Modal logics with function symbols

Ву К. Тотн

We prove completeness theorems for modal logics with function symbols. These logics are generalizations of the well-known non-classical logical systems. Our work was deeply influenced by a paper of K. SCHÜTTE [2].

§ 1. Preliminaries

We shall use the following symbols: parantheses, commas, variables, function symbols, relation symbols, logical symbols ($\sim, \wedge, \Box, \forall$). The set of terms is defined by the usual recurrence:

- (i) If x is a variable, then x is a term.
- (ii) If f is an n-ary function symbol and $\tau_1, ..., \tau_n$ are terms, then $f(\tau_1, ..., \tau_n)$ is also a term. In the case of n=0 the parantheses will be omitted.

The set of atoms is defined in the standard way: if r is an n-ary relation symbol and $\tau_1, ..., \tau_n$ are terms, then $r(\tau_1, ..., \tau_n)$ is an atom. Also, definition of the set of formulae is well-known:

- (i) If \mathscr{A} is an atom, then \mathscr{A} is a formula.
- (ii) If \mathscr{A}, \mathscr{B} are formulae, then so are $(\mathscr{A} \land \mathscr{B}), \sim \mathscr{A}$ and $\Box \mathscr{A}$.
- (iii) If \mathscr{A} is a formula and x is a variable, then $\forall x \mathscr{A}$ is a formula.

We shall use the abbreviations: $(\mathscr{A} \lor \mathscr{B})$ for $\sim (\sim \mathscr{A} \land \sim \mathscr{B})$; $(\mathscr{A} \to \mathscr{B})$ for $\sim (\sim \mathscr{B} \land \mathscr{A})$; $\land \mathscr{A}$ for $\sim \Box \sim \mathscr{A}$; $\exists x \mathscr{A}$ for $\sim \forall x \sim \mathscr{A}$. Parantheses will be omitted if no confusion can occur. If \mathscr{K} is a formula or term x is a free variable (defined in the well-known way) and τ is a term, then $\mathscr{K}[x/\tau]$ will denote the result of substitution of τ for x everywhere in \mathcal{K} . By a classical model A we shall mean a function if it associates

- (i) a non-empty set |A| to 0 (zero),
- (ii) a function $f_A: |A|^n \to |A|$ to each *n*-ary function symbol f_i , (iii) a relation $r_A \subseteq |A|^n$ to each *n*-ary relation symbol r.
- 4+

Definition. By a modal model we mean a quintuple $\langle S, N, O, R, P \rangle$ where S is an arbitrary set, $N \subseteq S$, $O \in S$, $R \subseteq S \times S$, P is a function with domain S and P(A) is a classical model, provided $A \in S$, furthermore $|P(A)| \subseteq |P(B)|$ if $A, B \in S, ARB$.

Definition. A modal model is simple if for every *n*-ary function symbol f, there exists a function \vec{f} with domain $\bigcup_{A \in S} |P(A)|$, such that f_A is a restriction of \vec{f} to |P(A)| where $A \in S$.

Definition. If |P(A)| = |P(B)| for every A, $B \in S$, ARB, then the model is called stable.

Let $\langle S, N, O, R, P \rangle$ be a modal model. By an interpretation we mean a function k such that to each variable k associates an element of $\bigcup |P(A)|$.

Let a model $\langle S, N, O, R, P \rangle$ and an interpretation k be given. By a valuation \varkappa a partial function is meant with the following properties:

- (i) $\varkappa(x, A) = k(x)$ if $A \in S$ and x is variable such that $k(x) \in |P(A)|$.
- (ii) $\varkappa(f(\tau_1, ..., \tau_n), A) = f_{P(A)}(\varkappa(\tau_1, A), ..., \varkappa(\tau_n, A))$ if $A \in S$ and $\tau_1, ..., \tau_n$ are terms such that for every variable x occuring in any of them, $k(x) \in |P(A)|$.
- (iii) $\varkappa(\tau, A)$ is undefined if $A \in S$ and there exists a variable x in the term τ such that $k(x) \notin |P(A)|$.

Let \mathscr{A} be an expression (i.e. a term or formula) and assume a model $\langle S, N, O, R, P \rangle$ is given. Let us fix $A \in S$ and an interpretation k. We say that $\mathscr{A} \in \mathscr{H}_k(A)$ if for every variable x occuring free in \mathscr{A} we have $k(x) \in |P(A)|$.

Let $A \in S$, \mathscr{A} be a formula and k an interpretation. We define the satisfaction relation $A \models \mathscr{A}[k]$ by the following clauses:

- (i) $A \models r(\tau_1, ..., \tau_n)[k]$ if and only if $\tau_1, ..., \tau_n \in \mathscr{H}_k(A)$ and $r_{P(A)}(\varkappa(\tau_1, A), ..., \varkappa(\tau_n, A));$
- (ii) $A \models (\mathscr{A} \land \mathscr{B})[k]$ if and only if $A \models \mathscr{A}[k]$ and $A \models \mathscr{B}[k]$;
- (iii) $A \models \sim \mathscr{A}[k]$ if and only if $\mathscr{A} \in \mathscr{H}_k(A)$ and $A \models \mathscr{A}[k]$ does not hold;
- (iv) $A \models \Box \mathscr{A}[k]$ if and only if $A \in N$ and for every $B \in S$, ARB implies $B \models \mathscr{A}[k]$;
- (v) $A \models \forall x \mathscr{A}[k]$ if and only if for every interpretation k', such that $k'(x) \in |P(A)|$ and k'(y) = k(y) if $y \neq x$, we have $A \models \mathscr{A}[k']$.

We put \mathscr{I} into the set of relation symbols with the following meaning:

 $A \models \mathscr{I}(\tau_1, \tau_2)[k]$ if and only if $\tau_1, \tau_2 \in \mathscr{H}_k(A)$ and $\varkappa(\tau_1, A) = \varkappa(\tau_2, A)$, i.e. \mathscr{I} denotes the identity.

Let \mathscr{A} be a formula, $\langle S, N, O, R, P \rangle$ a modal model and k an interpretation. \mathscr{A} is valid in $\langle S, N, O, R, P \rangle$ under the interpretation k if $O \models \mathscr{A}[k]$.

The reader can consult with [1] for notions and notations not explained here.

§ 2. Modal logics

To give a modal logic we have to give a classical formula \mathcal{T} with the properties:

(i) no free variable occurs in \mathcal{T} ,

(ii) \mathcal{T} is in the classical language of the following non-logical symbols: o, 0-ary function symbol; n, unary relation symbol; r, binary relation symbol; i, binary relation symbol.

This classical formula, called parameter of the logic, is meant to formalize a property of the structure $\langle S, N, O, R \rangle$ provided $\langle S, N, O, R, P \rangle$ is a model of the intended modal logic.

