The cardinality of closed sets in pre-complete classes in k-valued logics

By J. DEMETROVICS and L. HANNÁK

Introduction

Let $E_k = \{0, 1, \dots, k-1\}$. By a k-valued function we shall mean a function $f: E_k^n \to E_k$, and by P_k we denote the set of all those functions. If A is a subset of P_k , [A] will stand for the set of all superpositions over A. (The definition of a superposition over A is the following:

1. $f \in A$ is a superposition over A.

2. If $g_0(x_1, ..., x_n), g_1(x_{11}, ..., x_{1m_1}), ..., g_n(x_{n1}, ..., x_{nm_n})$ are either superpositions over A or $g_i(x_{i1}, ..., x_{im_i}) = x_j (i=1, ..., n)$ then $g_0(g_1(x_{11}, ..., x_{1m_1}), ..., g_n(x_{n1}, ..., x_{nm_n}))$ is a superposition over A.)

The set $A \subset P_k$ is closed if A = [A]. We call A complete if $[A] = P_k$. The closed set \mathcal{M} is precomplete if $\mathcal{M} \subseteq A \subseteq P_k$ implies $[A] = P_k$. I. ROSENBERG [8] has given a complete description of the precomplete classes in P_k . In order to formulate his theorem we need some definitions. An h-ary relation R is a subset of E_k^h . If g is an n-ary k-valued function and R is an h-ary relation we say that f preserves R if $(f(x_1^1, ..., x_1^n), ..., f(x_h^1, ..., x_h^n)) \in R$ whenever $(x_1^1, ..., x_h^1) \in R, ...$..., $(x_1^n, \ldots, x_h^n) \in R$ an h-ary relation R is called central if it fulfils the following conditions:

1. $(a_1, ..., a_h) \in R$ whenever not all of $a_1, ..., a_h$ are distinct,

2. for each permutation π of 1, 2, ..., h, $(a_1, \ldots, a_k) \in \mathbb{R}$ if and only if $(a_{\pi(1)}, \ldots, a_{\pi(h)}) \in \mathbb{R},$ 3. $\emptyset \neq$

$$\emptyset \neq \cap \{c \mid (a_1, \ldots, a_{h-1}, c) \in R\} \neq E_k.$$

 $(a_1, ..., a_{h-1}) \in E_k^{h-1}$ For $a \in E_k$ we denote by $[a]_l$ the *l*-th digit (l=0, ..., m-1) in the expansion $a = \sum_{l=0}^{m-1} [a]_l \cdot h^l$ of a in the scale of h.

We may now state the theorem of Rosenberg as follows:

There are 6 types of precomplete classes in P_k and every proper closed subset of P_k is contained in at least one precomplete class.

This 6 types are the following:

3 Acta Cybernetica IV/3

1. \mathcal{M}_{μ} the set of all functions which preserve a partial order μ of E_k with greatest and least element.

2. S_{π} , the set of all functions which preserve the graph of a nonidentical permutation π where π is the product of cycles with the same prime length.

3. L_{σ} the set of all functions which preserve the quaternary relation

$$\sigma = \{(a_1, a_2, a_3, a_4)/a_1 + a_2 = a_3 + a_4\}$$

where $\langle E_k, + \rangle$ is an elementary Abelian *p*-group.

4. K_{θ} , the set of all functions which preserve the non trivial equivalence-relation θ of E_k^2 .

5. C_{ϱ} , the set of all functions which preserve the *h*-ary central relation ϱ $(1 \le h \le k)$.

6. H_R , the set of all functions which preserve the relation R, where R is for some $h (3 \le h \le k)$ and for some surjection $\Phi: E_k \rightarrow E_{h^m}$ the *h*-ary relation

$$|\{[\Phi(x_1)]_l, \dots, [\Phi(x_n)]_l\}| < h \text{ for } l = 0, \dots, m-1.$$

(Such a relation *R* is called *h*-regular.)

If A is a closed subset of P_k , v(A) will denote the cardinality of the set of all closed sets contained in A. Let us denote by c the cardinality of the continuum.

