to the definition of cp, 
there is a subset cp~1(E) in (Q, S) 
which is mapped to E by cp (Fig. 1). 
<p~1(E) is, of course, an event. As P 
is the probability measure defined in 
the same space (Q, S, P) the probabil-
ity we asked is P[<p_1(ii)]. 

The distribution of the values of (p 
given in this way can be called the 
distribution induced by P. We shall 
denote it by P% expressing the depend-
ence of this distribution on the state a 
of the system and on the observable cp 
Therefore, every system has a family 
of distributions P% (Fig. 2). 

Mathematically, if we consider several different (Q, S, P) probability spaces 
the induced distributions P* may also be different. Physically, however, we expect 
that if the state of the system, denoted by a, is the same while the measured observables 

Fig. 1 

<Pl, <P2, <P« are different, the distributions pa pa r<n> 1 <P11 •• Pi should be induced 
by the same probability measure P=P* depending only on a in a fixed (Q, S) meas-

Fig. 2 

urable space. In other words, as we want to characterize the system by the simultaneous 
description of the different observables — i.e., physical quantities —• we must have 
an event space common to all of them. This common event space, then, represents 
the system by representing the states that determine the induced distributions. 

As it is well known in probability theory, the most general event space in which 
a probability measure can be defined — i.e., in which the events are all compatible, 
with each other — is the Boolean a-algebra. Accordingly, Boolean CT-algebra can 
be an adequate structure for the common space outlined above if all combinations 
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of simultaneous events are physically possible in the system. For example, in this case 
any set of predetermined values f l t f s , . . . , /„ for the observables <Pi, cp2, ..., cp„ 
can be given as an outcome of a measurement. The structure of the event space 
in classical physics — involving statistical mechanics and such extensions as e.g. 
the present models of neural systems — is therefore Boolean o-algebra but in quantum 
mechanics where, in fact, it is not possible for certain events to occur simultaneously, 
another structure must be chosen. 

In quantum mechanics the subspace lattice of the Hilbert space / / (of infinite 
dimensions) is used as a common event space. Thus the mapping operates from 

the intervals of real numbers — 
more generally, the subsets of the 
set of Borel sets of real numbers — 
to the subspaces of H : 

(p-1: B - H (2) 

where (p~1(E) = {q>~1(x)\xiE}, and 
x i s a real number (that is taken by 
the random variable cp at an ele-
ment of H) (Fig. 3). 

It is obvious that the mapping 

(p-1: B -~H 

is a homomorphism. 
Now we can construct a one-to-one correspondence I between the subspaces 

of H and the operators P projecting to these subspaces. Then the mapping 

/ o < p - 1 : 5 - / > (3) 

operating from the intervals of real numbers to the set of projection operators will 
be a so-called projection measure. As it is known, each projection measure is equiva-
lent to a self-adjoint operator; the theory of self-adjoint operators (Neumann, 1932; 
Araki and Yanase, 1960) then provides us with the formalism adequate for deducing 
all the consequences essential in quantum mechanics. 

The operators corresponding to the observables in classical physics are all 
commutative. Mathematically this follows from the fact that the common event 
space in this case is a distributive lattice; in quantum mechanics, on the contrary, 
the subspace lattice of H is not distributive, thus the -opierators do hot always 
commute. From the point of view of measurement the non-commutativity involves 
the existence of observables whose values are not measurable simultaneously. There-
fore, if we want to decide whether a system can be described by means of a formalism 
of classical type . or not, we examine the physical possibilities for simultaneous 
determination of any set of values of the various observables. 

. The aim of this paper is to suggest and outline a model of abstract neural 
objects in which the common event space is a non-distributive lattice; i.e., the formal-
ism of treatment is analogous to that of quantum mechanics. Apart from the mathe-
matical construction described above one can have another, more general, possibility 
to approach the problem that in which cases an essentially probabilistic view of 
a given system is necessary. 

X £ E £B P l  
* (!> 

Fig. 3 
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Measurement and complexity 

It is trivial that any process by which information can be obtained — i.e., any 
measurement — involves an interaction between at least two systems, say A and B. 
A and B are connected together in such a way that as a result of the measuring 
interaction the states Si, Si, •••, Si of A will inevitably correspond to some states 
S f , Si, S% of B and vice versa. Thus, if 0(A) is an observable belonging to A 
and 0(D> is another belonging to B, any given value of 0(A) (determined by the 
state of A) corresponds to a given value of 0 ( B ) (determined by the corresponding 
state of B). Let now A be the system to be measured and B the measuring one. 
Assume that both A and B have more or less complex structure. The notion 
of complexity does not need a strict definition here; it is enough to consider that the 
more complex a system is, the more complex the changes of its states and the para-
meters describing these changes will be. In the case of the measuring interaction 
between A and B there are two basic possibilities. 

