On isomorphic representations of commutative automata with respect to α_i -products

By B. IMREH

The purpose of this paper is to study the α_i -products (see [1]) from the point of view of isomorphic completeness for the class of all commutative automata. Namely, we give necessary and sufficient conditions for a system of automata to be isomorphically complete for the class of all commutative automata with respect to the α_i -products. It will turn out that if $i \ge 1$ then such isomorphically complete systems coincide with each other with respect to different α_i -products. Furthermore they coincide with isomorphically complete systems of automata.

By an *automaton* we mean a finite automaton $A = (X, A, \delta)$ without output. Moreover *isomorphism* and *subautomaton* will mean A-isomorphism and A-subautomaton.

Take an automaton $\mathbf{A} = (X, A, \delta)$ and let us denote by X^* the free monoid generated by X. The elements $p \in X^*$ are called *input words* of A. The transition function δ can be extended to $A \times X^* \to A$ in a natural way: for any p = p'x $(p' \in X^*, x \in X)$ and $a \in A$ $\delta(a, p) = \delta(\delta(a, p'), x)$. Further on we shall use the more convenient notation ap_A for $\delta(a, p)$ and $A'p_A$ for the set $\{ap_A: a \in A'\}$ where $A' \subset A$ and $p \in X^*$. If there is no danger of confusion, then we omit the index A in ap_A and $A'p_A$. Define a binary relation σ on X^* in the following manner: for two input words $p, q \in X^*, p \equiv q(\sigma)$ if and only if ap = aq for all $a \in A$. The quotient semigroup X^*/σ is called the *characteristic semigroup* of A, and it will be denoted by S(A). We use the notation [p] for the element of S(A) containing $p \in X^*$.

An automaton $\mathbf{A} = (X, A, \delta)$ is commutative if $ax_1x_2 = ax_2x_1$ for any $a \in A$ and $x_1, x_2 \in X$. Denote by \Re the class of all commutative automata.

Take an automaton $\mathbf{A} = (X, A, \delta)$ and let ω be an equivalence relation of the set A. It is said that ω is a congruence relation of \mathbf{A} if $a \equiv b(\omega)$ implies $ax \equiv bx(\omega)$ for all $a, b \in A$ and $x \in X$. The partition induced by the congruence relation ω is called *compatible partition* of \mathbf{A} .

Let $A = (X, A, \delta)$ be an automaton. Define the relation C of A in the following way: $a \equiv b(C)$ if and only if there exist $p, q \in X^*$ such that ap = b and bq = a. It is clear that C is a congruence relation of A if the automaton A is commutative. In the following we use the notation C(a) for the block of the partition induced by C which contains a. On the set $A/C = \{C(a): a \in A\}$ we define a partial ordering in the following way: for any $a, b \in A, C(a) \leq C(b)$ if there exists $p \in X^*$ such that ap = b. If $C(a) \leq C(b)$ and $C(a) \neq C(b)$ then we write C(a) < C(b). The automaton $A = (X, A, \delta)$ is called a *permutation automaton* if for any $a, b \in A$ and $p \in X^*$, ap = bp implies a = b. The automaton A is *connected* if for any $a, b \in A$ there exist $p, q \in X^*$ such that ap = bq.

Let $\mathbf{A}_t = (X_t, A_t, \delta_t)$ (t=1, ..., n) be a system of automata. Moreover, let X be a finite nonvoid set and φ a mapping of $A_1 \times ... \times A_n \times X$ into $X_1 \times ... \times X_n$ such that $\varphi(a_1, ..., a_n, x) = (\varphi_1(a_1, ..., a_n, x), ..., \varphi_n(a_1, ..., a_n, x))$, and each φ_j $(1 \le j \le n)$ is independent of states having indices greater than or equal to j+i, where i is a fixed nonnegative integer. We say that the automaton $\mathbf{A} = (X, A, \delta)$ with $A = A_1 \times ... \times A_n$ and $\delta((a_1, ..., a_n), x) = (\delta_1(a_1, \varphi_1(a_1, ..., a_n, x)), ..., \delta_n(a_n, \varphi_n(a_1, ..., a_n, x)))$ is the α_i -product of \mathbf{A}_t (t=1, ..., n) with respect to X and φ . For this product we use the notation $\prod_{i=1}^n \mathbf{A}_i(X, \varphi)$ and $\mathbf{A}_1 \times \mathbf{A}_2(X, \varphi)$ for n=2. Moreover, if in α_i -product $\mathbf{A}_i = \mathbf{B}$ for all t (t=1, ..., n), then \mathbf{A} is called an α_i -power of \mathbf{B} and we use the notation $\mathbf{A} = \mathbf{B}^n(X, \varphi)$.

Let \mathfrak{B} be an arbitrary class of automata. Further on let Σ be a system of automata. Σ is called *isomorphically complete for* \mathfrak{B} with respect to the α_i -product if any automaton from \mathfrak{B} can be embedded isomorphically into an α_i -product of automata from Σ . If \mathfrak{B} is the class of all automata and Σ is isomorphically complete for \mathfrak{B} , then it is said that Σ is *isomorphically complete*.

Let us denote by $\mathbf{E}_2 = (\{x, y\}, \{0, 1\}, \delta_{\mathbf{E}})$ the automaton for which $\delta_{\mathbf{E}}(0, y) = 0$, $\delta_{\mathbf{E}}(0, x) = 1$, $\delta_{\mathbf{E}}(1, x) = \delta_{\mathbf{E}}(1, y) = 1$.

