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1. Introduction 

In this section the set of natural numbers is denoted by J f , and the set of Peano 
axioms (with+and-only) by PA. In our point of view, a program is a finite se-
quence of labelled statements. The labels are (distinct) natural numbers. Each state-
ment is either an assignment of the form "v*-x" where v is a variable symbol and 
T is a term of Peano arithmetic containing operator symbols+and-only, or is an 
if-statement of the form " IF x THEN / " where x is a quantifier free formula of 
PA and IdJV is a label. Denote by Vp the (finite) set of variable symbols occuring 
in the program p and let Lp be the set of the labels of the statements and 
h£Jf\Lp (the "halt" label). A run of the program p is a sequence (/,-, 
where 

(i) /;€Lp U {A} and / ¡ : Vp-~Jf is a valuation of the variables for every i ^ J f ; 
(ii) if l=h then / ,+!=/;, fi+i=fi-, 

(iii) if the statement labelled by /,• is " V ^ T " then 

|Z ; +1 if Z ,+ l€£ p , 
I h otherwise, 

ifi(w) if w£Vp, w v, 

if Z,+ l€£ , 
otherwise, 

(iv) if the statement labelled by /, is " IF x THEN / " then 

I if l£Lp and xlfii is t rue, 
/,-+1 = • h + 1 if h + ^ L p and xUi] is false, 

h otherwise, 

fl +1 ~ fi-

i +1 

The run of the program halts, if lt = h for some i [cf. 4]. 
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It is well-known that every program can be written in this form because we 
have made no restriction on the content of variables [5]. Moreover, there is a 
straighforward way to prove partial correctness of programs of this type: assign 
formulas to every element of Lp U {h} and prove (say, from the Peano axioms) that 
if the formula assigned to /,• is satisfied then after executing the statement belonging 
to the formula assigned to / i + 1 will be satisfied, too. Then, if the run halts, the 
formula assigned to H is satisfied, i.e. the program is partially correct. This method 
is the so called Floyd—Hoare derivation [6]. 

It is easy to give a rigorous proof that if a program has a Floyd—Hoare deriva-
tion, i.e. if we may assign formulas and prove what we have to prove then the 
program is partially correct. But, alas, there are programs which always halt, al-
ways give the same result but have no Floyd—Hoare derivation. For example let 
«jo be a formula of Peano arithmetic such that neither q> nor its negation are prov-
able from PA. Our program checks whether its only input is the Godel number 
of a proof of <p from PA. If it is, it prints 1, if not, i.e. if the input is either not 
a Godel number of a proof or does not prove cp, it prints 0. Our program always 
halts because it is a decidable property to be a proof of a concrete formula, and 
always prints 0 because there is no proof of cp. Moreover, we can not prove this 
(from PA) because then we would be able to prove in PA that there is a non-
provable formula, i.e. that PA is consistent, which is impossible. 

This difficulty vanishes if we allow the program to operate not only on J f 
but on any model of PA and to run not only through finite time but through non-
standard time. This idea is behind the concept of continuous trace, it simulates 
the non-standard runs of programs, see [1], section 3 of [7], and [8]. 

2. Notation, definitions 

Denote by L the set of classical first order formulas of type t, where t is the 
similarity type of arithmetic, i.e. it consists of " + , 0,1" with arities "2, 2, 0, 0", 
respectively. PA denotes the following (infinite) set of axioms: 

PI x + l j i 0 

P2 Jt+1 = y + 1 — x = y 

P3 J t+0 = x 

P4 * + ( y + l ) = (x+y) + l 

P5 x - 0 = 0 

P6 * ' ( y + l ) = ( * ^ ) + JC -

P7 for all formulas <p with x as free variable 

|>(0)A V*($>(*) - <p(x+\))] - V*<?(*)• 

We will use other relation and function symbols, as e.g. x<y or rem (x, y) which 
are definable in PA. We introduce the bounded quantifiers (Vx~=:y)<p(y)'~ 
-^Vx(x<y—<p(x)), etc., too. The following reformulation of the axiom of in-
duction 
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P8 [(Vy < x)(p(y) - <p(x)] - \/x<p(x) 

may be obtained from P7 substituting cp(x) by (\/y<x)(p(y) [cf. 2]. 
The inclusion AcB allows the sets A and B be equal. 
To save space we use vector notation in place of sequence of symbols of same 

type. E.g. we write (p(x) instead of cp(x1, x2, ..., xn), etc. The dimension of vectors 
is always clear from the context. 