If A and B have equal complexity or B is more complex than A then the state 
changes in B can reflect in an adequate way the state changes in A. If, howewer, 
B is less complex than A, B does not have a large enough number of states for this 
purpose and in this case the measurement can lead to only a probabilistic description 
of A via the parameters of the state changes of B. 

In practice, there is possible an important compromise. Namely, if though the 
system A is the more complex one, but it does not take part, as a whole, in the inter-
action, then the description may be dynamic. The necessary condition for this is 
that the part of A interacting with the measuring system B should not be more 
complex than the totality of B. H is possible only in this case — that all observables 
describing A are measurable simultaneously. 

The quantum-mechanical concept of measurement is, therefore, the adequate 
tool for studying systems exhibiting non-negligible complexity in their interactions. 
In our opinion the nervous system does have this property. The application of the 
theory of measurement for this branch of biology is possible because the interactions 
between the nervous system and its environment, or between the parts of the nervous 
system itself, can be viewed as measuring processes (Jólesz and Gyöngy, 1975). 
In addition, any measurement has an aspect regarding to information, as the result 
of the measurement appears as a given state of the system (or its parameters), and 
the same is true for the new information obtained by the measurement. If we observe 
the measuring processes in the nervous system are of statistical nature we accordingly 
tend to discard the dynamic principles that would uniquely determine all details 
of the interactions occuring in the system. 

A simple model of the neural measuring process 

The simple abstract model of the neuron, discussed here, is somewhat similar 
to the so-called formal neuron, but a few of its properties are essentially different. -
As the mathematical concepts and procedures are all well known from quantum 
mechanics, for the sake of conciseness we will confine the treatment to a brief outline. 

The basic postulates are as follows: 
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1. The system is characterized by a wave function <P ; the state of the system is 
fully determined by 0. is an element of the Hilbert space H. 

2. The properties of the system are described by giving the possible values (the 
so-called eigenvalues) of the observables and by associating with each of them one 
or more state-functions in the Hilbert space, termed eigenfunctions. In addition, 
each wave function $ can be expanded as a linear combination of the eigenfunctions 
of any observable. Thus, the observables 01,02, . . . , On, ... are characterized by the 
appropriate sequences of real numbers: 

0\- feg1') •••> ••• 

n • L-(2) 1,(2) 

To each observable a set of probability values is assigned: 

O,: W(lci1', <£), <?),..., W(k?>, <P),... 

02. W(ki2\ $), W(k?\ <P), ...., W(k<°-\ <Z>), ... 

where the probabilities W depend also on <£. 
The wave functions are elements of the space H and can be demonstrated as 

vectors in the Euclidean space of infinite dimensions. The observables are operators 
in the space of functions or matrices in the Euclidean space. Matrices and operators 
are both linear mappings of vector spaces. 

3. The probability of that any given observable O takes on a value from the 
given interval {k', k") can be determined in any state. (See Fig. 4.) 

k' k" 

I I. I I I | .1 I 1 I I I 1 1 1 I 1 I 1 I 

0(h) 
Fig. 4 

4. The probability of that the values of two observables Ox and 02 falls simul-
taneously into the intervals (k ' , k") and (/', /"), respectively, can be computed for 
some observables but can not be done so for others. The operators of these latter 
are not commutable: 

0 1 0 2 ^ 0 2 0 1 (4) 
or 

0X02 - 020X = cl (5) 

where c is an imaginary number and / is the unit operator or matrix. 
In the model we assume that from the point of view of the measurement only 

two observables are relevant: the stimulation intensity I and the time length T during 
which the stimulation operates. In other words we assume that the stimulation has 
the only physical properties of intensity and length. As for both these observables 
the number of possible values is infinitely large we need some further simplifications. 
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In accordance with the existence of intensity and length thresholds and 
/„ — in real neurons suppose that both these observables can take on only two values 
each (Fig. 5). 

To be more clear, let the states be represented by vectors of unit length on the 
plane. Let cp1 and cp2 be the state vectors associated with the two possible values 

/ 0 - -

11 to ti 

Fig. 5 
Where and t l denote 

values below, while /, and 
above the threshold 

Fig. 6 

/j and i2 of the observable / and i a n d tJ/2 the state vectors similarly for the observable 
T (Fig. 6). 

It may be worth noting that all the eigenfunctions are mutually orthogonal, 
i.e., the scalar product of all pairs of them is equal to zero. 