An automaton $A = (X, A, \delta)$ is called *monotone* if there exists a partial ordering \leq on A such that $a \leq \delta(a, x)$ holds for any $a \in A$ and $x \in X$.

For monotone automata the following result holds:

Lemma 1. Every connected monotone automaton can be embedded isomorphically into an α_0 -power of \mathbf{E}_2 .

Proof. We proceed by induction on the number of states of the automaton. In the cases n=1 and n=2 our statement is trivial. Now let n>2 and suppose that the statement is valid for any natural number m < n. Denote by $\mathbf{A} = (X, A, \delta)$ an arbitrary connected monotone automaton with n states. Since \mathbf{A} is connected thus among the blocks C(a) $(a \in A)$ there exists exactly one maximal element under our partial ordering of blocks. On the other hand, since \mathbf{A} is monotone thus the partition induced by C has one-element blocks only. Denote by a_n the element of the maximal block. Since n>2 thus there exists an $a \in A$ such that $C(a) < C(a_n)$. Denote by a_k an element of A for which $C(a_k) < C(a_n)$ and $C(a_k) < C(a)$ implies $a = a_n$ for any $a \in A$. Obviously there exists such an a_k . It is also obvious that $(X, H, \delta_{|H \times X})$ is a subautomaton of \mathbf{A} , where $H = \{a_k, a_n\}$ and the restriction to $H \times X$ of the function δ is denoted by $\delta_{|H \times X}$. Let us define the automata $\mathbf{A}_1 = = (X, (A \setminus H) \cup \{*\}, \delta_1)$ and $A_2 = (((A \setminus H) \cup \{*\}) \times X, H \cup \{\Box\}, \delta_2)$ in the following way:

$$\delta_1(a, x) = \begin{cases} \delta(a, x) & \text{if } \delta(a, x) \notin H, \\ * & \text{otherwise,} \end{cases}$$

$$\delta_1(*, x) = *, \\ \delta_2(\Box, (a, x)) = \begin{cases} \delta(a, x) & \text{if } \delta(a, x) \in H, \\ \Box & \text{otherwise,} \end{cases}$$

$$\delta_2(a', (a, x)) = a', \\ \delta_2(a', (*, x)) = \delta(a', x), \\ \delta_2(\Box, (*, x)) = \Box \end{cases}$$

for all $a \in A \setminus H$, $x \in X$ and $a' \in H$. Take the α_0 -product $\mathbf{B} = \mathbf{A}_1 \times \mathbf{A}_2(X, \varphi)$ where $\varphi_1(x) = x, \varphi_2(v, x) = (v, x)$ for all $x \in X$ and $v \in (A \setminus H) \cup \{*\}$. It is easy to prove that the correspondence

$$\mathbf{v}(a) = \begin{cases} (a, \Box) & \text{if } a \in A \setminus H, \\ (*, a) & \text{if } a \in H, \end{cases}$$

is an isomorphism of A into B.

Now let us consider the automata A_1 and A_2 . Since A_1 is a connected monotone automaton with n-1 states thus, by our assumption, A_1 can be embedded isomorphically into an α_0 -power of \mathbf{E}_2 . Denote by U the set of input signals of \mathbf{A}_2 and take the following partitions of U:

$$U_{1} = \{(a, x): a \in A \setminus H, x \in X, \delta(a, x) \notin H\} \cup \{(*, x): x \in X\},\$$

$$U_{2} = \{(a, x): a \in A \setminus H, x \in X, \delta(a, x) = a_{k}\},\$$

$$U_{3} = \{(a, x): a \in A \setminus H, x \in X, \delta(a, x) = a_{n}\},\$$

$$V_{1} = \{(a, x): a \in A \setminus H, x \in X\} \cup \{(*, x): x \in X, \delta(a_{k}, x) = a_{k}\},\$$

$$V_{2} = \{(*, x): x \in X, \delta(a_{k}, x) = a_{n}\}.$$

Consider the α_0 -product $\mathbf{E}^2(U, \varphi)$ where $\varphi_1(u_1) = y, \varphi_1(u_2) = \varphi_1(u_3) = x$, $\varphi_2(0, u_1) = \varphi_2(0, u_2) = y, \ \varphi_2(0, u_3) = x, \ \varphi_2(1, v_1) = y \text{ and } \ \varphi_2(1, v_2) = x \text{ for all } u_i \in U_i$ (i=1, 2, 3) and $v_j \in V_j$ (j=1, 2). It can easily be seen that the correspondence $\Box \rightarrow (0, 0), a_k \rightarrow (1, 0)$ and $a_n \rightarrow (1, 1)$ is an isomorphism of A_2 into $E^2(U, \varphi)$. Since the formation of the α_0 -product is associative thus we have proved that A can be embedded isomorphically into an α_0 -power of \mathbf{E}_2 .

For any natural number $n \ge 1$ let $M_n = (\{x_0, ..., x_{n-1}\}, \{0, ..., n-1\}, \delta)$ denote the automaton for which $\delta(j, x_l) = j + l \pmod{n}$ for any $j \in \{0, ..., n-1\}$ and $x_l \in \{x_0, ..., x_{n-1}\}$, where $j + l \pmod{n}$ denotes the least nonnegative residue of j+l modulo n. Moreover let \mathfrak{M} denote the set of all \mathbf{M}_n such that n is a prime number.