Definition. Let A be any model of PA with universe A. Let <p (x1; ..., x„, yu ..., y„) 
be a formula of PA so that 

P A h V * 1 . . - . V * , B ! f t . . . 3 l w ( x 1 ^ (2.1) 

Let qa = (ql, ..., q") be a sequence of length n of elements of A for every a£A. We 
say that the sequence (qa)aiA is a continuous trace (ct in short) of <p if 

A N ?fl+1) for every a£A; (2.2 
for every formula \j/ of PA and every sequence p of elements of A 

A N [ > ( W ) A A (ip(.qa,P) - A t(§a,P)- (2-3) 
aZA aiA 

In the remaining part of this paper we fix the model A of PA, the formula cp, the 
sequence q0 and its length n. Whenever we speak about continuous traces we mean 
ct of cp with first element q0 in A. 

We shall need the notion of coding function of sequences. Let rem (x, y) be 
the remainder when x is divided by y and define the ordered pair (x,y) as (x+y) • 
• Let moreover the triplet (x,y, z)=(x, (y, z)> and define the formulas 
PAIR (z), SEQ (u) and the functions LENGTH (it), ELEM (u, i) as follows. 

PAIR(z) = V u ( i c u S zA(u + l ) - ( u + l) > z — z ^ u -u + u); 

SEQ («) = PAIR (u)A Vx Vy(u — (x, y) — PAIR (y)); 

{n if SEQ (u) and u = (x, y, n), 
0 otherwise, 

frem (m, 1 + ( / + 1 ) • b) if SEQ (u) and u = (m, b, n) and i < n, 
ELEM (m, 0 = | 0 o t h e r w . s e 

A straighforward proof shows that 

PA | - PAIR (z) - 3 ! x 3 ! y ( z = <x, j;» 

PA t- Vu 3 !n (LENGTH (u) = n) 

PA | - V« V i 3 !x(ELEM («, i) = x). 

We say that m6 A is a sequence if A N SEQ (w), its length is n if A1= LENGTH (M) = n 
and its i'-th element is a if AN ELEM (w, i)—a. Note that 0 is a sequence of 
length 0. 

The following theorem says that every sequence can be lengthened by 1 [3]. 
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Theorem 1. P A | - V " Vz 3 D ( S E Q ( M ) -

{SEQ (v) A LENGTH (v)=LENGTH (M) +1A 

(V/<LENGTH(w))(ELEM(w, i)=ELEM(t; , /))A 

ELEM (d, LENGTH («))=2}). • 

3. The result 

First we prove some lemmas. We remind that A, q>, q0 and n are fixed. 

Lemma 1. There are a formula $ of PA and a unique sequence (qa)aiA of se-
quences of length n of elements of A with the given q0 such that 

P A I - V M V X J . . . VX„ 3 . . . 3 I y„$(m, xx, ...,x„, ..., y„) 

PA f- Mm Mx V j Vz($(m, x,y)h$(m + \, x,z) - <p(y, z)) 

A |= <P(a, q0, qa) for every a£A 

A 1= <p(9fl,ia+i) for every a£A. 

Proof. Let <P1(m) be 

Vx1...Vx„ Bu%(x1, ..., x„,u, m). 

where 1 is "u is a sequence of length m + 1 such that every element of u is a sequence 
of length n, ihe elements of the 0-th element of u are x1, ..., x„ in this order and for 
every i<m the z'-th element y and the (7+ l)-st element z of u satisfy cp(y, z)". 

It is clear that P A | - # i ( 0 ) , one only have to use Theorem 1 n times. In view 
of (2.1) and Theorem 1, P A | - ^ ( w ) — + 1 ) holds. Therefore, by the induc-
tion axiom, PA l- V m ^ i W . A very similar argument shows that the following 
formula, denoted by <P2, is also PA provable (by induction on i): 

... V*„ V« V^ V' ("if u and v are sequences as above and 
z'^min (LENGTH (m), LENGTH (y)) then the elements of 
the z-th element of u and v coincide"). 