JU. I. YANOV and A. A. MUČNIK [5] have proved that $v(P_k) = c$ for k > 2. The general result of E. Post [10] implies that $v(P_2) = \aleph_0$.

It is a natural question to determine v(A) when A is a precomplete class. In this paper we shall prove the following three statements:

I. if k>2 and M is a precomplete class of type 1., 4., 5., or 6. then $v(M) = \mathfrak{c}$, II. if k>2 then $v(S_n) \ge \aleph_0$ for all precomplete classes of type 2.,

III. $v(S_{\pi}) = \mathfrak{c}$ if k is not prime.

The precomplete class L_{σ} was investigated by many authors. A. SALOMAA [8] J. DEMETROVICS and J. BAGYINSZKI ([2] and [3]) proved $v(L_{\sigma}) < \aleph_0$ in the case if k is prime. J. BAGYINSZKI [1] and A. SZENDREI [9] showed that if k is square-free then there are finitely many closed linear classes in P_k . A. SALOMA [8] proved, that $v(L_{\sigma}) \ge \aleph_0$ if k is not square-free and D. LAU [7] showed that $v(L_{\sigma}) = \aleph_0$ in this case.

1. §.

The proof of the first statement is based on the construction of JU. I. JANOV and A. A. MUČNIK [5]. They have proved, that the set of functions $\{g_i\}$ defined by

$$g_i(x_1, ..., x_i) = \begin{cases} b & \text{if } |\{j|x_j = c\}| = i & \text{or} \\ |\{j|x_j = b\}| = 1 & \text{and} \\ |\{j|x_j = c\}| = i-1 \\ a & \text{in all other cases} \end{cases}$$

has the property

 $g_i \notin \left[\bigcup_{j \neq i} g_j \right]$

(a, b and c are pairwise distinct fixed elements of $E_k, k>2$).

Let μ be a fixed partial order of E_k , let a be its least element, c its greatest one and a < b < c such that $\{x | b < x < c\} = \emptyset$. In this case every g_i preserves μ , that is $v(\mathcal{M}_{\mu}) = c$. If θ is a non-trivial equivalence, then we can choose $a \neq b$ such that $a \equiv b(\theta)$. Let c be an arbitrary element of E_k $(c \neq a, c \neq b)$. Since $g_i(x_1, ..., x_n) \in \{a, b\}$ all g_i preserve θ and $v(K_{\theta}) = c$. If ϱ is a central relation of E_k then g_i preserves ϱ whenever a is an element of the centre of ϱ . Hence $v(C_{\varrho}) = c$.

If R is an h-regular relation, then we can chose arbitrary distinct elements a, b, c. Every g_i preserves every h-regular relation of E_k .

Thus we have proved

Theorem 1. If k > 2 then

$$v(M_{\mu}) = c$$
$$v(K_{\theta}) = c$$
$$v(C_{e}) = c$$
$$v(H_{R}) = c$$

for all μ , θ , ϱ , R defined in I. ROSENBERG's theorem.

A permutation of E_k , π can be written as a product of disjoint cycles. Such a cycle will be denoted by c_i . If

$$\pi = c_1 \dots c_n$$
 and $c_i = (a_{i1}, \dots, a_{im_i})$

then $\{c_i\}$ will denote the set $\{a_{i1}, \ldots, a_{im_i}\}$.

Lemma 1. Let $k \ge 3$, π be a permutation in the form $\pi = c_1 \dots c_m$. If m > 1 and there are $i, j \le m$ such that $i \ne j$,

$$|\{c_i\}| = k_1, |\{c_j\}| = k_2$$
 and $k_1|k_2$ (k_1 devides k_2)

then a set of closed classes of cardinality c preserving π can be constructed.

Proof. We can assume, that

$$c_1 = (0, \dots, a_n), \quad c_2 = (1, 2, \dots, a_m) \text{ and } |\{c_1\}|||\{c_2\}|.$$

May be that $\{c_1\} = \{0\}$ or $\{c_2\} = \{1, 2\}$.