Now we have the symbols necessary for working with the model: the stimulus 
intensity / and length T as quantities to be measured, the possible values i1} i2 and 
t1, t2 of them, being equal either 0 or 1: 

r » i = 0 f a > i ) f i i = 0 ( ^ , ) -

U = i o2) U = 1 ow 

Operators, probabilities, expectations and variances 

Let the projection of an arbitrary state i> to the direction of the eigenstates 
<Pi and <p2 be a± and a2, respectively, and to the direction of ip! and \j/2 be bx and b2 
(Fig. 7). 

Thus, 0 can be written as 

^ = ai<Pi + a2<7>2 = b^i + b^i. 

The expansion of as a linear combination of the eigenstates of / (or T) is 
called the / (or T) representation of <P. 
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The operators projecting to a given state cr will be denoted by Pa. Thus applying 
to <J> we get 

Pq>l& = a1(p1. 

It is obvious that projecting to itself it remains unchanged 

P9l<P i = <Pi, 
and projecting to a direction orthogonal to it the result will be zero 

P«<Pi = 0. 

In the simple model presented here we consider only two operators A and B 
representing the observables I and t , respectively. As it was assumed, I and T can 

take on two values each and with every one of 
these values a corresponding state is associated. 
Note that in quantum mechanics this kind of 
characterization of the states and observables 
is quite general but the number of states is 
usually infinite. Therefore, the operators repre-
senting / and T can be written as 

I-*A = i1P<Pl + i2Pv 
and 

T ~B= txP^ + t2P^ 

If we want to compute the probability of 
obtaining the various values of the observables 
in a given state we should multiply by the 
proper projection operators and then take the 
scalar product of the result with itself: 

Probability {The measurement yields the value k}=(Px<P, Py <P) (6) 
where x is the eigenstate associated with k. 

Applying the above procedure to i1, i2, tx and t2 the probabilities essential in 
our model are 

W(U,0) = (P9t$,Pn*) = al, 

W(tl,0) = (Pfl0,P^)^bl ( 7 ) 

= i V . * ) = ft! • 
Note that 

at + a¡ = 1 (8) 
and 

bt+b¡ = 1 (9) 

as in both cases one of the two possible values will certainly be obtained with proba-
bility 1. 

As two important special cases, it is apparent that obtaining the value i2 in the 
state <p1 is impossible 

W(it, (Pi) = <PX, P„ P I ) - 0 , ( 1 0 ) 
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and obtaining the value ix in the state <pi is certain 

W(i1,q>1) = (Ptfl<Pi,P9icPl) = \, (11) 

In general, if the state of the system coincides with one of the eigenstates of 
a given operator, the observable corresponding to that operator has a uniquely deter-
mined value by the measurement; and in any other state the probabilities of obtaining 
any permissible value of that observable can be computed in the way outlined above. 
If, however, we want to determine the probability of that in an arbitrary state 0 the 
observable / takes on the value and the observable T takes on the value t1 we may 
easily get to a confusing result. In this case, 0 should first be projected to cp1 belong-
ing to h 

P ^ = ai<Pi, 02 ) 

then the result of this projection should be projected to i//1 belonging to 

P*x = = a i P ^ P i - (13) 

The sought probability according to. (6) is 

faiP^iPi, a i P ^ V i ) = a K P ^ V i , P ^ V d = a l i v M 2 - (14) 

But, if we follow the reverse order of this procedure, namely projecting first 
to and then to cp1 

I P^ = b (15) 

P 9 1 ( . P ^ ) = ^ ( ¿ i W = (16) 

(Z>i Pj>i, hPM = b\(PVl Vi, 1) = ¿I(«Ai, <Pif- (17) 

It is trivial that the two computed values for the same probability are not equal: 

a K v ^ y ^ b l ^ c p t f (18) 

as because of the result of the scalar product being independent of the order of the 
factors 

(<Pi, <A 1) = OK, <Pi) (19) 
and thus 

a\ b\ (20) 
causes the inequality to hold. 

Accordingly, it is not possible to make a unique assertion about the probability 
of obtaining simultaneous values for I and T. The order of applying the operators 
corresponding to I and T to a given state function 0 is not commutable: 

AB0 ^ BA0 (21) 
or 

AB0-BA& = C0 (22) 

where CV0 is called commutator. C is independent of the state, i.e., of the wave 
function 0. 