Now let <P be 3u(%(xj, . . . , xn, u, m)A "the elements of the m-th element of u are 
yt, ...,yn in this order"). The existence in (3.1) is ensured by 4>1, the uniqueness 
is by <P2- (3-2) is trivial. Consider now the valuation of in A where the values of 
Xx, ..., x„ are ql, . . . , respectively while m has the value a£A. Denote the values 
of ylt ...,yn for which <P(m,x,y) holds in A by ql, ..., q", respectively. The qa's 
are determined uniquely by (3.1) and (3.3) is satisfied by definition. (3.4) follows 
immediately from (3.2). • 

Definition. The sequence (qa)aiA defined previously is called the standard con-
tinuous trace (set in short). (We will see later that this sequence forms a continuous 
trace indeed.) 

Lemma 2. Let \f/ be any formula of PA, p a fixed sequence of elements of A 
and 

A \j/(a, qa,p) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 



Structure of program runs of non-standard time 329 

for some adA. Then there is a least suffix with this property, i.e. ad A such that 

Proof. Suppose the contrary, i.e. whenever A \=ij/(b,cjb ,p) for every b<a 
then At=i\>(a,qa,~p). Denote by W(m,x,z) the formula x, y)A 
A\j/(m,y,z)). Then, by the reformulation of the induction axiom, 

PA h [(Vn < m ) f (n, 3c, z) - f ( m , 3c, I ) ] - V m W(m, 3c, z). 

Now valuate this in A putting q0 instead of 3c an p instead of z. Notice, that the 
implication in the square bracket holds, therefore the second half of the implication 
holds also, i.e. At=i¡i(a, qa,p) for every ad A, which is a contradiction. • 

COROLLARY. In virtue of this lemma, we may use induction type proofs for 
the sequence (qa)a€A. • 

Lemma 3. Let u, v£A, 0<v. If qu = qu+E then 

for every x, yd. A. 

Proof. Let y= 1 and use induction by the Corollary on x. After this fix x 
and use induction on y. • 

Lemma 4. There exists an EczA such that 

Proof. If all of the elements of the sequence <qa)a(A are different, the set E—A 
satisfy (3.5)—(3.7). If not, there is an ad A so that qa occurs at least twice in the 
sequence. This property is expressible by an L-formula, so, by Lemma 2, we can 
assume that this a is the minimal one, i.e. qb is unique if b<a. There are other 
occurrences of qa , hence, also by Lemma 2, there is a second one, i.e. there is an 

such that qa = qe+i but ¡Ja^i]b if a < b ^ e . We claim that the set 
E={adA: a^e} satisfies (3.5) and (3.6). It is sufficient to see (3.5) in case 

only. Suppose qbl=^b2- Lemma 3 with the cast u=b1,v—bi—bi, 
x = rem (e+1 — b1} b2-b1) gives q e + 1 = qbl+x9£qa which is a contradiction. (3.6) 
is an easy consequence of Lemma 3. • 

Now we have all of the tools for the proof of the main result of this paper. 
First we need some more preliminaries. 

Definition. The subset SczA is a slice if ad S implies a+ Id S and bd S for all 
¿><0. 

The subset TczA is a thread if adT implies, a+ldT, a-IdT (for a^O) and 
a,bdT, a<b imply that for some natural number n 

A \j/(a, qa,p) but A N \j/(b, qb,p) if b < a. 

if b2dE, b^bz then qbl ^ qb%; 

for every adA there exists bdE such that qa=qb, 

either E=A or for some edE, E— {adA: a^e}. 

(3.5) 

(3.6) 

(3.7) 

b = a + l + ... + l (n times). 
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The function f : A-+A is a projector if / ( 0 ) = 0 and f(a+ l)=f(a)+1 for 
every a£A. 

The sequence (pa)aiA is a projection of the sequence (qa)aeA if there exists 
a projector f and a slice S such that 

Theorem 2. The standard continuous trace (<ja)a£A forms a continuous trace. 

Proof. (2.2) of the definition is satisfied by (3.4) of Lemma 1. (2.3) is immediate 
from the Corollary of Lemma 2. • 

Theorem 3. The projections of the standard continuous trace are continuous 
traces. Moreover every continuous trace is a projection of the standard one. 

REMARKS. An easy consequence of Theorem 3 is that if A is a non-standard 
model of PA then for all <p and q0, the cardinality of ct's of (p with first element 
q0 is 2M. 

