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A simple procedure is presented for minimizing partially defined Boolean 
functions. A binary tree is constructed to every such function in a natural way, 
then certain subtrees are used to obtain a partially defined irredundant normal 
form, equivalent to the starting function. 

§ 1. Preliminaries 

The truth-values TRUE, FALSE, and UNDEFINED will be denoted by 
1, 0, and * (asterisk), respectively. The notion of partially defined Boolean function 
(truth function) and the notion of totally defined Boolean function (propositional 
formula) is used in the standard way. The collection of the partially defined Boolean 
functions will be denoted by 08, while the collection of the totally defined Boolean 
functions by $F. It is clear that ¿F^SS. We emphasize that the truth-values TRUE 
and FALSE are considered also as elements of ¿F, but UNDEFINED is not 
a partially defined Boolean function, i.e. we put 

{0, l } c f and * $ B. 

Let (p, ij/1, ..., \j/m be arbitrary formulae (in and let A1; ..., Am be arbitrary 
logical variables, not necessarily occurring in <p. If each occurrence of At in cp 
(if any) is substituted by i/̂  for i= 1, ...,m, then the resulting formula will be 
denoted by (p[A1\ip1, ..., Am\ij/m], while the substitution process by (A1\i//1, ..., Am\ij/m). 
If {A±, ..., Am} is the (full) set of the logical variables occurring in q> and each 
formula i¡/t ( l ^ i ^ m ) is identical with one of the truth-values TRUE and FALSE, 
then the substitution {A1\il/1, ..., Am\\j/m) will be called a valuation, and ^[A^ipy, ... 
..., Am\\j/m] is the value of q> under this valuation. The value of (p is clearly logically 
equivalent to one of the truth-values TRUE and FALSE. 

It is well-known from the propositional calculus that the value of any totally 
defined function -cp does not depend on the order of the logical variables in the 
valuation. In other words, to determine the value of a formula under a valuation 
it is indifferent that the substitution is executed simultaneously or successively. 
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We note that in certain cases the same definition works for <p£38, too. 
In more detail, if (A1\\j/1, ..., Am\\l/m) is a valuation for a partially defined function cp, 
then <p[A1\i//1, ..., Am\ipm], defined exactly as above, is either UNDEFINED or 
logically equivalent to one of the truth-values TRUE and FALSE. 

§ 2. The tree constructing algorithm 

For a partially defined Boolean function (p we have to know the set of those 
valuations for which (p is not defined, i.e. the set of undefined valuations. For any 
<p£38, let us write 

if 
neither cplA^, ..., Aj\j/n] = 1 nor >[/41 |i/'1, . . . , Am\\j/m] = 0, 

where {Alt ..., Am) is the full set of the logical variables occurring in cp, and 
..., ij/m are from the set {TRUE, FALSE}. We put 

<P* = K^ll'Al, ¿mWm)-- = *} 

and introduce the following two totally defined Boolean functions: . 

(p[A1\<p1,-...,Am\ij/m] 
if ( A ^ , . . . ^ J ^ X ^ , 

0 otherwise; 
<p°[Al\ilf1,...,AM = 

(p^A i l ' / ' i , —,Am\ifJ = 

(p[A1\tp1, ...,Am\ij/m] 
if (A1\ij/1,...,Am\il/m)$(plt:, 

1 otherwise. 
Finally, let us define a subset [cp°, cp1]. of J* by '-: > 

№,<?] = if ( A l ^ , . . . , ^ ! ^ ) ^ , , ' then 
ip[A1\il/1,..:,Am\ipm} = c p l A ^ , ..-.,Am\il/m]}. 

Lemma 1. Let the function f be defined as'follows 
(i) / : where is the power set of S7; 

(ii) f(<P) = [<P°, V1] if 
Then f is one-one. 

Proof. Trivial. U 

A somewhat stronger connection between the sets 88 and S^(^) can be easily 
established, too. In this paper, however, we need only the statement of the above 
lemma, so we do not deal with this strengthening. 

Now, it is clear'that a partially defined Boolean function (p may be given by 
the set and an arbitrary but fixed element ip of [cp°, (px}. By our point of 
interest, the function (p in question does not depend on the choice of ip. This is 
what we are going to demonstrate in the subsequent paragraphs of this section. 
The totally defined Boolean function is called a representative of <p and denoted 
by [q>]. 
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We turn to the tree constructing algorithm. 
Let <p(z&, fix an order S of the logical variables occurring in cp, and fix 

a representative [<p]. Then the following process will yield a binary tree. 