If we restrict ourselves to modal logic with only simple/stable models then we call them simple/stable modal logics.

Let a modal logic be given. A formula \mathscr{A} is satisfiable if there exist a model $\langle S, N, O, R, P \rangle$ and a interpretation k such that:

- (i) $\langle S, N, O, R, P \rangle$ is simple/stable if the given logic is simple/stable;
- (ii) the parameter of the logic is valid in the classical model A defined by: $|A|=S, O_A=o, n_A(B) \Leftrightarrow B \in N$, if $B, C \in S$ then $r_A(B,C) \Leftrightarrow BRC$ and $i_A(B,C) \Leftrightarrow B=C$;
- (iii) $O \models \mathscr{A}[k]$.

A formula \mathscr{A} is a tautology if $\sim \mathscr{A}$ is not satisfiable.

In this paper we treat some special logics, the parameter of which is an arbitrary (may be empty) conjunction of the following formulae:

- K1. $\forall xn(x)$
- K2. $\forall xr(x, x)$

K3. $\forall x \forall y \forall z (r(x, y) \land r(y, z) \rightarrow r(x, z)) \land \forall x (n(x) \rightarrow \forall y (r(x, y) \rightarrow n(y))).$

These logics will be axiomatized with suitable subsets of the following axioms:

A1. $\mathscr{A} \to \mathscr{A} \land \mathscr{A}$

A2. $\mathscr{A} \land \mathscr{B} \to \mathscr{A}$

A3. $(\mathscr{A} \to \mathscr{B}) \to (\sim (\mathscr{B} \land \mathscr{C}) \to \sim (\mathscr{C} \land \mathscr{A}))$

A4. $\forall x (\mathscr{A} \rightarrow \mathscr{B}) \rightarrow (\forall x \mathscr{A} \rightarrow \forall x \mathscr{B})$

- A5. $\mathcal{A} \rightarrow \forall x \mathcal{A}$ where x is not free in \mathcal{A} ;
- A6.a. $\forall x \mathscr{A} \rightarrow \mathscr{A}[x/y]$ where y is a variable and it is free with respect to x in \mathscr{A} ;

A6.b. $\forall x \mathcal{A} \rightarrow \mathcal{A}[x/\tau]$ where τ is a term and it is free with respect to x in \mathcal{A} and \mathcal{A} is a classical formula;

A7. $\Box(\mathscr{A} \to \mathscr{B}) \to (\Box \mathscr{A} \to \Box \mathscr{B})$

A8. $\Box(\mathcal{A} \rightarrow \mathcal{A})$ if K1 appears in the parameter of the logic as a conjunct; A9. $\Box \mathcal{A} \rightarrow \mathcal{A}$ if K2 is a conjunct in the parameter of the logic;

A10. $\square \mathscr{A} \rightarrow \square \square \mathscr{A}$ if K3 occurs in the parameter of the logic;

A11. $\forall x \mathcal{I}(x, x)$

 $\forall x \forall y (\mathscr{I}(x, y) \rightarrow (\mathscr{A}[x/y] \rightarrow \mathscr{A}))$

 $\Box \mathscr{A} \to \forall x \forall y (\mathscr{I}(x, y) \to \Box \mathscr{I}(x, y))$

 $\Box \mathscr{A} \to \forall x \forall y \Big(\sim \mathscr{I}(x, y) \to \Box \sim \mathscr{I}(x, y) \Big) \text{ if } \mathscr{I} \text{ occurs in the logic;}$ A12. $\forall x \Box \mathscr{A} \to \Box \forall x \mathscr{A} \text{ if the logic is stable.}$ If the logic is simple, then axioms A6.a and A6.b are replaced by the more general axiom.

A6. $\forall x \mathscr{A} \rightarrow \mathscr{A}[x/\tau]$ where τ is a term free with respect to x in \mathscr{A} and \mathscr{A} is arbitrary.

We fix the following rules of inference:

- R1. From \mathscr{A} and $\mathscr{A} \rightarrow \mathscr{B}$ we infer \mathscr{B} .
- R2. From \mathscr{A} we infer $\forall x \mathscr{A}$.
- R3. From $\mathscr{A} \rightarrow \mathscr{B}$ we infer $\Box \mathscr{A} \rightarrow \Box \mathscr{B}$.

This last rule can be used in a logic in which $\forall x (r(o, x) \land \mathcal{T} \rightarrow \mathcal{T}[o/x])$ is a tautology, where \mathcal{T} is the parameter of the logic. This holds for K1, K2, K3.

The notion of derivability is used in the usual sense (denotation: \vdash).

Theorem 1. (Soundness.) Let a modal logic be given. If a formula \mathscr{A} is derivable in this modal logic, then it is a tautology.

Proof. Trivial.

§ 3. Metatheorems

The proofs of metatheorems will only be sketched.

Assertion 1. Every tautology of classical sentential logic is derivable.

Proof. A1—A3 and R1 is a complete formalization of classical sentential logic.

Assertion 2. $\vdash \Box(\mathscr{A} \land \mathscr{B}) \rightarrow \Box \mathscr{A} \land \Box \mathscr{B}$. Proof. $\vdash \mathscr{A} \land \mathscr{B} \rightarrow \mathscr{A}$ (classical theorem) $\vdash \Box(\mathscr{A} \land \mathscr{B}) \rightarrow \Box \mathscr{A}$ (R3) $\vdash \mathscr{A} \land \mathscr{B} \rightarrow \mathscr{B}$ (classical theorem) $\vdash \Box(\mathscr{A} \land \mathscr{B}) \rightarrow \Box \mathscr{B}$ (R3) $\vdash (\Box(\mathscr{A} \land \mathscr{B}) \rightarrow \Box \mathscr{A}) \rightarrow ((\Box(\mathscr{A} \land \mathscr{B}) \rightarrow \Box \mathscr{B}) \rightarrow (\Box(\mathscr{A} \land \mathscr{B}) \rightarrow \Box \mathscr{A} \land \Box \mathscr{B}))$ (classical theorem) $\vdash \Box(\mathscr{A} \land \mathscr{B}) \rightarrow \Box \mathscr{A} \land \Box \mathscr{B}$ (R1)

Assertion 3. $\vdash \Box \mathscr{A} \land \Box \mathscr{B} \rightarrow \Box (\mathscr{A} \land \mathscr{B}).$

(classical theorem) (R3) (A7) (by classical theorems) (by classical theorems)

Assertion 4. $\vdash \Box \mathscr{A} \lor \Box \mathscr{B} \rightarrow \Box (\mathscr{A} \lor \mathscr{B}).$

Proof. $\vdash \mathscr{A} \to \mathscr{A} \lor \mathscr{B}$ (classical theorem) $\vdash \Box \mathscr{A} \to \Box (\mathscr{A} \lor \mathscr{B})$ (R3) $\vdash \Box \mathscr{B} \to \Box (\mathscr{A} \lor \mathscr{B})$ (similarly) $\vdash \Box \mathscr{A} \lor \Box \mathscr{B} \to \Box (\mathscr{A} \lor \mathscr{B})$ (by classical theorems)

Theorem 2. If $\vdash \mathscr{A} \rightarrow \mathscr{B}$ and $\vdash \mathscr{B} \rightarrow \mathscr{A}$ then \mathscr{A} can be replaced by \mathscr{B} in an arbitrary formula without loss of its derivability.