6 Acta Cybernetica IV/2 
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In the model it is of paramount importance to compute the expectation value 
and the variance of the stimulus intensity and length. The expectations in a given 
state 0 are 

I = hal + wl = h(PVl<P, + P ^ ) = 

= k(PVl0, 0) + i2(P^, 0) = ([hP^+hPJ <t>) = (A*, (23) and 
T=t1b\ + hb\ = (B0,0). (24) 

The expectation value thus can be given without knowing the analytic form of 
the wave function and the operator representing the observable to be measured: 

A = (A0, 0) (25) 

B = (B<P, 0 ) (26) 

In a quite similar way we get the variances : 

(AI)2 = ([A-Ai\20,0) (27) 

(AT)2 = ([B-BI\20, 0) (28) 

where I is the unit operator. 

Appearance of the uncertainty relations 

In the light of the above considerations a question arises concerning the 
meaning of the simultaneous measurement of the stimulus intensity and time length. 
It is obvious that the neuron can be regarded as a physiological device for measuring 
the intensity and length of various stimuli and not less obviously this measuring 
process relates to some threshold conditions. In our simple model what consequences 
can be drawn if, as we have just seen, there is an inherent ambiguity in the process 
of simultaneous determination of the probabilities for / and 77 

If the measurement of one of the observables, e.g. the stimulus intensity, can 
yield two permitted values and ;2 according to the existence of a threshold, the 
states (pi and <p2 associated with the eigenvalues il and i2 respectively assign the proba-
bility 1 to the corresponding or /2 values of the observable I. If by the same measure-
ment the neuron does determine the length of the stimulus, too, the measurement 
yields either the value t1 or t2 for the observable T and, consequently, we can be sure 
that the system was either in the state {¡/1 or \f/2. Thus, in a simultaneous measurement 
one of the eigenstates of / would be the same as one of the eigenstates of T. This 
involves the commutativity of the operators belonging to I and T. In the model 
suggested here, however, like in quantum mechanics, neither cp1 or q>2 is equal 
to ipi or ip2. The contradiction disappears only if we accept that in the measuring 
process of the neuron there are measurable quantities whose statistics can not be 
correlated with each other. In other words, as there are no common eigenstates of 
the intensity and length of the stimulus, these two observables can not be measured 
simultaneously however obey them, separately, quite well-defined probabilistic laws. 

The variances of the observables relevant in our model have a relationship 
to each other similar to that between the variances of canonical conjugate variables 
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The variances 

Now let 

described by the Heisenberg uncertainty relation. This relation expresses, in fact, 
that the two observables have no common eigenstates. 

The farer is the state of a neural object from the eigenstate, for a given observ-
able, the more uncertain the value of that observable; the variance is zero only in 
an eigenstate. If the equation (21)—(22) holds true, the variances of the two quantities 
in that equation can not be zero simultaneously. Of course, this means that the 
simultaneous measurement of these quantities can not, even theoretically, be arbitrar-
ily accurate. We can ask only to what extent the (A A)2 and (A Bf variances can be 
simultaneously lowered. 

To see this let us introduce two auxiliary operators: 

A' = A-AI 
and _ (29) 

B' = A-BI 

As it is obvious the commutation relations remain true for A' and B' 

A'B'-B'A' = C. 

(AA)2 = (<Z>, A'2<P) = (A'<P, A'$) 
(30) 

CdB)2 = (<2>, B'24>) = (B'<¡>, B'4>). 

f — A'$ (31) 
g = B'0. 

As / and g are quadratically integrable functions, according to the Schwartz 
inequality 

l ( / , g ) M 11/11-llgll. (32) 

Substituting from (30) into (32): 

(AÁ)2(AB)2 == |(A'$, B'$)\2 = |(<P, A'B'Q)|2 (33) 

With some trivial transcriptions: 

A A A B ^ ^ \ C \ (34) 

This inequality characterizes the correlation between the uncertainties in the 
measured value of observables corresponding to non-commutable operators. The 
choice of the state of the model neuron does not affect the validity of (34). 

For the measurements of stimulus intensity and length 

AIAT^C. (35) 

This relationship is analogous to the Heisenberg uncertainty relation with the 
important difference of C being not a universal constant but only one independent 
of the state. (35), (27), (28) assert that in the proposed model the accurate simultaneous 
measurement of the stimulus intensity and length has an absolute (theoretical) limita-
tion (Jólesz and Szilágyi, 1974.). This does not mean that the neuron could not 

6* 
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measure either the intensity or the length of a given stimulus; it states only that it 
can not measure them simultaneously with an arbitrary precision. In other words, if 
the state function is not an eigenvector of a given operator A, by the measure-
ment of the observable corresponding to A we can be given several different results 
and the farer is the state of the neuron from an eigenstate of A, the more uncertain 
the value of the given observable. 