It holds the following

Lemma 2. If the number of states of a strongly connected commutative automaton A is a prime number, then there exists an automaton $M \in \mathfrak{M}$ such that A is isomorphic to an α_0 -product of M with a single factor.

Proof. First we prove that every strongly connected commutative automaton is a permutation automaton. Indeed, denote by $\mathbf{A} = (X, A, \delta)$ a strongly connected commutative automaton and assume that there exist a, $b \in A$ and $p \in X^*$ with ap = bp. Since A is strongly connected thus there exist input words q, $w \in X^*$ such apq = aand aw=b. Using the commutativity of A, we have bpq=awpq=apqw=aw=b. Therefore, a = apq = bpq = b, showing that A is a permutation automaton.

Now let us assume that the number of states of A is prime and denote it by r. Let $a \in A$ and $p \in X^*$ be arbitrary and consider the states a, ap, ap^2, \dots Since A is a permutation automaton thus there exists a t $(1 \le t \le r)$ such that $a = ap^t$. Denote by (a, p) the set $\{a, ap, \dots, ap^{t-1}\}$. Assume that $(a, p) \subset A$. Let $a' \in A \setminus (a, p)$ and consider the set (a', p), which is defined as above. Since A is a strongly connected

automaton thus there exists a $q \in X^*$ such that aq = a'. Using the commutativity of A we have $ap^iq = aqp^i = a'p^i$ (i=0, ..., t-1). From this it follows that (a, p)and (a', p) have the same cardinality since A is a permutation automaton. On the other hand it can easily be seen that (a, p) and (a', p) are disjoint subsets of A. Therefore, the set $\varrho_p = \{(a, p): a \in A\}$ is a partition of A and the blocks of ϱ_p have the same cardinality. Since r is prime thus we get that ϱ_p has one-element blocks only, or it has one block only. Now we choose an $x \in X$ such that ϱ_x has one block only. The automaton A is strongly connected therefore such an $x \in X$ exists. Let $a \in A$ be a fixed state of A and write $a_0 = a, a_i = a_0 x^i$ $(i=1, \ldots, r-1)$. Thus the mapping induced by x on A can be described in the form $a_i x = a_{i+1} \pmod{r}$ $(i=0, \ldots, r-1)$. Now let y be an arbitrary input signal of A and assume that $a_0 y = a_0 x^i = a_i x^i = a_{i+j} \pmod{r}$ for all $i \in \{0, 1, \ldots, r-1\}$. Take the α_0 -product $\mathbf{B} = \Pi \mathbf{M}_r(X, \varphi)$ with a single factor, where $\varphi(x) = x_k$ if $a_0 x = a_k$ for all $x \in X$. It is easy to prove that A is isomorphic to **B**, which completes the proof of Lemma 2.

Lemma 3. Every strongly connected commutative automaton can be embedded isomorphically into an α_0 -product of automata from \mathfrak{M} .

Proof. We prove by induction on the number of states of the automaton. In case n < 4, by Lemma 2, the statement holds. Now let $n \ge 4$ and assume that our statement is valid for any natural number m < n. Denote by $A = (X, A, \delta)$ an arbitrary strongly connected commutative automaton with n states. If n is prime then, by Lemma 2, the statement holds. Assume that n is not prime. Let $p \in X^*$ be arbitrary. Consider the partition ϱ_p . Since A is commutative thus ϱ_p is a compatible partition of A. Denote by Ω the set of all partitions ϱ_p of A such that $[p] \in S(A) \setminus \{[e]\}$, where e denotes the empty word of X^* . Take the partition ϱ of A given by $\varrho = \bigcap_{e_p \in \Omega} \varrho_p$. We distinguish two cases.

First assume that ϱ has one-element blocks only. In this case it can easily be seen that A can be embedded isomorphically into the direct product of the quotient automata A/ϱ_p ($\varrho_p \in \Omega$). On the other hand, for any $\varrho_p \in \Omega$ the quotient automaton A/ϱ_p is a strongly connected commutative automaton with number of states less than *n*. Therefore, by our induction hypothesis the statement is valid.

Now assume, that there exist a, $b \in A$ such that $a \neq b$ and $a \equiv b(\rho)$. Take an input signal x of A such that the mapping induced by it on A is not the identity. Then $\varrho_x \in \Omega$ and thus $\varrho_x \ge \varrho_x$. Therefore, $a \equiv b(\varrho_x)$. This means that there exists a natural number l>0 such that $ax^{l}=b$. Since ρ is compatible thus $ax^{l}\equiv bx^{l}(\rho)$. From this, by the above equality, we get that the states a, ax^{i} , ax^{2i} , ... are in $\varrho(a)$. Therefore, $(a, x^{l}) \subseteq \varrho(a)$. On the other hand $\varrho_{x^{l}} \ge \varrho$ thus $(a, x^{l}) = \varrho(a)$, showing that $\varrho_{x^{l}} = \varrho$. Denote by p the word x^{l} and assume that $\varrho(a) = \{a, ap, \dots, ap^{k-1}\}$. We show that k is prime. Indeed, if 1 < v < k and $_{v}|^{k}$ then $(a, p^{v}) \subset (a, p)$ which contradicts the relation $\varrho_{p^{\nu}} \ge \varrho$. Denote by $\varrho(a_0), \varrho(a_1), \dots, \varrho(a_{s-1})$ the blocks of ϱ . From the equality $\varrho = \varrho_p$ it follows that $\varrho(a_i) = \{a_i, a_i p, \dots, a_i p^{k-1}\}$ $(i=0, 1, \dots, s-1)$. Thus $n=k \cdot s$. From this we get that $s \neq 1$ because k is prime. On the other hand, since A is strongly connected thus there exist words p_i , q_i (i=0, ..., s-1) such that $a_0p_i=a_i$ and $a_iq_i=a_0$ for all $i \in \{0, 1, ..., s-1\}$. Using the commutativity of A we have $a_0 p^j p_i = a_i p^j$ and $a_i p^j q_i = a_0 p^j$ for any $j \in \{0, 1, \dots, k-1\}$ and $i \in \{0, 1, \dots, s-1\}$. Now define two automata $A_1 = (X, \varrho, \delta_1)$ and $A_2 =$ $=(\varrho \times X, \varrho(a_0), \delta_2)$ in the following way: $\delta_1(\varrho(a_i), x) = \varrho(\delta(a_i, x))$ for all $\varrho(a_i) \in \varrho$