Proof. One can proceed by induction from the following facts:

 $\vdash \mathscr{A} \to \mathscr{B} \quad \text{implies that} \quad \vdash \sim \mathscr{B} \to \sim \mathscr{A} \\ \vdash \mathscr{A} \to \mathscr{B} \quad \text{implies that} \quad \vdash \mathscr{A} \land \mathscr{C} \to \mathscr{B} \land \mathscr{C} \quad \text{and} \quad \vdash \mathscr{C} \land \mathscr{A} \to \mathscr{C} \land \mathscr{B} \\ \vdash \mathscr{A} \to \mathscr{B} \quad \text{implies that} \quad \vdash \Box \mathscr{A} \to \Box \mathscr{B} \\ \vdash \mathscr{A} \to \mathscr{B} \quad \text{implies that} \quad \vdash \forall x \mathscr{A} \to \forall x \mathscr{B}.$

Assertion 5. A8 and R3 can be omitted if the following rule is added to the system: If $\vdash \mathscr{A}$ then $\vdash \Box \mathscr{A}$.

Proof. (a) Let $\vdash \mathscr{A}$. Since $\vdash A \rightarrow ((\mathscr{B} \rightarrow \mathscr{B}) \rightarrow \mathscr{A})$ implies $\vdash (\mathscr{B} \rightarrow \mathscr{B}) \rightarrow \mathscr{A}$, by R3, we have $\vdash \Box (\mathscr{B} \rightarrow \mathscr{B}) \rightarrow \Box \mathscr{A}$. By A8, $\vdash \Box (\mathscr{B} \rightarrow \mathscr{B})$, i.e., $\vdash \Box \mathscr{A}$. (b) Let $\vdash \mathscr{A} \rightarrow \mathscr{B}$, then $\vdash \Box (\mathscr{A} \rightarrow \mathscr{B})$. By A7, $\vdash \Box \mathscr{A} \rightarrow \Box \mathscr{B}$. But $\vdash \mathscr{A} \rightarrow \mathscr{A}$, so $\vdash \Box (\mathscr{A} \rightarrow \mathscr{A})$ holds.

Assertion 6. $\vdash \Box \forall x \mathscr{A} \rightarrow \forall x \Box \mathscr{A}$.

Proof. $\vdash \forall x \mathscr{A} \to \mathscr{A}$ $\vdash \Box \forall x \mathscr{A} \to \Box \mathscr{A}$ $\vdash \forall x \Box \forall x \mathscr{A} \to \forall x \Box \mathscr{A}$ $\vdash \Box \forall x \mathscr{A} \to \forall x \Box \forall x \mathscr{A}$ $\vdash \Box \forall x \mathscr{A} \to \forall x \Box \forall x \mathscr{A}$ (A6.a) (by R3) (by R2 and A4) (A5) (by classical theorems)

Assertion 7. $\vdash \emptyset \forall x \mathscr{A} \rightarrow \forall x \emptyset \mathscr{A}$.

(from A6.a) (by R3) (by classical theorems) (similarly).

§ 4. Completeness theorems

A set of formulae α is consistent if for every $\mathscr{A}_1, ..., \mathscr{A}_n \in \alpha, \sim (\mathscr{A}_1 \wedge ... \wedge \mathscr{A}_n)$ is not a theorem.

We introduce the following notation: $\alpha^+ = \{ \mathscr{A} : \Box \mathscr{A} \in \alpha \}$.

Theorem 3. Let α be a consistent set of formulae and assume $\alpha^+ \neq \emptyset$. If $\emptyset \mathscr{B} \in \alpha$, then $\alpha^+ \cup \{\mathscr{B}\}$ is consistent.

Proof. Assume the contrary, i.e. $\alpha^+ \cup \{\mathscr{B}\}$ is not consistent. Then there exist $\mathscr{A}_1, \ldots, \mathscr{A}_n \in \alpha^+$ such, that $\vdash \sim (\mathscr{A}_1 \land \ldots \land \mathscr{A}_n \land \mathscr{B})$. It means that $\vdash \mathscr{A}_1 \land \ldots \land \mathscr{A}_n \to \sim \mathscr{B}$ (using the hypothesis $\alpha^+ \neq \emptyset$ and that $\vdash \sim \mathscr{A}$ implies $\vdash \sim (\mathscr{A} \land \mathscr{C})$ for arbitrary \mathscr{C}). By R3, we obtain $\vdash \Box \mathscr{A}_1 \land \ldots \land \Box \mathscr{A}_n \to \Box \sim \mathscr{B}$, i.e. $\vdash \sim (\Box \mathscr{A}_1 \land \ldots \land \Box \mathscr{A}_n \land \& \mathscr{B})$. This contradicts the assumption, that α is consistent.

If α is a set of formulae, then let us denote the set of variables occuring in α by $\Pi(\alpha)$.

Definition. Let α be a set of formulae. α is complete if the following conditions are satisfied:

- (i) α is consistent;
- (ii) If \mathscr{A} contains variables from $\Pi(\alpha)$ only, then either $\mathscr{A} \in \alpha$ or $\sim \mathscr{A} \in \alpha$;
- (iii) Let \mathscr{A} contain variables from $\Pi(\alpha)$ only and let x be the only variable occuring free in \mathscr{A} . If $\exists x \mathscr{A} \in \alpha$ then there exists a such that $a \in \Pi(\alpha)$ and a is free for x, moreover $\mathscr{A}[x/a] \in \alpha$.

