
Estimation of average length of search on random
zero-one matrices

B y A . BEKESSY

The real content of this short paper is simply a theorem about zero-one matrices.
In order to enlighten the background however, reference is made to a certain method
of data retrieval.

Let there be given a zero-one matrix of size mXn such that all of its rows are
different from each other. Let us suppose that the rows of this matrix constitute
a primary key to a certain file of records stored in a computer. Therefore, the rows
of the matrix will be called "names". Our problem is to find the location of any
particular name (and the record associated with it) quickly, whenever wanted. The
most rapid search-algorithms performing this job, e.g. "binary search" [1] are based
on comparisons of the names by their magnitudes and if one complete comparison
is counted one decision step then the'average number of decision steps to be done
for finding any name comes close to the lowest theoretically possible information
limit, this latter being log2 m if all names are looked for with equal frequencies.
A complete comparison of two names, however, requires a considerable amount of
time on some computers, so other procedures, though less effective in terms of
decision steps, might come into consideration, too, if an elementary decision step
is less time consuming.

The simplest looking search strategy would consist of decision steps to be
performed column-by-column: given the name to be found the first column of the
name-matrix is inspected first. If it consisted of zeros (or ones) only then we pass
over to the second column immediately. If not then one decision is counted and
the subset of those names is selected whose first column bit was identical, to that
of the name to be looked for. The second column is then inspected in the same way
but restricted to the subset of names selected before, and so on, until the name is
completely identified. For finding each name the steps to be made are completely
determined by the structure of the name matrix and can be represented by a "search-
tree" (Table 1, Fig. 1). The numbers in the nodes show the column no. of the bit
the decision should be made on.

The strategy described above would not come into consideration at all should
it be done in "run-time" i.e. when the names are looked for repeatedly and be found
as quickly as possible. But assumed the file does not change often there might have

1 Acta Cybernetica IV/3

1

242 A. Bekessy

been ample time for constructing the corresponding search-tree or, more precisely,
an equivalent "search-table" [2] when the file was generated.

The search-table (Table 2) is a list of two pointers. The first column indicated
shows the relative location address of that line only; it does not belong to its content.
The real first column field is the serial number of the bit to look at, and according
to whether it proves to be zero or one the first, resp. the second pointer should be
followed by the search-algorithm working in run-time. Zero in the first column
would indicate that the search has its end there and the fields belonging to this line
would contain the record or a single pointer to that record, for instance.

Names Column no.
1 2 3 4 5

1. 1 0 1 0 0
2. 1 0 0 0 1
3. 0 1 0 1 0
4. 1 0 0 1 1
5. 1 0 1 1 1
6. 1 0 0 1 0

Table 1. Name-matrix

Name 1. Name 5.

Name 6. Name 4.

Figure 1
Search-tree to the matrix of Table 1.

A serious objection against the simple strategy described above is that it might,
in some cases, result in a highly unbalanced search-tree. For the worst matrices the
average number of the necessary decisions is as high as (m + l)/2 about. But matrices
of ill behaviour, i.e. matrices with highly unbalanced search-trees are rare. This is
the meaning of the theorem shown below.

Remark. It is possible, in practice, to make the algorithm a bit more flexible:
let the decision in turn to be performed on the column in which the zeros and ones

Location Col. no. •Pointer 1. | Pointer 2.

L + l 1 L + 2 | L + 3
L + 2 0 Pointer to record 3.
L + 3 3 L + 4 I L + 9
L + 4 4 L + 5 | L + 6
L + 5 0 Pointer to record 2.
L + 6 5 L + 7 | L + 8
L + 7 0 Pointer to record 6.
L + 8 0 Pointer to record 4.
L + 9 4 L + 10 | L + l l
L + 10 0 Pointer to record 1.
L + l l 0 Pointer to record 5.

Name Number of
Decisions

1. 3
2. 3
3. 1
4. 4
5. 3
6. 4

Table 2. Search-table to the matrix of Table 1.

18

Ave. number of steps: 18:6 = 3
Table 3.

Number of decisions to
be done according to Table 2.

Estimation of average length of search on random zero-one matrices 243

are distributed most evenly for that particular subset of names that was selected
in the previous step. This will help in a lot of cases where the first approach would
result in a highly unbalanced tree.