and $x \in X$, $\delta_2(a_0p^j, (\varrho(a_i), x)) = a_0p^j p_i xq_u$ if $\varrho(\delta(a_i, x)) = \varrho(a_u)$ for all $a_0p^j \in \varrho(a_0)$. and $(\varrho(a_i), x) \in \varrho \times X$. Take the α_0 -product $\mathbf{B} = \mathbf{A}_1 \times \mathbf{A}_2(X, \varphi)$, where $\varphi_1(x) = x$ and $\varphi_2(\varrho(a_i), x) = (\varrho(a_i), x)$ for any $x \in X$ and $\varrho(a_i) \in \varrho$. It is not difficult to prove that the correspondence $v: a_i p^j \to (\varrho(a_i), a_0 p^j)$ $(i=0, 1, \ldots, s-1; j=0, 1, \ldots, k-1)$. is an isomorphism of **A** into **B**. Now consider the automata \mathbf{A}_1 and \mathbf{A}_2 . They are strongly connected commutative automata with number of states less then *n*. Therefore, by our assumption, the statement holds.

For any prime number r, let $\overline{\mathbf{M}}_r = (\{x_0, x_1, \dots, x_r\}, \{0, \dots, r\}, \delta)$ denote the automaton for which $\delta(l, x_j) = l + j \pmod{r}$, $\delta(r, x_j) = r$, $\delta(l, x_r) = r$ and $\delta(r, x_r) = r$ for any $l \in \{0, \dots, r-1\}$ and $x_j \in \{x_0, \dots, x_{r-1}\}$.

The next Theorem gives necessary and sufficient conditions for a system of automata to be isomorphically complete for \Re with respect to the α_0 -product.

Theorem 1. A system Σ of automata is isomorphically complete for \Re with respect to the α_0 -product if and only if the following conditions are satisfied:

(1) There exists $A_0 \in \Sigma$ such that the automaton E_2 can be embedded isomorphically into an α_0 -product of A_0 with a single factor;

(2) For any prime number r there exists $A \in \Sigma$ such that the automaton \overline{M}_r can be embedded isomorphically into an α_0 -product of the automata A_0 and A.

Proof. In order to prove the necessity assume that Σ is isomorphically complete for \Re with respect to the α_0 -product. Then \mathbf{E}_2 can be embedded isomorphically into an α_0 -product $\prod_{i=1}^k \mathbf{A}_i(\{x, y\}, \varphi)$ of automata from Σ . Assume that k > 1 and let μ denote a suitable isomorphism. For any $j \in \{0, 1\}$ denote by $(a_{j_1}, \ldots, a_{j_k})$ the image of j under μ . Among the sets $\{a_{0t}, a_{1t}\}$ $(t=1, \ldots, k)$ there should be at least one which has more than one element. Let l be the least index for which $a_{0l} \neq a_{1l}$. It is obvious that the automaton $\mathbf{A}_l \in \Sigma$ satisfies condition (1).

Now take an arbitrary prime number r and consider the automaton $\overline{\mathbf{M}}_r$. By our assumption $\overline{\mathbf{M}}_r$ can be embedded isomorphically into an α_0 -product $\prod_{i=1}^k A_i(\{x_0, ..., x_r\}, \varphi)$ of automata from Σ . Assume that k>1 and let μ denote a suitable isomorphism. For any $t \in \{0, ..., r\}$ denote by $(a_{t1}, ..., a_{tk})$ the image of t under μ . Define compatible partitions π_j (j=1, ..., k) of $\overline{\mathbf{M}}_r$ in the following way: for any $u, v \in \{0, ..., r\}$, $u \equiv v(\pi_j)$ if and only if $a_{u1} = a_{v1}, ..., a_{uj} = a_{vj}$. It is obvious that $\pi_1 \ge \pi_2 \ge ... \ge \pi_k$ and π_k has one-element blocks only. On the other hand $\overline{\mathbf{M}}_r$ has only one nontrivial compatible partition: $\sigma = \{\{0, ..., r-1\}, \{r\}\}$. Denote by s the least index for which $\sigma > \pi_s$. It is not difficult to prove that the automaton $\mathbf{A}_s \in \Sigma$ satisfies condition (2).

To prove the sufficiency of the conditions of Theorem 1 we shall show that arbitrary commutative automaton can be embedded isomorphically into an α_0 -product of automata from \mathfrak{N} where $\mathfrak{N} = \{\mathbf{E}_2\} \cup \{\overline{\mathbf{M}}_r: r \text{ is a prime number}\}.$

We prove by induction on the number of states of the automaton. In the case $n \le 2$ our statement is trivial. Now let n>2 and assume that for any m < n the statement is valid. Denote by $A = (X, A, \delta)$ an arbitrary commutative automaton with n states.