Theorem 4. Let α be a complete set of formulae. Then

- (i) $\mathscr{A} \in \alpha$ and $\mathscr{A} \to \mathscr{B} \in \alpha$ imply $\mathscr{B} \in \alpha$;
- (ii) $\mathscr{A} \land \mathscr{B} \in \alpha$ if and only if $\mathscr{A} \in \alpha$ and $\mathscr{B} \in \alpha$;
- (iii) $\forall x \mathscr{A} \in \alpha$ if and only if for every $a \in \Pi(\alpha)$ free for x we have $\mathscr{A}[x/a] \in \alpha$, where x is the only variable occuring free in \mathscr{A} .
- (iv) If $\alpha^+ \cup \{\mathscr{A}\}$ is consistent and \mathscr{A} contains variables from $\Pi(\alpha)$ only, then $\[\& \mathscr{A} \in \alpha \]$.
- **Proof.** (i) If $\mathfrak{B} \notin \alpha$ then $\sim \mathfrak{B} \in \alpha$ by completeness. But it means α is not consistent since $\vdash \sim (\mathfrak{A} \land (\mathfrak{A} \to \mathfrak{B}) \land \sim \mathfrak{B}).$
- (ii) Since $\vdash \sim ((\mathscr{A} \land \mathscr{B}) \land \sim \mathscr{A}), \vdash \sim ((\mathscr{A} \land \mathscr{B}) \land \sim \mathscr{B})$ and $\vdash \sim (\mathscr{A} \land \mathscr{B} \land \sim \sim (\mathscr{A} \land \mathscr{B}))$ hold, it is trivial.
- (iii) $\vdash \sim (\forall x \mathscr{A} \land \sim \mathscr{A}[x/a])$, so if $\forall x \mathscr{A} \in \alpha$, then $\mathscr{A}[x/a] \in \alpha$. Conversely, if $\forall x \mathscr{A} \notin \alpha$, then $\sim \forall x \mathscr{A} \in \alpha$ by completeness, i.e. $\exists x \sim \mathscr{A} \in \alpha$. Thus there exists $a \in \Pi(\alpha)$ such that $\sim \mathscr{A}[x/a] \in \alpha$, i.e., $\mathscr{A}[x/a] \notin \alpha$.
- (iv) If $\forall \mathscr{A} \notin \alpha$, then $\Box \sim \mathscr{A} \in \alpha$, by completeness, and $\sim \mathscr{A} \in \alpha^+$. But it means $\alpha^+ \cup \{\mathscr{A}\}$ is not consistent since $\vdash \sim (\mathscr{A} \land \sim \mathscr{A})$.

Theorem 5. If α is consistent, then there exists a complete β such that $\alpha \subseteq \beta$.

Proof. It is easy by using the following three lemmata since we can assume that the set of variables has enough elements.

Lemma A. Let α be consistent. Then at least one of $\alpha \cup \{\mathscr{A}\}$ and $\alpha \cup \{\sim \mathscr{A}\}$ will also be consistent.

Proof. Suppose both $\alpha \cup \{\mathscr{A}\}$ and $\alpha \cup \{\sim\mathscr{A}\}$ are inconsistent; that means there exist $\mathscr{B}_1, \ldots, \mathscr{B}_n \in \alpha$ for which $\vdash \sim (\mathscr{B}_1 \land \ldots \land \mathscr{B}_n \land \mathscr{A})$ and $\vdash \sim (\mathscr{B}_1 \land \ldots \land \mathscr{B}_n \land \land \land \mathscr{A})$. Then $\vdash \sim (\mathscr{C} \land \mathscr{A}) \rightarrow (\sim (\mathscr{C} \land \sim \mathscr{A}) \rightarrow \sim \mathscr{C})$ entails $\vdash \sim (\mathscr{B}_1 \land \ldots \land \mathscr{B}_n)$ so α is inconsistent. This completes the proof of Lemma A.

Lemma B. If $a \in \Pi(\alpha \cup \{\mathcal{A}\})$ and α is consistent, then $\alpha \cup \{\exists x \mathcal{A} \rightarrow \mathcal{A}[x/a]\}$ is also consistent.

Proof. Suppose the contrary. Then there exist $\mathscr{A}_1, \ldots, \mathscr{A}_n \in \alpha$ such that $\vdash \sim (\mathscr{A}_1 \land \ldots \land \mathscr{A}_n \land (\exists x \mathscr{A} \to \mathscr{A}[x/a]))$. By applying R2 we arrive at $\vdash \sim (\mathscr{A}_1 \land \ldots \land \mathscr{A}_n \land \sim (\exists x \mathscr{A} \land \forall a \sim \mathscr{A}[x/a]))$. Since $\vdash \sim (\exists x \mathscr{A} \land \forall a \sim \mathscr{A}[x/a])$, we have $\vdash \sim (\mathscr{A}_1 \land \ldots \land \mathscr{A}_n)$ which contradicts the assumptions. This completes the proof of Lemma B.

Lemma C. If α_n is consistent and $\alpha_n \subseteq \alpha_{n+1}$ for every *n*, then $\bigcup_{n=1}^{n} \alpha_n$ is also consistent.

Proof. Trivial.

Definition. The system of sets of formulae M is said to be complete if the following conditions are satisfied:

- (i) Each $\alpha \in M$ is complete.
- (ii) If $\alpha \in M$, $\alpha^+ \neq \emptyset$ and $\langle \mathscr{A} \in \alpha$, then there exists $\beta \in M$ such that $\alpha^+ \cup \cup \{\mathscr{A}\} \subseteq \beta$.
- (iii) If the logic has equality symbol, then

(a) If $\alpha, \beta \in M$, $a \in \Pi(\alpha) \cap \Pi(\beta)$, then there exist natural numbers $n, m \ge 0$ and sets of formulae $\alpha_0, ..., \alpha_n, \beta_0, ..., \beta_m \in M$ such that $\alpha_0 = \beta_0, \alpha_n = \alpha, \beta_m = \beta, a \in \Pi(\alpha_0), \alpha_i^+ \neq \emptyset$ and $\alpha_i^+ \subseteq \alpha_{i+1}$ (i=0, ..., n-1), $\beta_i^+ \neq \emptyset$ and $\beta_i^+ \subseteq \beta_{i+1}$ (i=0, ..., m-1). (b) If $\alpha_i^+ \neq \emptyset, \alpha_i^+ \subseteq \alpha_{i+1}$ (i=0, ..., n-1), $\beta_i^+ \neq \emptyset, \beta_i^+ \subseteq \beta_{i+1}$ (i=0, ..., m-1),

(b) If $\alpha_i \neq \emptyset$, $\alpha_i \equiv \alpha_{i+1}$ (i=0, ..., n-1), $\beta_i \neq \emptyset$, $\beta_i \equiv \beta_{i+1}$ (i=0, ..., m-1), $\alpha_n = \beta_m$, then there exist $\gamma_0, ..., \gamma_k \in M$ such that $\gamma_i^+ \neq \emptyset$ and $\gamma_i^+ \subseteq \gamma_{i+1}$ (i=0, ..., k-1) and either $\gamma_0 = \alpha_0, \gamma_k = \beta_0$ or $\gamma_0 = \beta_0, \gamma_k = \alpha_0$ are true.

