Recognition of monotone functions

By H.-D. O. F. Gronau

Let $n, k, k_{1}, k_{2}, \ldots, k_{n}$ be integers with $n \geqq 1, k \geqq 1$ and $1 \leqq k_{1} \leqq k_{2} \leqq \ldots \leqq k_{n}$. Moreover, let $E=\{0,1, \ldots, k\}$ and $E_{i}=\left\{0,1, \ldots, k_{i}\right\}$ for $i=1,2, \ldots, n$. We consider functions

$$
f(\underset{\sim}{x})=f\left(x_{1}, x_{2}, \ldots, x_{n}\right): N=E_{1} \times E_{2} \times \ldots \times E_{n} \rightarrow E .
$$

We always may assume that f takes each value of E. If $\underset{\tilde{d}}{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ are vectors from N, let $\underset{\sim}{x} \leqq y$ if and only if $x_{i} \leqq y_{i}$ for $\tilde{i}=1,2, \ldots, n . f$ is said to be monotonically increasing if $\underset{\sim}{x} \leqq y$ implies $f(\underset{\sim}{x}) \leqq f(\underset{\sim}{y})$. Let $M\left(k_{1}, k_{2}, \ldots, k_{n}, k\right)$ denote the set of all such monotone functions. $M(1,1, \ldots$ $\ldots, 1,1)$ is the set of monotone Boolean functions.

Let $P(f)$ be a minimal set of vectors $\underset{\sim}{x}$ on which f has to be known for knowing the function completely. Let

$$
\chi\left(k_{1}, k_{2}, \ldots, k_{n}, k\right)=\max _{f \in M\left(k_{1}, \ldots, k_{n}, k\right)}|P(f)| .
$$

Furthermore, let $\varphi\left(k_{1}, k_{2}, \ldots, k_{n}, k\right)$ denote the minimal number of operations of the best algorithm for the recognition of an arbitrary function f of $M\left(k_{1}, k_{2}, \ldots\right.$ \ldots, k_{n}, k. Clearly,

$$
\varphi\left(k_{1}, k_{2}, \ldots, k_{n}, k\right) \supseteqq \chi\left(k_{1}, k_{2}, \ldots, k_{n}, k\right)
$$

G. Hansel [1] proved in case $k_{n}=k=1$ that

$$
\varphi(1,1, \ldots, 1,1)=\chi(1,1, \ldots, 1,1)=\left(\left[\frac{n}{2}\right]\left[\begin{array}{c}
n \\
{\left[\begin{array}{c}
n \\
2
\end{array}\right]+1}
\end{array}\right)\right.
$$

It is conjectured that $\varphi=\chi$ is also true in the general case. Therefore, it is important to known χ exactly, not only a lower estimation. The aim of this note is to determine the exact value of χ. Let $m=\sum_{i=1}^{n} k_{i}, m(\underset{\sim}{x})=\sum_{i=1}^{n} x_{i}$ and $S_{m}^{L}(N)=\mid\{\underset{\sim}{x}: \underset{\sim}{x} \in N$, $m(\underset{\sim}{x})=l\}$. We have

Theorem 1.

$$
\chi\left(k_{1}, k_{2}, \ldots, k_{n}, k\right)=\text { sum of the } 2 k \text { largest values } S_{m}^{l}(N) .
$$

Proof. A chain $\left({\underset{x}{1}}^{1},{\underset{\sim}{x}}^{2}, \ldots,{\underset{x}{x}}^{m}\right)$ of length m is a sequence of m different vectors from N satisfying ${\underset{\sim}{x}}^{1} \leqq x^{2} \leqq \ldots \leqq x^{m} . P(f)$, where f is an arbitrary function belonging to M, contains no chain of length $2 k+1$. Assume the contrary. Then there are 3 consecutive members $x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}$ of the chain satisfying $f\left(x^{\prime}\right)=f\left(x^{\prime \prime}\right)=$ $=f\left(x^{\prime \prime \prime}\right)=i$, where $i \in\{1,2, \ldots, k-1\}$, or we have $f\left(x^{2}\right)=0$ or $f\left(x^{m-1}\right)=k$. Since $i=f\left(x^{\prime}\right) \leqq f\left(x^{\prime \prime}\right) \leqq f\left(x^{\prime \prime \prime}\right)=i, f\left(x^{1}\right) \leqq f\left(x^{2}\right)=0$ or $f\left(x^{m}\right) \geqq f\left(x^{m-1}\right) \geqq k, f\left(x^{\prime \prime}\right), f\left(x^{1}\right)$ or $f\left(x^{m}\right)$, respectively, would follow from the others immediately, i.e. $x^{\prime \prime}, x^{1}$ or x^{m} could be omitted in $P(f)$, in contradiction to our supposition that P is minimal. By J. Schönheim's result ([2], Theorem 2) we obtain for each f :