If A is not connected then it can be given as a direct sum of its connected subautomata. Denote by $A_t = (X, A_t, \delta_t)$ (t=1, ..., k) these subautomata of A. Take

an arbitrary symbol z such that $z \notin X$. Define the automata $\overline{A}_i = (X \cup \{z\}, A_i, \overline{\delta}_i)$ (i=1, ..., k) in the following way: $\overline{\delta}_i(a_i, x) = \delta_i(a_i, x)$ and $\overline{\delta}_i(a_i, z) = a_i$, for all $a_i \in A_i$ and $x \in X$ (i=1, ..., k). Take the α_0 -products $\mathbf{B}_i = \mathbf{E}_2 \times \overline{A}_i(X, \varphi^{(i)})$ (i=1, ..., k) where $\varphi_1^{(i)}(x) = y$, $\varphi_2^{(i)}(0, x) = z$ and $\varphi_2^{(i)}(1, x) = x$ for all $x \in X$. It is clear that A can be embedded isomorphically into the direct product $\prod_{i=1}^k \mathbf{B}_i$. On the other hand, for any index i $(1 \le i \le k)$ the automaton \overline{A}_i is commutative with number of states less than n. Therefore, by our induction hypothesis the statement holds.

Now assume that A is connected. Consider the partition $\{C(a): a \in A\}$ and the partial ordering of blocks introduced on page 1. Since A is connected thus among the blocks there exists one maximal only. Let $C(\bar{a})$ denote this block. We distinguish two cases.

(I) Assume that the cardinality of $C(\bar{a})$ is greater than one. In this case $(X, C(\bar{a}), \delta_{|C(\bar{a}) \times X})$ is a strongly connected subautomaton of A. If $C(\bar{a}) = A$ then, by Lemma 2 and Lemma 3, the statement holds. If $C(\bar{a}) \subset A$ then we distinguish three cases.

(a) Assume that the cardinality of $C(\bar{a})$ is prime and denote it by r. Let us define the automata $A_1 = (X, (A \setminus C(\bar{a})) \cup \{*\}, \delta_1)$ and $A_2 = (((A \setminus C(\bar{a})) \cup \{*\}) \times X, C(\bar{a}) \cup \{\Box\}, \delta_2)$ in the following way:

$$\delta_{1}(a, x) = \begin{cases} \delta(a, x) & \text{if } \delta(a, x) \notin C(\bar{a}), \\ * & \text{otherwise}, \end{cases}$$

$$\delta_{1}(*, x) = *, \\ \delta_{2}(a', (a, x)) = a', \quad \delta_{2}(a', (*, x)) = \delta(a', x), \quad \delta_{2}(\Box, (*, x)) = \Box, \end{cases}$$

$$\delta_{2}(\Box, (a, x)) = \begin{cases} \delta(a, x) & \text{if } \delta(a, x) \in C(\bar{a}), \\ \Box & \text{otherwise}, \end{cases}$$

for all $x \in X$, $a \in A \setminus C(\bar{a})$ and $a' \in C(\bar{a})$. Take the α_0 -product $\mathbf{B} = \mathbf{A}_1 \times \mathbf{A}_2(X, \varphi)$ where $\varphi_1(x) = x$ and $\varphi_2(v, x) = (v, x)$ for any $x \in X$, $v \in (A \setminus C(\bar{a})) \cup \{*\}$. It can be proved easily that the correspondence

$$\mathbf{v}(a) = \begin{cases} (a, \Box) & \text{if } a \in A \setminus C(\bar{a}), \\ (*, a) & \text{if } a \in C(\bar{a}), \end{cases}$$

is an isomorphism of A into B. Consider the automata A_1 and A_2 . A_1 is a commutative automaton with number of states less than *n*. Therefore, by our induction assuption, it can be decomposed in the form required. For investigating A_2 we need the automaton $C = (\{x_0, ..., x_r\}, \{0, ..., r\}, \delta_C)$ where $\delta_C(l, x_i) = l + i \pmod{r}$, $\delta_C(l, x_r) = l$, $\delta_C(r, x_i) = i$ and $\delta_C(r, x_r) = r$ for any $l \in \{0, ..., r-1\}$, $x_i \in \{x_0, ..., x_{r-1}\}$. Now denote by U the set of the input signals of A_2 and consider the following partitions of U:

$$U_{1} = \{(*, x): x \in X\} \cup \{(a, x): a \in A \setminus C(\bar{a}), x \in X, \delta(a, x) \notin C(\bar{a})\},$$

$$U_{2} = \{(a, x): a \in A \setminus C(\bar{a}), x \in X, \delta(a, x) \in C(\bar{a})\},$$