Let $m \ge 3$ and

$$g_m(a_1, \dots, a_m) = \begin{cases} b \in c_2, & \text{if } \{a_1, \dots, a_m\} \subset \{c_2\} \text{ and } |\{j|a_j = b\}| = 1 \text{ and} \\ & \text{all } a_j \neq b \text{ is equal to } \pi^{-1}(b), \end{cases}$$
$$d \in c_1, & \text{if } \{a_1, \dots, a_m\} \subset \{c_1\} \cup \{c_2\} \text{ and the previous} \\ & \text{condition does not hold,} \\ a_1 & \text{in all other cases.} \end{cases}$$

One can easily see, that since $|\{c_1\}| ||\{c_2\}|, g_m(x_1, ..., x_m)$ preserves π . We shall prove that $g_m \notin [\bigcup_{\substack{m \neq j}} g_j] = G_m$ for all $m \ge 3$. Let us suppose that $g_k \in G_k$ i.e.

$$g_k(x_1,\ldots,x_k) = \mathfrak{A}(x_1,\ldots,x_k)$$

3*

where \mathfrak{A} is a superposition over G_k . Let $g_s(x_{i_1}, \ldots, x_{i_s})$ be a function in \mathfrak{A} . If s < kthen we can find an x_l such that $x_l \notin \{x_{i_1}, \ldots, x_{i_s}\}$. If we choose $x_l = 1$ and $x_1 = x_2, \ldots$ $\ldots, x_{l-1} = x_{l+1}, \ldots, x_k = 2$ then, by the definition, $g_k(x_1, \ldots, x_k) = 1$, and $g_s(x_{i_1}, \ldots, x_{i_s}) \in c_1$ that is $\mathfrak{A} \neq 1$ holds. (All g_m preserve the set $\{c_1\} \cup \{c_2\}$ and $\{a_1, \ldots, a_m\} \cap c_1 \neq \emptyset$, $\{a_1, \ldots, a_m\} \subset \{c_1\} \cup \{c_2\}$ imply $g_m(a_1, \ldots, a_m) \in c_1$. If s > k then we have at least one pair

 x_{i_k}, x_{i_l} such that $i_k = i_l$.

Let $x_{i_k} = x_{i_l} = 1$ and all $x_j = 2$ with $j \neq i_k$. In this case we have also $g_s(x_{i_1}, ..., x_{i_s}) \in c_1$ and $g_k(x_1, ..., x_k) = 1$, which is a contradiction. Thus Lemma 1 is proved.

As a corollary of Lemma 1 we obtain

Theorem 2. If k>2 and k is not prime then $v(S_n)=c$ for all precomplete classes S_n .

Lemma 2. Let k>2, and π be a permutation which contains at least one cycle of length $q \ge 3$. Then a set of closed classes of cardinality \mathfrak{c} preserving π can be constructed.

Proof. We will give a set of functions $\{t_i\}$ such that $t_k \notin \left[\bigcup_{i>k} t_i\right] = T_k$ and t_i preserves π .

Let

$$t_m(a_1, ..., a_m) = \begin{cases} b & \text{if } (a_1, ..., a_m) = (b, b, ..., b) \text{ or } \\ (a_1, ..., a_{j-1}, a_{j+1}, ..., a_m) = (b, b, ..., b) \\ and & a_j = \pi^{-1}(b) \\ \pi^{-1}(b) & \text{if } \{a_1, ..., a_m\} \in \{\pi^{-1}(b), b\}^m \\ and & \{j|a_j = b\}| \subset m-1 \\ a_1 & \text{in all other cases.} \end{cases}$$

(b is an element of a cycle which has the length $q \ge 3$).