$$
|P(f)| \leqq \text { sum of the } 2 k \text { largest values } S_{m}^{l}(N)
$$

Now we consider the function

$$
f(\underset{\sim}{x})=\left\{\begin{array}{lll}
k & \text { if }\left[\frac{m}{2}\right]+k & \leqq m(\underset{\sim}{x}), \\
i & \text { if }\left[\frac{m}{2}\right]+2 i-k \leqq m(\underset{\sim}{x}) \leqq\left[\frac{m}{2}\right]+2 i-k+1 \quad(i=1, \ldots, k-1), \\
\cdots & \text { if } & m(\underset{\sim}{x}) \leqq\left[\frac{m}{2}\right]-k+1 .
\end{array}\right.
$$

$f(\underset{\sim}{x})$, where $\left[\frac{\dot{m}}{2}\right]-k+1 \leqq \dot{m}(\underset{\sim}{x}) \leqq\left[\frac{m}{2}\right]+k$, cannot be infered by f of the other vectors.
J. Schönheim's remarks ([2], Remarks 4 and 5) complets the proof.

In case $k_{n}=1$ we obtain

Corollary 1.

$$
\chi(1,1, \ldots, 1, k)=\sum_{i=\left[\frac{n}{2}\right]-k+1}^{\left[\frac{n}{2}\right]+k}\binom{n}{i}
$$

In case $k_{n}=k=1$ we obtain partly G. Hansel's result.

Corollary 2.

Theorem 2.

$$
\chi(1,1, \ldots, 1,1)=\left(\left[\begin{array}{c}
n \\
{\left[\frac{n}{2}\right]}
\end{array}\right)+\binom{n}{\left[\frac{n}{2}\right]+1}\right.
$$

$$
\varphi(1,1, \ldots, 1, k)=\sum_{i=\left[\frac{n}{2}\right]-k+1}^{\left[\frac{n}{2}\right]+k}\binom{n}{i}
$$

Proof. We use $\varphi \geqq \chi$ and Corollary 1 on one side and the special symmetrical chain method by G. Hansel on the other side. Let f be known on all chains having a length $\leqq a$. Furthermore, let c be an arbitrary chain of length $a+2$. Then f is known on many of the members of c immediately. More precisely, at most on 2 vectors of c we do not know if f takes the value 0 or a value of $\{1, \ldots, k\}$. Then at most on 2 vectors of c we do not know if f takes the value 1 or a value of $\{2, \ldots, k\}$; and so on. Finally, f is unknown at most on $2 k$ members of c. By Hansel's argument the theorem follows immediately.

Finally, we want to mention that Hansel's special symmetrical chain method cannot be generalized to the general case $k_{n} \geqq 2 . N$ is then partitionable too, but not in Hansel's special symmetrical chains. This can be verified easily in the case $n=2, k_{1}=1$ and $k_{2}=2$.

WILHELM-PIECK-UNIVERSITÄT
SEKTION MATHEMATIK
DDR-25 ROSTOCK
UNIVERSITÄTSPLATZ 1

References

[1] Hansel, G., Sur le nombre des fonctions booléennes monotones de n variables, C. R. Acad. Sci. Paris, v. 262, 1966, No. 20, pp. 1088-1090.
[2] Schönheim, J., A generalization of results of P. Erdõs, G. Katona, and D. J. Kleitman concerning Sperner's theorem, J. Combinatorial Theory, v. 11, 1971, pp. 111-117.