$$V_{1} = \{(a, x): a \in A \setminus C(\bar{a}), x \in X\},$$

$$V_{2} = \{(*, x): x \in X\},$$

By Lemma 2, we have that $(X, C(\bar{a}), \delta_{|C(\bar{a}) \times X})$ is isomorphic to an α_0 -product of \mathbf{M}_r , with a single factor. Denote by μ this isomorphism. We write $a = a_i$ if $\mu(i) = a$ (i=0, 1, ..., r-1). Now take the α_0 -product $\mathbf{E}_2 \times \mathbf{C}(U, \varphi)$ where for any $u_1 \in U_1$, $u_2 \in U_2$ and $v_1 \in V_1$, $v_2 \in V_2$, $\varphi_1(u_1) = y$, $\varphi_1(u_2) = x$, $\varphi_2(0, u_1) = x_r$, $\varphi_2(0, u_2) = x_i$ if $\delta_2(\Box, u_2) = a_i$, $\varphi_2(1, v_1) = x_r$, and $\varphi_2(1, v_2) = x_j$ if $\delta_2(a_0, v_2) = a_j$. It is clear that the correspondence v given by $v(\Box) = (0, r)$ and $v(a_i) = (1, i)$ (i=0, ..., r-1) is an isomorphism of \mathbf{A}_2 into $\mathbf{E}_2 \times \mathbf{C}(U, \varphi)$. On the other hand, it is not difficult to prove that \mathbf{C} can be embedded isomorphically into an α_0 -product of \mathbf{E}_2 and \mathbf{M}_r . Taking into consideration the above decomposition of \mathbf{A}_1 , this ends the discussion of (a) in case (I).

(b) Assume that the cardinality of $C(\bar{a})$ is not prime and the partition ρ of $(X, C(\bar{a}), \delta_{|C(\bar{a}) \times X})$ has one-element blocks only where ρ is defined for $(X, C(\bar{a}), \delta_{|C(\bar{a}) \times X})$ in the same way as in the proof of Lemma 3. Now for any $\rho \in \Omega$, define the partition $\bar{\rho}_p$ of A in the following way:

$$\bar{\varrho}_p(a) = \begin{cases} \{a\} & \text{if } a \in A \setminus C(\bar{a}), \\ \varrho_p(a) & \text{otherwise.} \end{cases}$$

Now let $\overline{\Omega}$ denote the set of all such $\overline{\varrho}_p$. It can easily be seen that A can be embedded isomorphically into the direct product $\prod_{\overline{\varrho}_p \in \overline{\Omega}} A/\overline{\varrho}_p$. On the other hand for any $\overline{\varrho}_p \in \overline{\Omega}$

the quotient automaton $A/\bar{\varrho}_p$ is commutative with number of states less than *n*. Thus, by our induction assumption, we have a required decomposition of A.

(c) Assume that the cardinality of $C(\bar{a})$ is not prime and the partition ϱ of $(X, C(\bar{a}), \delta_{|C(\bar{a})\times X})$ has at least one block whose cardinality is greater than one. Then, by the proof of Lemma 3, $(X, C(\bar{a}), \delta_{|C(\bar{a})\times X})$ can be embedded isomorphically into an α_0 -product of automata $\bar{A}_1 = (X, \varrho, \delta_1)$ and $\bar{A}_2 = (\varrho \times X, \varrho(a_0), \delta_2)$ where \bar{A}_2 is isomorphic to an α_0 -product of \mathbf{M} , with a single factor for some prime r < n. Define the automata $A_1 = (X, (A \setminus C(\bar{a})) \cup \varrho, \delta_1)$ and $A_2 = (((A \setminus C(\bar{a})) \cup \varrho) \times X, \varrho(a_0) \cup \{\Box\}, \delta_2)$ in the following way: for any $a \in A \setminus C(\bar{a}), \varrho(a_i) \in \varrho, x \in X$ and $a_0 p^i \in \varrho(a_0)$

$$\begin{split} \delta_1(\varrho(a_i), x) &= \delta_1(\varrho(a_i), x), \\ \delta_1(a, x) &= \begin{cases} \delta(a, x) & \text{if } \delta(a, x) \in A \setminus C(\bar{a}) \\ \varrho(a_i) & \text{if } \delta(a, x) \in C(\bar{a}) \text{ and } \delta(a, x) \in \varrho(a_i), \end{cases} \\ \delta_2(a_0 p^j, (a, x)) &= a_0 p^j, \delta_2(a_0 p^j, (\varrho(a_i), x)) = \bar{\delta}_2(a_0 p^j, (\varrho(a_i), x)) \\ \delta_2(\Box, (\varrho(a_i), x)) &= \Box, \end{cases} \\ \delta_2(\Box, (a, x)) &= \begin{cases} \delta(a, x)q_s & \text{if } \delta(a, x) \in \varrho(a_s), \\ \Box & \text{if } \delta(a, x) \notin C(\bar{a}). \end{cases} \end{split}$$

Notations used in the above definition coincide with those used in the proof of Lemma 3. Take the α_0 -product $A_1 \times A_2(X, \varphi)$ where $\varphi_1(x) = x$ and $\varphi_2(v, x) = (v, x)$ for any $x \in X$ and $v \in (A \setminus C(\bar{a})) \cup \varrho$. It can easily be seen that the correspondence

$$\mathbf{v}(a) = \begin{cases} (a, \Box) & \text{if } a \in A \setminus C(\bar{a}), \\ (\varrho(a_i), a_0 p^j) & \text{if } a \in \varrho(a_i) \text{ and } a = a_i p^j, \end{cases}$$

B. Imreh

is an isomorphism of A into $A_1 \times A_2(X, \varphi)$. Consider the automata A_1 and A_2 . The automaton A_1 is commutative with number of states less than *n*. Therefore, by our induction hypothesis, it can be decomposed in the form required. The automaton A_2 can be embedded isomorphically into an α_0 -product of automata E_2 and M_r . This can be proved in a similar way as in the case (a). Thus we get a required decomposition of A.