To sum up the process of measurement by the model neuron, the most important 
points, in our opinion, are the following. The neuron measures the property I or T 
of the stimulus, or rather their thresholds; in the process of this measurement its 
original state <P turns into q>1 or rp2 (associated with the numbers and i2 charac-
terizing the value of I being above or below the threshold) in the case of measuring I, 
and into i o r iJ/2 (associated with tt or t2) in the case of measuring T: 

< ! > - > (36 ) 
<?2 

This state change is called the measuring process. It corresponds to the projec-
tion process of the state vector onto the direction of one of the eigenvectors. In 
the measuring process the object being in the state <P turns into one of the eigen-
states (pj of the operator A of the measured variable (/ or T). The process itself 
does not require any description; what is relevant are only the probabilities of the 
occurrence of the various possible (pj final states. 

Denoting the projection operator projecting onto the direction of by P<f,. 
we obtained that the probability of the 

$ - P ^ = <PJ)(PJ (37) 

transition is |(sP, (pj)|2 as a result of the measuring process. 
As the state vectors are normalized to unity the multiplicative coefficient of 

(pj can be eliminated by normalization. Thus the original state <J> becomes completely 
vanished from the expression of the final state. The original state takes part only 
in the expression of the transition probability. The measuring process has a repre-
sentative only in the set of the projection operators. 

Apart from the measuring process — which is in some sense a singular one — 
another process is existing in the model: the spontaneous change of state of the 
undisturbed system. This process can be described by a continuous rotation: 

(38) 

where U(a) a unitary operator with the rotation parameter a. 
It is obvious that both processes outlined are well identifyable in the case of 

our model and of real neurons as well. In contrast to the continuous transition in 
spontaneous processes, the measuring process represents a discrete change of state. 

Finally, it may be worth noting that it is possible to draw conclusions about 
the state before a measurement. One can do so by the measurement itself, because 
the probability distribution of the measured spectrum reflects just the distribution 
of the possible states before the measurement. This latter but characterizes a real 
state for, in the case of neurons as analogous systems to micro-objects in quantum 
mechanics, it is the probability distribution of the possible eigenvalues which con-
tains the whole information about any given state independently of the measurement. 
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An extension of the model 

As we have stated before, the neuron can be viewed as a device for measuring 
the stimulus intensity and length. The neuron can have, however, not only one thresh-
old for the measured observables, but many different ones for each. It involves 
the need for extending the previous simple model to be able to treat a series of eigen-
values {Í'Í, i2, ...,*'„, ...} and {i l512, . . . , t n , ...}. 

Consider the points k¡ on the real line permitted for a given observable R to 
take on as measured values. Thresholds can be taken into account by leaving out 
certain points from the set of the possibilities; mathematically this is done by means 
of a projection operator E(k) which increases in the permitted points and remains 
constant elsewhere. The whole set of the permitted values will be called the spectrum 
of R. 

It is obvious that operators having discrete series of eigenvalues are adequate 
for the description of observables whose permitted values constitute also a discrete 
series. Thus, this kind of operators can be used in a neuron model with a number of 
discrete thresholds. 

For theoretical derivation of the possible values of a given observable — e.g. 
thresholds of intensity — we need to know the operator corresponding to that observ-
able. It is enough to determine the two observables characterizing the stimulus be-
cause all the other observables — e.g. which relates to the speed of the stimulus 
intensity change in time — and consequently their operators can be deduced from 
these. 

The formal neuron (McCulloch and Pitts, 1943) and the variations of it can 
also be regarded as devices for measuring the stimulus intensity (Lábos, 1975). 
In some experiments (Lábos, 1973; Sclabassi, Lábos et al., 1973) neurons have 
yielded response characteristics the analysis of which by means of model frequency 
code points towards the idea of the neuron with more than one threshold. A similar 
system of thresholds can be obtained from the Hodgkin—Huxley model (successive 
current thresholds, Lieberstein, 1973) as well. 

According to Lábos (1975) any neuron having response characteristic with 
generalized distribution function can be regarded as a measuring device. The response 
characteristics which refer to more than one threshold generate discrete Lebesgue— 
Stieltjes measurable spaces. In addition, Lábos stated that neurons have various 
different sets of thresholds depending on the length of the stimulus: the shorter the 
stimulus in time, the fewer levels of intensity can be distinguished. As it was mentioned 
before, the neuron should be represented by not only some thresholds in intensity 
but in length as well. Therefore, the outlined model should be extended. 