The definition implies that t_m preserves π , and $t_m(\{\pi^{-1}(b), b\}^m) \in \{\pi^{-1}(b), b\}$. A vector $a = (a_1, ..., a_m)$ is called characteristic if

and

$$|\{j|a_j = b\}| = m-1$$
$$|\{j|a_j = \pi^{-1}(b)\}| = 1.$$

Let us suppose that $t_m(x_1, ..., x_m) = \mathfrak{A}$ where \mathfrak{A} is a superposition over T_m . In this case we can choose a formula \mathfrak{A}^* such, that $\mathfrak{A}^* = t_s(\mathfrak{B}_1, ..., \mathfrak{B}_s)$, \mathfrak{A}^* equals b on all characteristic vectors and for every \mathfrak{B}_i there is a characteristic vector a^i such that $\mathfrak{B}_i(a^i) \neq b$. (I.e. \mathfrak{A}^* is "minimal".)

By the assumption we have s > m. Let v^k denote the characteristic vector with $x_k = \pi^{-1}(b)$. Consider the matrix

$$\begin{array}{c} \mathfrak{B}_1(v^1) \dots \mathfrak{B}_s(v^1) \\ \mathfrak{B}_1(v^2) \dots \mathfrak{B}_s(v^2) \\ \vdots \\ \mathfrak{B}_1(v^k) \dots \mathfrak{B}_s(v^k) \end{array}$$

By the "minimality" of \mathfrak{A}^* every column of the matrix contains at least one occurrence of $\pi^{-1}(b)$. s > m implies that at least one row of the matrix contains two or more occurrence of $\pi^{-1}(b)$. If the *l*-th row contains at least twice $\pi^{-1}(b)$ then $\mathfrak{A}^*(v^l) = \pi^{-1}(b)$ which is a contradiction as $t_m(v^j) = b$ for all $j \in \{1, 2, ..., m\}$. Thus Lemma 2 is proved.

As an immediate consequence of Lemmas 2 and 1 we have

Theorem 3. If $k \ge 3$ then for all precomplete classes S_{π} , $\nu(S_{\pi}) \ge \aleph_0$ holds. If k is not prime, then $\nu(S_{\pi}) = c$.

```
COMPUTER AND AUTOMATION INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES
KENDE U. 13-17.
BUDAPEST, HUNGARY
H-1502
```

1

References

- [1] BAGYINSZKI, J., The lattice of closed classes of linear functions defined over a finite ring of squarefree order, K. Marx Univ. of Economics, Dept. of Math., Budapest, v. 2, 1979.
- [2] DEMETROVICS, J., J. BAGYINSZKI, The lattice of linear classes in prime valued logics, Banach Center Publications, Warsaw, PWN, v. 8, 1979, in press.
- [3] BAGYINSZKI, J., J. DEMETROVICS, Lineáris osztályok szerkezete prímszám értékű logikában, Közl. — MTA Számítástech. Automat. Kutató Int. Budapest, v. 16, 1976, pp. 25–53.
- [4] JABLONSZKII, S. V., Functional constructions in k-valued logics, (Russian) Trudy Mat. Inst. Steklov., v. 51, 1958, pp. 5-142.
- [5] JANOV, JU. I., A. A. MUČNIK, Existence of k-valued closed classes without a finite basis, (Russian) Dokl. Akad. Nauk. USSR, v. 127, 1959, pp. 44—46.
- [6] LAU, D., Über die Anzahl von abgeschlossenen Mengen von linearen Funktionen der n-wertigen Logik, Elektron. Informationsverarb. Kybernet., v. 14, 1978, pp. 567–569.
- [7] SALOMAA, A. A., On infinitely generated sets of operation in finite algebras, Ann. Univ. Turku. Ser A. I, v. 74, 1964, pp. 1–12.
- [8] ROSENBERG, I. G., Structure des fonctions de plusieurs variables sur un ensemble fini, C. R. Acad. Sci. Paris, v. 260, 1965, pp. 3817–3819.
- [9] SZENDREI, A., On closed sets of linear operations over a finite set of square-free cardinality, *Elektron. Informationsverarb. Kybernet.*, v. 14, 1978, pp. 547-559.
- [10] Post, E., Introduction to a general theory of elementary propositions, Amer. J. Mat., v. 93, 1921, pp. 163-185.

(Received April 3, 1979)