Theorem 6. If α is complete, then there exists a complete system of sets of formulae M such that $\alpha \in M$.

Proof. Let $M_0 = \{\alpha\}$. Assume that M_n is a set of complete sets of formulae. Let $\beta \in M_n$, $\beta^+ \neq \emptyset$, $\emptyset \not \ll \in \beta$. Then, to (β, \mathscr{A}) we associate a set of variables. This set is disjoint from $\bigcup_{\gamma \in M_n} \Pi(\gamma)$ and different pairs have disjoint associated sets of variables. There exists a complete set γ such that $\gamma \in M_{n+1}$, $\beta^+ \cup \{\mathscr{A}\} \subseteq \gamma$ and $\Pi(\gamma) \setminus \Pi(\beta)$ is associated to the pair (β, \mathscr{A}) . It is trivial, that $\bigcup_{n=0}^{\infty} M_n$ is a complete system of sets of formulae.

Theorem 7. (Completeness Theorem.) Let us suppose that a simple non-stable and equality free modal logic is given. If a formula \mathscr{A} cannot be derived then $\sim \mathscr{A}$ is satisfiable.

Proof. We can assume without loss of generality, that no free variable occurs in \mathscr{A} . Since not $\vdash \mathscr{A}$, we have not $\vdash \mathscr{A}$ i.e., $\{\sim \mathscr{A}\}$ is consistent. There exists a complete set of formulae α and a complete system of sets of formulae M such that $\sim \mathscr{A} \in \alpha$ and $\alpha \in M$.

Let us define the following notions: $N = \{\beta : \beta \in M \text{ and } \beta^+ \neq \emptyset\}$; if $\beta, \gamma \in M$, then $\beta R \gamma \Leftrightarrow ((\beta^+ \subseteq \gamma \text{ and } \beta^+ \neq \emptyset) \text{ or } (\beta^+ = \emptyset \text{ and } \gamma = \beta))$; $|P(\beta)| = \{\tau : \text{ all variables} occurring in <math>\tau$ are from $\Pi(\beta)\}$; $f_{P(\beta)}(\tau_1, ..., \tau_n) = f(\tau_1, ..., \tau_n)$ where $\tau_1, ..., \tau_n \in |P(\beta)|$; $r_{P(\beta)}(\tau_1, ..., \tau_n) \Leftrightarrow r(\tau_1, ..., \tau_n) \in \beta$ if $\tau_1, ..., \tau_n \in |P(\beta)|$. It is easy to see that $\langle M, N, \alpha, R, P \rangle$ is a simple model.

Let k be an interpretation and \varkappa the corresponding valuation. The following two assertions can easily be proved by a simple induction.

If $\tau \in \mathscr{H}_k(\beta)$, $\beta \in M$, then $\varkappa(\tau, \beta) = \tau[x_1, ..., x_n/k(x_1), ..., k(x_n)]$ where $x_1, ..., x_n$ are all the variables occuring in τ , and $\tau[x_1, ..., x_n/\tau_1, ..., \tau_n]$ is the result of the substitutions $[x_1/\tau_1], ..., [x_n/\tau_n]$ executed simultaneously.

If $\mathscr{B} \in \mathscr{H}_k(\beta)$, $\beta \in M$ and $x_1, ..., x_n$ are all the variables occuring in \mathscr{B} , then $\beta \models \mathscr{B}[k] \Leftrightarrow \mathscr{B}[x_1, ..., x_n/k(x_1), ..., k(x_n)] \in \beta$. Hence, if for every a, k(a) = a, then $\alpha \models \sim \mathscr{A}[k]$. Let us suppose that \mathscr{B} contains variables only from $\Pi(\beta)$, where β is a complete set.

If $\vdash \mathcal{B}$, then $\mathcal{B} \in \beta$, since in the opposite case we have $\sim \mathcal{B} \in \beta$, i.e. β is inconsistent.

K1. If $\Box(\mathscr{B} \rightarrow \mathscr{B})$ is an axiom, then for every $\beta \in M$, $\Box(\mathscr{B} \rightarrow \mathscr{B}) \in \beta$ provided no variable occurs in \mathscr{B} . Thus, $\beta^+ \neq \emptyset$ and N = M.

K2. Let β be an arbitrary formula for which $\mathscr{B}\in\beta^+$. From $\Box \mathscr{B}\in\beta$ and $\Box \mathscr{B} \rightarrow \mathscr{B}\in\beta$ we infer $\mathscr{B}\in\beta$, i.e. $\beta^+\subseteq\beta$, $\beta R\beta$.

K3. Let $\beta R\gamma$ and $\gamma R\delta$, moreover $\mathscr{B} \in \beta^+$. Then $\Box \mathscr{B} \in \beta$, $\Box \mathscr{B} \to \Box \Box \mathscr{B} \in \beta$, so $\Box \Box \mathscr{B} \in \beta$. By definition of R, $\Box \mathscr{B} \in \gamma$ and $\mathscr{B} \in \delta$ follow. We obtain $\beta R\delta$. Let $\beta \in N$, then for some \mathscr{B} , $\Box \mathscr{B} \in \beta$. If $\beta R\gamma$ then $\Box \mathscr{B} \in \gamma$, so $\gamma \in N$.

This completes the proof of Theorem 7.

In what follows we assume that a non-stable modal logic with equality is given. Let M be a complete system of sets of formulae, let N and R be defined analogouosly to the ones in the proof of the previous theorem. We denote the reflexive and transitive closure of R by \overline{R} .

By these notations we redefine the third clause of the last definition in the following simple way:

(iii)' If the logic has equality symbol, then

(a) If $\alpha, \beta \in M$, $a \in \Pi(\alpha) \cap \Pi(\beta)$ then there exists $\gamma \in M$ such that $\gamma \overline{R}\alpha, \gamma \overline{R}\beta$ and $a \in \Pi(\gamma)$.

(b) If $\alpha, \beta, \gamma \in M$, $\alpha \overline{R} \gamma$ and $\beta \overline{R} \gamma$, then either $\alpha \overline{R} \beta$ or $\beta \overline{R} \alpha$ is true; in other words, \overline{R} is trichotom on the set $\{\alpha: \alpha \overline{R} \gamma\}$.

We prove some simple assertions:

Assertion 8. If $\beta \overline{R}\gamma$, then $\Pi(\beta) \subseteq \Pi(\gamma)$.

Proof. Trivial.

Assertion 9. If $\beta \overline{R} \gamma$ and $a, b \in \Pi(\beta)$, then $\mathscr{I}(a, b) \in \beta \Leftrightarrow \mathscr{I}(a, b) \in \gamma$.