In the most general case there must be a solution both for discrete and contin-
uous eigenvalues. Thus, let i be an arbitrary real number (being one of the eigen-
values of the stimulus intensity as an observable) and E(i) an operator with the 
argument i. E(i) is a generalization of projection operators of the simple model, 
projecting to different subspaces depending on the value i. Let / and g be two arbitrary 
elements of the domain of E(i). Taking the inner product 

( / , E(i)g) = (E(i)f, g) (39) 
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if the following Lebesgue—Stieltjes integral exists: 

f id ( / , E(i)g) ' (40) 

where 
£ ( - « 0 = 0, £ ( + « ) = I (41) 

Tbeing the unit operator, then an operator A can be constructed: 

( / , Ag) = f id{f, E(i)g) (42) 

A = f id£(i) (43) 
E(i) is called the spectral decomposition of the operator A. In the case of discrete 

spectrum E(i) depends on i in the following way 

E(i) = ZPn- (44) 
¡„=51 

The intervals where ( / , E(i)g) is constant may be excluded from the domain 
of integration. These values do not belong to the spectrum of A; to this spectrum 
do belong only the values i whose corresponding product ( / , E(i)g) is changing. 
Where the change is continuous, so is the spectrum, while the points where 
there is an abrupt change in (f,E(i)g) constitute the point spectrum of A. In this 
way the existence of thresholds may be taken into consideration. There can be no 
projection operator attributed to the isolated points in the domain of any continuous 
spectrum. On the contrary, to the interval (/', i") the following projection operator 
belongs 

£ = £ ( i " ) - £ ( i ' ) . (45) 

those for 

(46) 

(47) 

(48) 

(49) 

It would hold true only, however, if both A and B were functions of the same 
operator but, according to our assumptions, now this is not the case. 

In our opinion the extended neuron model is characterizable by the set of thresh-
olds of stimulus intensity and length. The operators associated with these observ-
ables are in one-to-one correspondence with some subspaces of H and hence the 
equality EF=FE would be valid only if EE and £ £ projected onto the same subspace. 
As but the system of eigenvectors and so the subspaces in question are not common 
the operators do not commute. 

According to the outlined model, neural objects are represented by the Hilbert 
space; events are represented by its subspaces or the projection operators being in 
one-to-one correspondence with the subspaces. 

The commutation relations for the operators are closely related to 
their spectral.decompositions. Let 

A = JidE(i) 
and 

B=f tdF{t). 

E(i)F(t) = F(t)E{i) then 
AB = BA. 



A possible new model of neurons and neural processes based on the quantum-mechanical 235 

The relevance of measurement should be stressed in particular. The outcome 
of the measurement is affected by chance; the probability of any given transition 
from a state before to another after the measurement depends on the beginning 
state and the measured observable. The beginning state $ of the object is an element 
of the Hilbert space representing the object in question. The resulting state (p„ is 
always an eigenstate of the operator of the measured observable. The measured value 
of the observable is the in eigenvalue (in the case of intensity measurement) belonging 
to the eigenstate (pn. The distribution function determined by the transition proba-
bilities, i.e., the probability of that the value i„ of / i s not greater than a given value i 
is as follows 

W(in =S i \<P) = («P, E(i) <*>) (50) 

or, with some trivial transcriptions 

W(in i |S) = ( / , £(00) = (*, E*(i)<fi) = (E(i)$, E(i)$) = \\E(i)<Pf. (51) 

Knowing the probability distribution, the expected value is easily computed 

A = f id{<t>, E(i)$). (52) 
The scatter 

(A-Alf = (<P, (A-A\ft>) = \(A-Al)<P, (A-Al)<P\ = (53) 

As regards to the measuring process, the following are important. In the case 
of the measuring interaction the object being in the state $ turns into another state 
(p„. (p„ is one of the eigenvectors of the operator of the measured observable, i.e., 
/, where / can be expanded by the projection operators P„ : 

¿= 2 hPn=j id(E(i)) 

Pn<Pn = (Pn, A<Pn = in<Pn (54) 

E(i)= 2 Pn 

The distribution function of the transition probabilities by transcribing (51) 

W(in ^ i[<P) = \\E(r><PV = 2 \(<P«> (55) 
¡„Si 

where \(cpn,<P)\2 is the probability of the transition <£—<p„. 
The measurement yields a correct value for / if <pn uniquely determines in and 

vice versa. The eigenvalue iB is really the correct value, because in the state q>n the 
deviation for the operator / is zero: 

(<pn, [A - AW q>n) = ([A - A\] <?„,[/(- ¿I] <pn) = 

= \\(A-Al)cpnr = \\Acpn-A<pnV = 0 

Another case occurs if the observable to be measured has a continuous spectrum 
(i.e. set of eigenvalues). Let the spectral decomposition of / be E(i). A measurement 
with given correctness means that the outcome i falls into a given interval (V, i"). 
The probability of this is 

W(V < i 3= i" |«P) = (<P, E(i)$) (57) 
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where <P is the state before the measurement. The length of the interval ( / ' , /'•") may 
be arbitrarily small the value of remains finite; it follows then that 
the probability of the case of absolute correct measurement is zerof 

W(i' < I =s i" | = 0 . ( 5 8 ) 

Consequently, in the continuous range of the spectrum (according to the model 
suggested) there exist measurements only with non-zero uncertainty. 