(II) Now assume that the cardinality of $C(\bar{a})$ is equal to one. Denote by R' the set of all $a \in A$ for which the cardinality of C(a) is equal to one and C(a) < C(b) implies $b = \bar{a}$ for all $b \in A$. Let R be the set $R' \cup \{\bar{a}\}$. We distinguish two cases:

(a) First assume that R' is nonvoid. Then $(X, R, \delta_{|R \times X})$ is a connected monotone subautomaton of A. Define the automata $A_1 = (X, (A \setminus R) \cup \{*\}, \delta_1)$ and $A_2 = = (((A \setminus R) \cup \{*\}) \times X, R \cup \{\Box\}, \delta_2)$ in the following way: for any $a \in A \setminus R, a' \in R$ and $x \in X$

$$\delta_{1}(a, x) = \begin{cases} \delta(a, x) & \text{if } \delta(a, x) \notin R, \\ * & \text{otherwise,} \end{cases}$$

$$\delta_{1}(*, x) = *, \\\delta_{2}(a', (a, x)) = a', \delta_{2}(a', (*, x)) = \delta(a', x), \delta_{2}(\Box, (*, x)) = \Box, \\\delta_{2}(\Box, (a, x)) = \begin{cases} \delta(a, x) & \text{if } \delta(a, x) \in R, \\ \Box & \text{otherwise.} \end{cases}$$

Take the α_0 -product $A_1 \times A_2(X, \varphi)$ where $\varphi_1(x) = x$, $\varphi_2(v, x) = (v, x)$ for any $x \in X$ and $v \in (A \setminus R) \cup \{*\}$. It is obvious that the correspondence

$$v(a) = \begin{cases} (a, \Box) & \text{if } a \in A \setminus R, \\ (*, a) & \text{if } a \in R, \end{cases}$$

is an isomorphism of A into $A_1 \times A_2(X, \varphi)$. Consider A_1 and A_2 . A_1 is commutative with number of states less than *n*. Thus by our induction assumption, it can be decomposed in the form required. On the other hand A_2 is a connected monotone automaton thus, by Lemma 1, it can be embedded isomorphically into an α_0 -power of E_2 . Therefore, we get a required decomposition of A.

(b) Now assume that R' is empty. Denote by Q the set of all blocks C(a) for which the cardinality of C(a) is greater than one, and C(a) < C(b) implies $b = \bar{a}$ for all $b \in A$. Since A is connected and R' is empty thus the set Q contains at least one block. We distinguish two cases.

(1) First assume that Q contains the bloks $C(a_1), \ldots, C(a_k)$ where k>1. Define compatible partitions ϱ_i $(i=1, \ldots, k)$ of A in the following way:

$$\varrho_i(a) = \begin{cases} \{a\} & \text{if } a \in C(a_i) \cup \{\bar{a}\}, \\ C(a_i) \cup \{\bar{a}\} & \text{otherwise.} \end{cases}$$

It is not difficult to prove that $\bigcap_{1 \le i \le k} \varrho_i = \{\{a\}: a \in A\}$. From this we get that A can be embedded isomorphically into the direct product $\prod_{i=1}^k A/\varrho_i$. On the other hand, for any $i \in \{1, ..., k\}$ the quotient automaton A/ϱ_i is commutative with number of

states less than n. Therefore, by our induction assumption, we have a required decomposition of A.

(2) Now assume that Q contains one block only and denote it by C(b). Since C is a compatible partition of A thus $\{X_1, X_2\}$ is a partition of X where $X_1 = \{x: x \in X, C(b) x \subseteq C(b)\}$ and $X_2 = \{x: x \in X, C(b) x = \overline{a}\}$. It is clear that X_1 and X_2 are nonvoid sets and $\mathbf{B} = (X_1, C(b), \delta_{|C(b) \times X_1})$ is a strongly connected commutative automaton. Now we distinguish three cases according to Lemma 3.

(i) Assume that the number of states of B is prime and denote it by r. Define the automata $\mathbf{A}_1 = (X, (A \setminus (C(b) \cup \{\bar{a}\})) \cup \{*\}, \delta_1)$ and $\mathbf{A}_2 = (((A \setminus (C(b) \cup \{\bar{a}\})) \cup \{\bar{a}\})) \cup \{*\}, \delta_1)$ $\cup \{*\} \times X, C(b) \cup \{\overline{a}, \Box\}, \delta_2$ in the following way: for any $x \in X, a \in A \setminus (C(b) \cup A)$ $\cup \{\bar{a}\}\)$ and $a' \in C(b) \cup \{\bar{a}\}\)$

$$\delta_1(a, x) = \begin{cases} \delta(a, x) & \text{if } \delta(a, x) \notin C(b) \cup \{\bar{a}\}, \\ * & \text{otherwise,} \end{cases}$$

$$\delta_1(*, x) = *,$$

$$\delta_2(\Box, (a, x)) = \begin{cases} \delta(a, x) & \text{if } \delta(a, x) \in C(b) \cup \{\bar{a}\}, \\ \Box & \text{otherwise,} \end{cases}$$

$$\delta_2(a', (a, x)) = a', \quad \delta_2(a', (*, x)) = \delta(a', x), \quad \delta_2(\Box, (*, x))$$