Proof. If $\beta \overline{R}\gamma$, then $\Box \mathscr{I}(a, b) \lor \Diamond \mathscr{A} \in \beta$. If $\beta \overline{R}\gamma$ and $\gamma \neq \beta$, then $\beta^+ \neq \emptyset$, e.g. $\Box \sim \mathscr{A}_1 \in \beta$. If \mathscr{A} is replaced by \mathscr{A}_1 , then $\Box \sim \mathscr{A}_1 \rightarrow \Box \mathscr{I}(a, b) \in \beta$ and so $\Box \mathscr{I}(a, b) \in \beta$. That means $\mathscr{I}(a, b) \in \beta^+$ and $\mathscr{I}(a, b) \in \gamma$ by induction.

If $\sim \mathcal{I}(a, b) \in \beta$, then by an analogouos argument we can obtain the other direction. This completes the proof the Assertion 9.

Let a, b be two variables. $a \equiv b$ if and only if there exist $\alpha, \beta, \gamma \in M$ and $c \in \Pi(\gamma)$ such that $\gamma \overline{R} \alpha, \gamma \overline{R} \beta, \mathscr{I}(a, c) \in \alpha$ and $\mathscr{I}(b, c) \in \beta$. Obviously, \equiv is a reflexive and symmetric relation. We shall prove that it is transitive, as well.

Assertion 10. If $\gamma \overline{R} \alpha$, $\gamma \overline{R} \beta$, $c \in \Pi(\gamma)$, $\mathscr{I}(c, a) \in \alpha$ and $\mathscr{I}(a, b) \in \beta$, then $\mathscr{I}(c, b) \in \beta$.

Proof. It is clear, that $a \in \Pi(\alpha) \cap \Pi(\beta)$. By (iii)' there exists $\delta \in M$ such that $a \in \Pi(\delta)$ and $\delta \overline{R}\alpha$, $\delta \overline{R}\beta$. Also by this definition we have either $\gamma \overline{R}\delta$ or $\delta \overline{R}\gamma$. By Assertion 8 either $a, c \in \Pi(\delta)$ or $a, c \in \Pi(\gamma)$ and so either $\mathscr{I}(c, a) \in \delta$ or $\mathscr{I}(c, a) \in \gamma$. In both cases $\mathscr{I}(c, a) \in \beta$ by Assertion 9. Then $\mathscr{I}(c, b) \in \beta$ by transitivity of equality.

Assertion 11. Let $\alpha_i \overline{R} \beta_i$ (i=1, ..., n) and $\alpha_{i+1} \overline{R} \beta_i$ (i=1, ..., n). There exists a k such that $1 \le k \le n+1$ and $\alpha_k \overline{R} \alpha_i$ for every i $(1 \le i \le n+1)$; furthermore, there exists an l such that $1 \le l \le n+1$ and $\alpha_i \overline{R} \alpha_l$ for every i $(1 \le i \le n+1)$.

Proof. Readily follows by definitions.

Assertion 12. The relation \equiv is transitive.

Proof. Assume $a \equiv b$ and $b \equiv c$. Then, there exist d, e and $\alpha_1, \alpha_3, \beta_1, \beta_2, \beta_3, \beta_4$ such that $\alpha_1 \overline{R}\beta_1, \alpha_1 \overline{R}\beta_2, \mathscr{I}(d, a) \in \beta_1, \mathscr{I}(d, b) \in \beta_2, d \in \Pi(\alpha_1), \alpha_3 \overline{R}\beta_3, \alpha_3 \overline{R}\beta_4, \mathscr{I}(e, b) \in \beta_3, \mathscr{I}(e, c) \in \beta_4, e \in \Pi(\alpha_3)$. By (iii)' (a), there exists an α_2 such that $\alpha_2 \overline{R}\beta_2, \alpha_2 \overline{R}\beta_3, b \in \Pi(\alpha_2)$. By the previous assertion, for some $i, \alpha_i \overline{R}\alpha_j$ (j=1, 2, 3) and $\alpha_i \overline{R}\beta_j$ (j=1, 2, 3, 4). It is known, that $d \in \Pi(\alpha_1), b \in \Pi(\alpha_2), e \in \Pi(\alpha_3)$. Let f be that variable among (of d, b, e), which is in $\Pi(\alpha_i)$. We have $\mathscr{I}(a, d) \in \beta_1, \mathscr{I}(d, b) \in \beta_2, \mathscr{I}(b, e) \in \beta_3, \mathscr{I}(e, c) \in \beta_4$. By Assertion 10, we obtain $\mathscr{I}(a, f) \in \beta_1, \mathscr{I}(f, c) \in \beta_4$, that means $a \equiv c$.

Assertion 13. If $a, b \in \Pi(\beta)$ and $a \equiv b$, then $\mathscr{I}(a, b) \in \beta$.

Proof. Let $\beta_1 = \beta_4 = \beta$. Since $a \equiv b$ there exist $\beta_2, \beta_3, \alpha_2 \in M$ and $c \in \Pi(\alpha_2)$ such that $\mathscr{I}(a, c) \in \beta_2$, $\mathscr{I}(b, c) \in \beta_3$, $\alpha_2 \overline{R}\beta_2$, $\alpha_2 \overline{R}\beta_3$. By (iii)' (a) there exist α_1 and α_3 for which $\alpha_1 \overline{R}\beta_1, \alpha_1 \overline{R}\beta_2$, $d \in \Pi(\alpha_1), \alpha_3 \overline{R}\beta_3, \alpha_3 \overline{R}\beta_4, \beta \in \Pi(\alpha_3)$. By Assertion 11, there exists an *i* such that $\alpha_i \overline{R}\beta_j$ (*j*=1, 2, 3, 4). Obviously $\mathscr{I}(a, a) \in \beta_1$, $\mathscr{I}(a, c) \in \beta_2$, $\mathscr{I}(c, b) \in \beta_3$, $\mathscr{I}(b, b) \in \beta_4$. Let *d* be that variable among *a*, *b*, *c* which is in $\Pi(\alpha_i)$. Applying Assertion 10, we have $\mathscr{I}(a, d) \in \beta_1$ and $\mathscr{I}(d, b) \in \beta_4$, i.e. $\mathscr{I}(a, b) \in \beta$.

Theorem 8. (Completeness Theorem.) Let a non-stable modal logic with equality be given. If \mathscr{A} is not derivable, then $\sim \mathscr{A}$ is satisfiable.