Now we prove the following

Theorem. Let all zero-one matrices of size mXn with all rows different be
considered and supposed to be equiprobable.- Let E(Mm<„) be the arithmetic
mean of decisions to be made in order to find each row of matrix Mm „ according
to the simple strategy described above. Let Sm„ be the expectation of the aver-
ages £(Mm>„). Then for all m^2n~1 + 1

+ + \ + (1)

or, because of 1+4-+ . . . - I - = l n w + y + 0 (— | (where y=0.577... Euler's
2 m— 1 \m)

constant),

(?„,„< 1.833... + log 2 m + o [^ j , (m, n m < 2 " - 1 + l)* (2)

Proof. Let N(m, n, du d2, ..., dm) be the number of matrices Mm n such that
di decisions have to be made for finding the i-th row (/=1, 2, ...,«). Then E(Mm „) =
= Z d J m and

i

Smn = T7 2 E(Mmt„)N(m, n,d1,d2,...,dJ

where N= ^ j ml is the number of all matrices Mm n. The latter expression can be
simplified, because of symmetry in the variables dt, to

$mn = ^Zd-N{m,n,d) (3)
Jy i

where N(m, n, d) is the number of matrices Mm n such that there are d decisions
needed for selecting the first row. For this number N(m, n, d) the recursion

N(m, n + l,d) = 2N(m, n,d) + 2 ["¡Z}) N(J, n,d-1) • (w
2 j J (m - j) ! (4)

holds. The first term gives account on the matrices the first column of which consists
of zeros (or ones) only. The j-th term under the summation is the number of matrices

* It is thought that the condition m ^ l " ' 1 + 1 is, in fact, not necessary. Also the constant
might perhaps be improved to —0.5 + y/ln 2 = 0.33... .

l*

244 A. Békéssy

with j zeros in the first column while the first-row-first-column bit is zero, as well.
Matrices of j ones in the first column when the first-row-first-column bit is one,
are of the same number; therefore the sum should be multiplied by two. The boundary
conditions '

2 if m = 1, d = 0,
N(m,\,d)=2 if (n = U = l , .

0 otherwise;

N(m n 0) = (2 " ' f n , = 1 '
10 otherwise

m

dy
it follows easily

p

or, under the restriction m s 2 " _ 1 + 1

' - - . 4 K f i (' - T ^)] '
Again, for + 1

'--"¿['"IVt^)]-

giving the end-result.

(5)

complete the recursion (4).
Introducing the function

H(X, n,y)= 2 2 / - ¿ f ^ - N(m, n, d) (6)
d=0 m= 1 \jn—l)\

we obtain

H(x, 1, y) = 1 +xy,

H(x, n +1, y) = 2 • {1 + y [(1 +xf -1]} • H(x, n, y)

from (4) and (5), with solution
H(x, n, y) = 2» • " f f {1 +y[(1 +xr ~ !]}• (7)

p = 0

Since by (3) and the definition (6) of H

= ^
= 1 m

«-1 (2n — 2P\l(2n — n
= 2 (m _ i) / l m _ i J (8)

(9)

(10)

Estimation of average length of search on random zero-one matrices 245

Remark 1. For — const.

¿ (i - O - 2 - r - 1) -
P=i

Could it be proved Sm„sSm a a for all n, a better constant would be achieved in the
inequality (2).

Remark 2. The problem dealt with here resembles strongly that of calculating
the average hight of random trees [3]. Instead of looking, however, for an appropriate
link between the two problems the straightforward method presented here seemed
to be simpler.

Abstract

The average efficiency of a simple search algorithm defined on random zero-one matrices is
estimated.

COMPUTER A N D A U T O M A T I O N INSTITUTE
H U N G A R I A N A C A D E M Y OF SCIENCES
P. O. BOX 63
BUDAPEST, H U N G A R Y
H—1502

References

[1] MARTIN, J., Data-base organization, P r e n t i c e - H a l l , 1975, p p . 2 5 4 — 4 0 6 .
[2] KNUTH, D. E., The art of computer programming, Vol. I, Addison-Wesley, 1968, pp. 315— 16.
[3] RENYI, A . , G . SZEKERES, O n t h e h e i g h t o f trees , J. Austral Math. Soc., v . 7 , 1969 , p p . 4 9 7 — 5 0 7 .

(Received Jan. 24, 19791