(i) Start with [cp] as the initial vertex of the tree to be constructed. 
(ii) Choose the first variable if we come from (i) or the subsequent variable 

if we come from (vii), say A, in the fixed order S at the vertex if/ actually treated. 
(iii) Form the expressions ip[A\i] and ip[A\0]. 
(iv) Apply the so-called computational rules of the propositional calculus 

(listed, e. g., in [2], [3], from (1) to (19)) as many times as possible in order to eliminate 
the truth-values from ip[A\l] and \j/[A\0], unless they are truth-values. 

(v) If the elimination is terminated, then these truth-value free expressions, 
otherwise ip[A\l] and ip[A\0] themselves, will provide the two new vertices obtain-
able from \jj. 

(vi) If ij/' is obtained from ip by substituting 1 (resp. 0) for A, then connect \f/ 
and \j/' by an edge labelled with A (resp. A, the negation of A). 

(vii) Stop if all the variables of S have been chosen, otherwise repeat f rom (ii). 

As it was proved in [2], [3] this process, for every [cp] and S, determines 
a unique binary tree denoted by [<p]s. The vertices of this tree are formulae; in 
particular, all the lowest vertices are already truth-values, while the edges are labelled 
with literals, i.e. logical variables or negated logical variables. However, the tree 
[<p]s depends heavily on the representative [<p]; if another representative of (p is 
given, then the resulting tree will usually alter. Our next step is to remove this un-
desirable dependence. To this end, we recall the notion of end vertex and path (cf. 
[3]). 

Consider the binary tree [<p]s constructed above. A vertex of [(p]s is called 
an end vertex if it is identical to a single truth-value (excluding UNDEFINED). 
By a path in [<p]s we mean a sequence of literals 

(i) whose first element labels an edge starting from [cp], 
(ii) the subsequent elements of the sequence label edges adjacent in [cp]s, 

(iii) the last element of the sequence labels an edge terminating at an end vertex. 
This end vertex will be called also the end vertex of the path in question. 

It is clear that any path contains every literal at most once (i.e. there no loop 
can occur in [<p]s). 

We can easily establish a one-one connection between the set of all paths 
(of [g>]s) and the set of all valuations (of the formula [cp]) in the following way: 

a) Let p={(pi, ..., (pm) be a path. Define the valuation vp=(A1\il/1, ..., Am\\j/J) 
by 

[0 if Aj = ipj, 
1 otherwise. 4>j = 

b) Conversely, if v=(A1\\j/1, ..., Am\\j/m) is a valuation, then define the path 
pv=((px, ..., <pm) by 

\Aj if ^ = 
[Aj otherwise. <Pj 
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Lemma 2. Let and ip', be two representatives for (p. Let an order 
S of the logical variables occurring in (p and a valuation v=(A1\\p1, ..., Am\ipm) 
be fixed. If the end vertices of the two paths, associated with v in the trees ip's and 
>ps respectively, are not identical, then we necessarily have i>€</>*. 

Proof. Since 91] and \p"£[(p°, (pl), by definition, for each valuation 
v=(A1 ..., Am\$m) i (p* we have 

I^'Mj...,Am\{j/J = <p[A! 1$!, ...,Am\$m] = 

This implies immediately the statement of our Lemma. • 

By virtue of Lemma 2, for every and fixed order S of the logical 
variables in <p we can uniquely define a tree <pSt as follows: 

(i) Choosing an arbitrary representative for cp, let us construct the [(p]s-tree 
in the way described above; 

(ii) For each valuation v£<p^ let us put the sign * at the end vertex of the 
path p„ associated with v. 

Lemma 3. Let <p£.8% and fix an order S of the logical variables occurring in cp. 
Then the tree <pSr just constructed is uniquely determined (not depending on the 
representative [<p\). 

Proof. The assertion clearly follows from the previous lemma. • 

§ 3. Minimization 

Two partially defined Boolean functions, (p and ip are said to be equivalent if 
(i) <p is defined under a valuation if and only if ip is so; 

(ii) whenever cp is defined under a valuation (A1\\p1, ..., Am\ipm), then 

"ml t ml' 

A 38 is said to be in a disjunctive (resp. conjunctive) normal form if [9)] is 
so. If [(p) is irredundant, then cp is also said to be irredundant. 