Proof. Let M be a complete system of sets of formulae, N, R as defined in the proof of Theorem 7. Let us define P by the following causes: for $\beta \in M$ $|P(\beta)| = \{\bar{a} : a \in \Pi(\beta)\}$, where $\bar{a} = \{b : a \equiv b\}$; if $a_1, ..., a_n, a \in \Pi(\beta)$, then

$$f_{P(\beta)}(\bar{a}_1, ..., \bar{a}_n) = \bar{a} \Leftrightarrow \mathscr{I}(f(a_1, ..., a_n), a) \in \beta;$$

(By definition of completeness, this function is defined and it is unique by last assertion.) $r_{P(\beta)}(\bar{a}_1, ..., \bar{a}_n) \Leftrightarrow r(a_1, ..., a_n) \in \beta$. For an arbitrary $\beta \in M$, $\langle M, N, \beta, R, P \rangle$ is a model.

If A 6 is an axiom of the given logic, then this model is simple. We have to prove that

if $a_1, ..., a_n, a \in \Pi(\beta), b_1, ..., b_n, b \in \Pi(\gamma), a_1 \equiv b_1, ..., a_n \equiv b_n, \mathscr{I}(f(a_1, ..., a_n), a) \in \beta$ and $\mathscr{I}(f(b_1, ..., b_n), b) \in \gamma$, then $a \equiv b$. Let $1 \leq i \leq n$ be given. By definition of \equiv and clause (iii)' (a) we can assume that $\beta_1 = \beta, \beta_n = \gamma, \alpha_1 \overline{R}\beta_1, \alpha_1 \overline{R}\beta_2, \alpha_2 \overline{R}\beta_2, \alpha_2 \overline{R}\beta_3, \alpha_3 \overline{R}\beta_3, \alpha_3 \overline{R}\beta_4, a_i \in \Pi(\alpha_1), \mathscr{I}(a_i, c) \in \beta_2, c \in \Pi(\alpha_2), \mathscr{I}(c, b_i) \in \beta_3, b_i \in \Pi(\alpha_3)$. Let γ_i denote the first element among $\alpha_1, \alpha_2, \alpha_3$ under \overline{R} . Using methods from proofs of Assertion 9-13, we get $c_i \in \Pi(\gamma_i), \mathscr{I}(a_i, c_i) \in \beta, \mathscr{I}(c_i, b_i) \in \gamma, \gamma_i \overline{R}\beta, \gamma_i \overline{R}\gamma$. Since for every $i, \gamma_i \overline{R}\beta$, applying (iii)' (b) we obtain that there exists an *i* such that $\gamma_j \overline{R}\gamma_i$ for every *j*. By Assertion 8, for this *i* we have $c_1, ..., c_n \in \Pi(\gamma_i)$. So there exists a *c* for which $\mathscr{I}(f(c_1, ..., c_n), c) \in \gamma_i$. Generalizing the method used in proof of Assertion 9, we arrive to $\mathscr{I}(f(c_1, ..., c_n), c) \in \beta$ and $\mathscr{I}(f(c_1, ..., c_n), c) \in \gamma$. From $\mathscr{I}(f(a_1, ..., a_n), a) \in \beta$ and $\mathscr{I}(f(b_1, ..., b_n), b) \in \gamma$, it follows that $\mathscr{I}(a, c) \in \beta, \mathscr{I}(b, c) \in \gamma$ and so $a \equiv b$.

K. Tóth

Let k be an interpretation and \varkappa the corresponding valuation. If for a variable $x, k(x) \in |P(\beta)|$, then $\bar{k}(x) \cap \Pi(\beta) \neq \emptyset$. Let $x^* \in \bar{k}(x) \cap \Pi(\beta)$. We extend the operation * for arbitrary expressions: $\mathscr{H}^* = \mathscr{H}[x_1, \dots, x_n/x_1^*, \dots, x_n^*]$, where x_1, \dots, x_n are all the variables occuring in \mathscr{K} . By a simple induction, the following statements are easy to prove:

(i) $\varkappa(\tau,\beta) = \bar{a}$ and $a \in \Pi(\beta) \Leftrightarrow \mathscr{I}(\tau^*,a) \in \beta$; (ii) If \mathscr{A} contains variables from $\Pi(\beta)$ only then $\beta \models \mathscr{A}[k] \Leftrightarrow \mathscr{A}^* \in \beta$.

From (ii) the theorem follows.

§ 5. Connections with classical logics

Let us suppose that a modal logic is given; i.e., the sets of relation symbols. function symbols and set of variables are fixed. We also suppose that the following symbols do not occur in these sets: o, s, n, r, p, i, z, z'. Furthermore the parameter \mathcal{T} of this logic is fixed. Also we know if this logic is simple, stable or so.

Now we define a classical theory. The language of this theory contains all the relation symbols and function symbols of the modal language but if a symbol has arity m in the modal language we use it with arity m+1 in the classical one. Also we shall use the following symbols: o: 0-ary function symbol, s and n both unary relation symbols, r, p, i all of them are binary relation symbols, and two new variables: z and z'.

We define a mapping [] from the set of modal expressions into the set of classical ones:

(i) if x is a variable, then [x] = x;

- (ii) $[f(\tau_1, ..., \tau_m)] = f([\tau_1], ..., [\tau_m], z)$ if f is an m-ary function symbol in
- the modal language, $\tau_1, ..., \tau_m$ are terms; (iii) $[r(\tau_1, ..., \tau_m)] = r([\tau_1], ..., [\tau_m], z)$ if r is an m-ary relation symbol in the modal language, $\tau_1, ..., \tau_m$ are terms; in particular $[\mathscr{I}(\tau_1, \tau_2)] = i([\tau_1], [\tau_2]);$

(iv) $[\sim \mathcal{A}] = \sim [\mathcal{A}]; [\mathcal{A} \land \mathcal{B}] = [\mathcal{A}] \land [\mathcal{B}];$

- (v) $[\forall x \mathscr{A}] = \forall x (p(x, z) \rightarrow [\mathscr{A}]);$
- (vi) $[\Box \mathscr{A}] = \forall z'(r(z, z') \rightarrow [\mathscr{A}][z/z']) \land n(z).$

Let $\mathscr{A}^* = p(x_1, z) \land \dots \land p(x_m, z) \land [\mathscr{A}]$, where x_1, \dots, x_m are all the free variables of A.

Let M be a classical model in which the following formulae are valid: $s(o); s(z) \rightarrow \exists xp(x, z); p(x, z) \land r(z, z') \rightarrow p(x, z'); s(z) \land r(z, z') \rightarrow s(z'); s(z) \rightarrow p(f(x_1, ..., x_{n-1}))$ $\dots, x_m, z), z$ for every function symbol.