Now consider a ct (pa)azA the defining formula of which is 

and let Po=0 for the initial position p0. Then pl+1=pl +1 for every a£A but 
one can not hope for p\=a in general. Actually, by Theorem 3, the standard ct 
is the only ct which has this property. We may interpret this'phenomenon as follows. 
We add a "clock" to a continuous trace and suppose that the clock works well 
(i.e. it jumps by 1 at every step). If we require the clock to show the correct time 
then the ct is unique. Compare with Theorem 3.3 of [7]. 

Proof of the theorem. First let / : A— A be the projector and S the slice of 
a projection. We prove that {pa)aiA is a ct. (2.2) of the definition follows from 
f(a+ \)=f («) +1 . To prove (2.3) let i//£L be arbitrary and assume 

By the hypotheses, pa—qa, for all ¿>£5 there is an a£A such that qb=p„ and if 
qb=Pa then qb + 1—p a + 1 . So we know that 

A N iK<?0>P) and A t= ^ (§„,/>) - il>(qa+i,p) for all a£S (3.11) 

and it is enough to show that this implies 

Suppose the contrary. Then, by Lemma 2, there is a least counter-example, say b. 
But this b belongs to S because S is a slice, which contradicts (3.11). 

Now we turn to the second and longer part of the proof. Let (pa)aiA be any ct, 
/50=<70. We claim that for any a£A there exists a least b£A such that ¡7),.-In-
deed, let \]/(y, x) be "3m&(m, x, y)". It is clear that A\=ip(p0, q0) with m=0 and 

Pa = bw for every 
Rng ( / ) c S 

for every b£ S there is an a£A such that qb = q/iay. 

(3.8) 

(3.9) 

(3.10) 

(p(xu ...,x„, >>!, ...,>'„) = = Xi+IA... 

A N \ll{p0,p)h A ( ' K p a , p ) - Pa + l'P))• 

A N ip(qa,p) for all a£S. 
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if At= 4>(Pa> 9o) with some m, then A.\=ijj(pa+1,q0) with (m + 1) because the 
successors are unique. Then by (2.3), A i=^ (p a , go ) for all a£A which states the 
existence of b. Finally, Lemma 2 ensures a least one. Denote this b by / ( a ) and 
denote S the range of the function / . Let moreover E and e be as defined in 
Lemma 4. 

It is clear that S c £ , / ( 0 ) = 0 and if f(a)?e then f(a+])=f(a)+\. Now 
let b£A, b$S and let \p{x,y,m) be the formula " ( E 3 m ' < m ) x , y)". Since 
0 < 6 and if f(a)~zb then / ( a + l ) = s / ( a ) + l<&, we know 

ANIMPO,<io,b) and A |= q0, b) - ^(pa+1, q0, b). 
By (2.3) of the definition of ct, A\=^(pa,q0,b), i.e. /(a)<Z> for all a£A. This 
means that if b£ S and c<b t h e n c f S . 

We distinguish tvfo cases. 
1. E—A or E^A but S. In this case / is a projector and S is a slice, there-

fore {pa)aZA is a projection. _ _ 
2. eZS, i.e. S=E. Let b£E so that qb—qe+1- By Lemma 3 qu—Qe-y\.=^b 

if u=a+y • (e+1 —a), so if we choose y large enough then the thread Tu of u does 
not contain b. For each thread T define the function gT: T-»A as follows. If T 
is the thread of 0 then let gT(a)=a. Otherwise if f(v)—b for some v£T then let 
gT(a)=b+a—v. Otherwise if f(v)—e for some y ^ r t h e n let gT(a)=u—l+a—v, 
otherwise let gr(fl)=f (a). Finally, let g(a)=gT(a) if a is in the thread T. 

It is clear from the definition of gT that g is a projector and ;?0=<7 /(fl)=#9(a). 
By Lemma 4, every qb equals to some pa, i.e. in this case the projector g and the 
whole A as a slice shows that (pa)aiA is a projection. • 

Abstract 

Continuous traces are introduced to simulate program runs when time is measured by the ele-
ments of a non-standard model of Peano axioms. This concept is a very useful one in considerations 
of program verification. We give here a full description of continuous traces in every model of PA. 
It turns out that there is exactly one continuous trace definable by a formula of PA and every 
other one can be got from this by a simple transformation. 
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