We note that somewhat other definitions of these notions are possible, too. 
We do not go into the details of this question, since the above definitions are quite 
appropriate for us concerning the minimization of partially defined Boolean functions. 

Let (p£38, a representative of <p, and an order S of the logical variables in q> 
be fixed. Construct the [<p]s-tree. If all the edges leading to the truth-value FALSE 
(resp. TRUE) are omitted in the [cp]s-tree, we get the so-called truncated [cp]I-tree 
(resp. [(pfs-tree) (cf. [2]). 

The notion of maximal simplifiable subtree was introduced in [3]. Here we recall 
the definition. 

Let a [rp]s-tree ( i=0 or 1) and a path p in it be given. By a maximal simplifiable 
subtree (in abbreviation: MSST) of p we mean a subtree <P of the [<p]j-tree which 
satisfies the following four conditions: 
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(i) 4> contains p ; 
(ii) Each path in $ starts from the initial vertex and terminates at an end 

vertex of the [<p]^-tree; 
(iii) <P is of the form drawn in Fig. 1, where Alt A2, ..., A„ are logical variables 

in cp and au ..., a„+1 are sequences of literals j u c h that each of the literals in 
these sequences is different from A1} Alt ... A„, A„\ and there exists at least one 
path, the end vertex of which is not identical with * ; 

(iv) The number of the paths in $ is maximal in the sense that there exists 
no subtree of the [<p]i-tree that also satisfies the conditions (i), (ii), and (iii) and 
contains more paths than $ contains. 

Fig. 1 

These subtrees can be effectively generated by a simple way (see [2]) using an 
algorithm from [1]. 

By a cover of the truncated [<p]£-tree we mean a set of maximal simplifiable 
subtrees such that every path in [<p]j belongs to at least one MSST from this set. 
A cover is said to be irredundant if every MSST in it contains at least one path which 
belongs only to this MSST. 
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.fco 
tí. 
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In [2] we presented an algorithm for constructing an irredundant cover of an 
arbitrary cp^-tree, when q> is a totally defined Boolean function. This algorithm 
can be applied without any changes to the case of partially defined Boolean func-
tions if the end vertices * in the [^]|-tree are treated as if they were either 1 or 0 
according to how it is more favourable to obtain an irredundant cover. 

Thus, we find an irredundant cover of the [<p]i-tree, whence, via the main 
theorem of [2], we get an irredundant normal form of the representative [cp]. At 
the same time, this irredundant normal form of [<p] is a representative of a partially 
defined irredundant normal form of <p. Taking the set into account, a partially 
defined irredundant normal form of (p is completely determined. 

Example. Let [<p] and <p.4 be given as follows: 

[<p] = (Ä\/B\/C\/D\JE)A(Ä\/B\/C\/D\/E)/\(ÄVB\/C\/D\/E)A 

A(^VSVCVDV£)A(^V5VCV5V£)A(^V5VCVI>V£)A 

/\(AV BV CV DV E), 

cp„ = {(A, B, C, D, E); (A, B, C, D, £>; (A, B, C, D, E>; 

(A, B, C, D, E>; (A, B, C, D, E); (A, B, C, D, £>; 

(Ä, B, C, D, E); (Ä, B, C, D, E); (Ä, E, C, D, £>}, 

where A stands for A\l, while Ä stands for A\0; similarly for the other letters. In 
the case S=(A, B, C, D, E) the [<p]s-tree is indicated in Fig. 2. 

Let us consider the [<p]J-tree (Fig. 3). 
An irredundant cover of the [<p]s-tree can be obtained by means of the maximal 

simplifiable subtrees indicated in Fig. 4. 
Hence a representative, of a partially defined irredundant normal form of <p 

will be 
Cy(AAE)\/(ÄAB/\E). 

Finally, we should like to mention that from a practical point of view we have 
a considerable number of experimental evidences produced by two different PL/I 
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realizations of our algorithm that provide minima on the average cost of other well-
known algorithms such as e.g. the algorithm due to Quine—McCluskey. From 
a theoretical point of view, however, the proper nature of the minimization has not 
been understood yet. 
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