Let $0 = o_M$, $S = \{a : a \in |M| \text{ and } s_M(a)\}$, $N = \{a : a \in S \text{ and } n_M(a)\}$, $aRb \Leftrightarrow a, b \in S$ and $r_M(a, b)$, $|P(a)| = \{b: p_M(b, a)\}$, if $a \in S$, for $a_1, ..., a_m \in |P(a)|, f_{P(a)}(a_1, ..., a_m) =$ $=f_M(a_1, ..., a_m, a)$ and $q_{P(a)}(a_1, ..., a_m) \Leftrightarrow q_M(a_1, ..., a_m, a)$.

It is obvious, that by these definitions $\langle S, N, O, R, P \rangle$ is a modal model.

Let k be an interpretation for M such that k associates an element of S to z and z', and k associates an element of $\bigcup_{a \in S} |P(a)|$ to every variable other then z or z'. It is clear, that k is also an interpretation for $\langle S, N, O, R, P \rangle$. Let the

corresponding valuations be K in M and \varkappa in $\langle S, N, O, R, P \rangle$.

Theorem 9. Let τ be a term, \mathscr{A} a formula and suppose z, z' do not occur in them. Then

(i)
$$\varkappa(\tau, k(z)) = K([\tau])$$
, provided $\varkappa(\tau, k(z))$ is defined;
(ii) $k(z) \models \mathscr{A}[k] \Leftrightarrow M \models \mathscr{A}^*[k]$.

Proof. The easy induction is left to the reader.

Now we give the inverse of the mapping

$$M \rightarrow \langle S, N, O, R, P \rangle$$
.

Let $\langle S, N, O, R, P \rangle$ be an arbitrary modal model. We define

$$|M| = S \cup \left(\bigcup_{a \in S} |P(a)|\right); \quad o_M = 0; \quad s_M(a) \Leftrightarrow a \in S;$$
$$n_M(a) \Leftrightarrow a \in N; \quad p_M(a, b) \Leftrightarrow b \in S \quad \text{and} \quad a \in |P(b)|;$$
$$r_M(a, b) \Leftrightarrow a, b \in S \quad \text{and} \quad aRb, i_M(a, b) \Leftrightarrow a = b;$$
$$f_M(a_1, \dots, a_m, a) = \begin{cases} f_{P(a)}(a_1, \dots, a_m), & \text{if} \quad a \in S \quad \text{and} \quad a_1, \dots, a_m \in |P(a)| \\ arbitrary \text{ element} \quad of \quad |P(a)| \text{ otherwise}; \end{cases}$$

 $q_M(a_1,\ldots,a_m,a) \Leftrightarrow q_{P(a)}(a_1,\ldots,a_m).$

Theorem 10. Let A, B classical models and $|A| \subseteq |B|$. There are the same symbols in the languages of A and B the only exeption is s, which is used only in the language of B as a unary relation symbol. Let

$$f_A(a_1, \dots, a_m) = f_B(a_1, \dots, a_m), \quad \text{if} \quad a_1, \dots, a_m \in |A|;$$
$$q_A(a_1, \dots, a_m) \Leftrightarrow q(a_1, \dots, a_m), \quad \text{if} \quad a_1, \dots, a_m \in |A|;$$
$$s_B(b) \Leftrightarrow b \in |A|.$$

We define the mapping \mathcal{H} on the set of formulae not containing the symbol s: $\mathcal{H}(\mathcal{A}) = \mathcal{A}$, if \mathcal{A} is an atom;

 $\mathscr{H}(\mathscr{A}\wedge\mathscr{B})=\mathscr{H}(\mathscr{A})\wedge\mathscr{H}(\mathscr{B})\ \mathscr{H}(\sim\mathscr{A})=\sim\mathscr{H}(\mathscr{A})$

 $\mathscr{H}(\forall x\mathscr{A}) = \forall x(s(x) \to \mathscr{H}(\mathscr{A})).$

Let k be an interpretation the range of which is in |A|. Then

$$A \models \mathscr{A}[k] \Leftrightarrow B \models \mathscr{H}(\mathscr{A})[k].$$

Proof. Trivial.

If $M \rightarrow \langle S, N, O, R, P \rangle$ is the mapping defined above, \mathcal{T} is the parameter of the logic, then we have:

(i) the modal model has property \mathcal{T} if and only if $M \models \mathscr{H}(\mathcal{T})$;

(ii) the modal model is simple if and only if for every function symbol f

$$M \models \forall x_1 \dots \forall x_m \forall z \forall z' (p(x_1, z) \land p(x_1, z') \land \dots \land p(x_m, z) \land p(x_m, z') \rightarrow$$
$$\rightarrow i(f(x_1, \dots, x_m, z), f(x_1, \dots, x_m, z')));$$

(iii) the modal model is stable if and only if

 $M \models \forall z \forall z'(s(z) \land s(z') \rightarrow \forall x(p(x, z) \rightarrow p(x, z'))).$

Let \mathscr{A} be a modal formula and assume a modal logic is given. The formula \mathscr{A} is satisfiable (in modal sense) if and only if the following formula is classically satisfiable: $s(o) \land (s(z) \rightarrow \exists xp(x, z)) \land \forall x \forall z \forall z' (p(x, z) \land r(z, z') \rightarrow p(x, z')) \land$ $\land \forall z \forall z' (s(z) \land r(z, z') \rightarrow s(z')) \land \forall z \forall x_1, \ldots, \forall x_{m_1}(s(z) \rightarrow p(f_1(x_1, \ldots, x_{m_1}, z), z)) \land \ldots$ $\ldots \land \forall z \forall x_1 \ldots \forall x_{m_k}(s(z) \rightarrow p(f_k(x_1, \ldots, x_{m_k}, z), z)) \land \mathscr{P} \land \mathscr{P} \land \mathscr{H}(\mathscr{T}) \land \mathscr{A}^*[z/o]$, where f_1, \ldots, f_k are all the function symbols occuring in \mathscr{A} ; \mathscr{P} is true if the logic is not simple, otherwise it is the following:

$$\bigwedge_{j=1}^{k} \left(\forall x_1, \dots \forall x_{m_j} \forall z \forall z' (p(x_1, z) \land p(x_1, z') \land \dots \land p(x_{m_j}, z) \land p(x_{m_j}, z) \rightarrow i(f(x_1, \dots, x_{m_j}, z), f(x_1, \dots, x_{m_j}, z')) \right);$$

 \mathscr{S} is true if the logic is not stable, otherwise it is the formula

$$\forall z \forall z'(s(z) \land s(z') \rightarrow \forall x(p(x, z) \rightarrow p(x, z'))).$$

References

- [1] FEYS, R., Modal logics, Paris, 1965.
- [2] SCHÜTTE, K., Vollständige Systeme modaler und intuitionistischer Logik, Springer Varlag, Berlin, 1970.

(Received Oct. 2, 1978)