Probabilistic interpretation of the neural measuring process 

Theoretical interpretations regarding to the operation of the nervous system — 
in spite of that they contradict to each other in some respects — have the common 
feature of accepting (at least at present) the probabilistic nature of the neural proc-
esses. In this respect the opinions are diverging in whether this nature is the same 
as that of other disciplines in physics (classical physics, thermodynamics, quantum 
mechanics) or is inherently different. 

In our model the spontaneous and the measuring process may be in close connec-
tion with the probabilistic interpretation. The measuring process influences the state 
of the system, so obtaining information is connected to the state change. When we 
state that the new information, i.e., the result of the measurement, is reflected in the 
new state of the system, we lay stress on the statistical meaning of the state. Namely, 
while during the spontaneous process the state transition $ — is not statistic 
(the system turns from U=P0 into U=P0. in a continuous way), the measuring 
process causes the state <P to transform into one of the eigenstates <px,tp2, •••, this 
transformation being only stochastically determined: the probabilities.\(<P, cp^l, 

(Pi)],.:, of the states<p1,(p2,... are uniquely determined and not so is the final 
state itself. During the measuring process the states turn into mixed form 

U = P 0 ^ U ' = ¿ m < P „ ) \ 2 P V n . (59) 
/ 1 = 1 

In the language of information theory the measurement is a kind of mixing 
processes hence it is necessarily irreversible. 

The basic difference between the spontaneous and measuring processes is that 
while in the time interval between two measurements the variation of the state vector 
is determined and continuous, the variation owing to the measurement is sudden 
and discontinuous. This latter can be described only by probability laws. 

After the measurement the state of the system is a compound consisting of the 
eigenstates of the operator of the measured observable. All these statements are of 
importance if one considers a measurement taken by the neuron: from the point 
of view of neural networks, the outcome of the measurement means that a group 
of neurons is not in a homogeneous state but its members have different states with 
different probabilities. Any combination of these states can be a measurement out-
come if the measuring device is the given group. After the measurement the group 
can yield only probabilistic relationships. 

In the field of theoretical neurobiology relatively large area is occupied by 
statistical mechanics (Wiener, 1958; Cowan, 1968; 1970; Amari, 1974). Regarding 
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to the origin of the probabilistic laws applied, the analysis may show different levels 
of deepness (Griffith, 1971). In the application of the theory of random processes to 
macroscopic neural networks one can disregard even the existence of the 
network structure. It causes, then, the treatment to confine itself to statistical fluctu-
ations. However, there are a number of theories of considerable efficiency by the 
utilization of probabilistic concepts of neural processes. 

In addition to the use of the methods of statistical mechanics some examples 
of the use of quantum statistics can also be found (Winograd and Cowan, 1963; 
Cowan, 1965; Agin, 1963; Michalov, 1967, 1968). In our opinion this way is very 
promising. By means of the formalism of quantum mechanics essential features of 
the neural measuring process may become known. Moreover, we can extend the 
borders of the probabilistic interpretation by taking into account that only the 
statistics of the observables are really "observable". The connection between the 
state functions and the observables has an inherent statistical nature because, in 
the model suggested here, in the case of a system with k degrees of freedom the states 
are characterized by a function <P(g1,g2, • ••,&) which is an element of the Hilbert 
space; therefore, with even a full giving of cP one can make only statistical assertions 
about the system. (Obviously it is irrelevant that the probability of the truth of these 
assertions lies sometimes near 0 or 1). 

Characterization of the state of a neural micro-object by a state function yields 
the possibility of making probabilistic statements, but the validity of the statements 
can be checked only on some groups of micro-objects, i.e., on neural populations. 
This means also that this formalism expects immediately the measurement to be 
made by neuron populations or, equivalently, it expects the recording of the sta-
tistics of the measured observables. In classical statistical mechanics the question 
concerning the probability of finding a given neuron from the population in a given 
state can always be asked and answered as well. On the contrary, the probabilistic 
expressions in the formalism of quantum theory give possibility only of answering 
the question about the probabilities of a given value to fall into the interval (/', i") 
or the interval ( t t " ) separately. There is no probability measure common to both 
intervals because there is no common state in which both probabilities can be 
measured. 

Assuming that populations of neurons are generally not in pure state (i.e., 
all neurons are not in the same state) we should consider mixtures. If a measurement 
is made on a system in mixed state it forces the system to turn into an eigenstate. 
The sudden change of the state function at the moment of the measurement can be 
described by means only of probabilistic relationships. In the theory of measurement 
(Neumann, 1932) it is generally assumed that measuring an observable on a single 
object R is not all that possible and the measurement even should be made on a 
system of very many objects. With the attitude of measurement theory the large 
dimensionality of the nervous system and also the concept of redundancy can gain 
a new interpretation. Namely, according to this attitude, it is advisable to make 
measurements on large statistical groups consisting of a number of micro-objects 
R¡, R2, ..., RN, where N is a large number. On such a group the distribution of the 
values of the measured observable is determined. The advantage of this procedure 
is that though the measurement disturbs the object on which it was made, the dis-
turbance of the population as a whole may be arbitrarily small if N is large enough. 
Furthermore, though two observables having non-commuting operators can not 
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be measured simultaneously to any degree of accuracy, in the population their proba-
bility distributions can be determined with an arbitrarily small error. It is enough 
to measure a part of the whole system, if the number of elements M of that part is 
large, i.e. M » 1, but it is much smaller than N(M<s:N). In this case the measurement 
affects only the M/N part of the total system. Measuring another observable on 
another part, made up by K elements, of the system, the two measurements do not 
interfere if (K+M)<s:N and (K+M)/N<s. 1. These requirements can easily be fulfilled 
if N is large enough; in this case K and M may also be large. 

In the nervous system by means of statistically large populations of neurons 
there is a possibility of objective measurements being independent of occasional 
disturbations and of that any single neural object is unable to make simultaneous 
accurate measurements of two non-commuting observables. However, as it will soon 
be demonstrated, the measurement can not be absolutely accurate even in this case: 

Consider, for example, the simpler one of the models described, in which the 
observable / can take on the values i1 and i2 only. Let us measure / on a population 
{2?1; R2, . . . , /?„}; then we get % as a result at a part . . . , i ?^} of the population 
and z"2 at another part {Rx, . . . , As a consequence of the measuring process, 
however, the neuron states will change in both parts of the population and, for this 
reason, if we measure another observable T on the same population (with possible 
values tx and /2) it is no more possible to obtain scatterless results because the eigensta-
tes of / can not be eigenstates of T. Accordingly, simultaneous measurements can 
not produce pure populations. 

It is generally stated that probability is a property of certain classes of popula-
tions. This permits, however, to apply probability calculus to some individual 
(e.g. neural) processes, if we know that probability calculus is applicable if the process 
at hand leads to statistical populations. In the study of neural processes the reason 
for probability to play role is twofold. On the one hand, in the starting mixed state 
of the system certain properties — e.g. intensity and length thresholds — have sta-
tistical distributions and this causes a statistical distribution of the measured values 
as well. On the other hand, during the measurement the nervous system passes 
through a series of interactions which gives rise to statistical distributions of certain 
parameters. In both cases it is plausible that the individual objects making up the 
population (i.e. the neurons) obey some dynamic laws different from the statistical 
ones. Therefore, the concept of the so-called measuring interaction requires an ade-
quate framework to be placed in, in order to be distinguishable from another types 
of interactions. 
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Summary 

The purpose of the present paper is to investigate some properties of measuring processes 
performed by single nerve cells and neural nets. We applied the formalism of quantum mechanics; 
and the quantum-mechanical concept of measurement. We used the subspace lattice of the Hilbert 
space as a common event space. Two neuron models were analyzed in which we assumed that only 
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two observables (stimulus intensity and time) are relevant. In these models we considered only two 
operators representing the observables. 

The first model was characterizable by one threshold, the second one by the set of thresholds. 
In the proposed models the simultaneous measurement of the observables has an absolute limita-
tion and the variances of them have a relationship which is analogous to the Heisenberg uncertain-
ty relation, with the important difference of C being not a universal constant. Statistical properties 
of the neuronal measuring processes were examined. 

The mathematical methods for dealing with neuronal systems that we have described in this 
paper seem to have many advantages over the methods usually used. There is a strong analog be-
tween these methods and the techniques generally used for physical systems. Although we have 
limited ourselves in this paper to two neuron models, the presented new method is generalizable 
to neuronpopulations that are composed of elements with n thresholds and in which not only two 
observables are measured. 
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