Take the α_0 -product $A_1 \times A_2(X, \varphi)$ where $\varphi_1(x) = x$ and $\varphi_2(v, x) = (v, x)$ for any $x \in X, v \in (A \setminus (C(b) \cup \{\bar{a}\})) \cup \{*\}$. It is clear that the correspondence

$$\mathbf{v}(a) = \begin{cases} (a, \Box) & \text{if} \quad a \notin C(b) \cup \{\bar{a}\}, \\ (*, a) & \text{if} \quad a \in C(b) \cup \{\bar{a}\} \end{cases}$$

is an isomorphism of A into $A_1 \times A_2(X, \varphi)$. Consider the factors of the previous α_0 -product. A₁ is commutative with number of states less than *n*. Thus, by our induction assumption it can be decomposed in the required form. For investigating A_2 , we need the following automaton. Denote by $W = (\{x_0, \dots, x_r, \bar{x}\}, \{0, \dots, r, \bar{r}\}, \{1, \dots, r, r, \bar{r}\}, \{1, \dots, r,$ $\delta_{\mathbf{W}}$) the automaton where $\delta_{\mathbf{W}}(l, x_i) = l + i \pmod{r}, \ \delta_{\mathbf{W}}(\bar{r}, x_i) = i, \ \delta_{\mathbf{W}}(l, x_r) = r$ $\delta_{\mathbf{W}}(l, \bar{x}) = l, \ \delta_{\mathbf{W}}(r, x_i) = r$ for any $l \in \{0, ..., r-1\}$ and $x_i \in \{x_0, ..., x_{r-1}\}$, and $\delta_{\mathbf{W}}(\mathbf{r}, \mathbf{x}_{\mathbf{r}}) = \delta_{\mathbf{W}}(\mathbf{r}, \mathbf{x}) = \delta_{\mathbf{W}}(\mathbf{r}, \mathbf{x}_{\mathbf{r}}) = \mathbf{r}, \ \delta_{\mathbf{W}}(\mathbf{r}, \mathbf{x}) = \mathbf{r}.$ Now denote by U the set of the input signals of A_2 and take the following partitions of U.

$$U_{1} = \{(*, x): x \in X\} \cup \{(a, x): a \in A \setminus (C(b) \cup \{\bar{a}\}), x \in X, \delta(a, x) \notin C(b) \cup \{\bar{a}\}\},$$

$$U_{2} = \{(a, x): a \in A \setminus (C(b) \cup \{\bar{a}\}), x \in X, \delta(a, x) \in C(b)\},$$

$$U_{3} = \{(a, x): a \in A \setminus (C(b) \cup \{\bar{a}\}), x \in X, \delta(a, x) = \bar{a}\},$$

$$V_{1} = \{(a, x): a \in A \setminus (C(b) \cup \{\bar{a}\}), x \in X\},$$

$$V_{2} = \{(*, x): x \in X_{1}\} \text{ and } V_{3} = \{(*, x): x \in X_{2}\}.$$

By definitions, we have that $(V_1 \cup V_2, C(b), \delta_{2|C(b) \times (V_1 \cup V_2)})$ is a strongly connected commutative automaton with r states. Thus, by Lemma 2, it is isomorphic to an α_0 -product of **M**, with a single factor. Denote by μ a suitable isomorphism, and for any $t \in \{0, 1, ..., r-1\}$ denote by b_t the image of t under μ . Now take the α_0 -product $\mathbf{E}_2 \times \mathbf{W}(U, \varphi)$ where $\varphi_1(u_1) = y$, $\varphi_1(u_2) = \varphi_1(u_3) = x$, $\varphi_2(0, u_1) = \overline{x}$,

 $= \Box$.

B. Imreh

 $\varphi_2(0, u_2) = x_i$ if $\delta_2(\Box, u_2) = b_i$, $\varphi_2(0, u_3) = x_r$, $\varphi_2(1, v_1) = \bar{x}$, $\varphi_2(1, v_2) = x_s$ if $\delta_2(b_0, v_2) = b_s$, $\varphi_2(1, v_3) = x_r$ for any $u_t \in U_t$ (t=1, 2, 3), $v_j \in V_j$ (j=1, 2, 3). It is obvious that the correspondence v given by $v(\Box) = (0, \bar{r})$, $v(\bar{a}) = (1, r)$, $v(b_i) = (1, i)$ $(i=0, \ldots, r-1)$ is an isomorphism of A_2 into $E_2 \times W(U, \varphi)$. On the other hand, it is not difficult to prove that the automaton W can be embedded isomorphically into an α_0 -product of E_2 and M_r . Thus we get a required decomposition of A.

(ii) Assume that the number of states of **B** is not prime and the partition ϱ of **B** has one-element blocks only where ϱ is defined for **B** in the same way as above. Now for any $\varrho_p \in \Omega$ define a partition $\overline{\varrho}_p$ of **A** in the following way:

$$\bar{\varrho}_p(a) = \begin{cases} \{a\} & \text{if } a \in A \setminus C(\bar{a}), \\ \varrho_p(a) & \text{otherwise.} \end{cases}$$

Let $\overline{\Omega}$ denote the set of all such $\overline{\varrho}_p$. It is clear that A can be embedded isomorphically into the direct product $\prod_{\overline{\varrho}_p \in \overline{\Omega}} A/\overline{\varrho}_p$. The quotient automaton $A/\overline{\varrho}_p$ is commutative and its number of states is less than *n* for any $\overline{\varrho}_p \in \overline{\Omega}$. Thus, by our induction assumption we have a required decomposition of A.

(iii) Assume that the number of states of **B** is not prime and the partition ϱ of **B** has at least one block whose cardinality is greater than one. Then, by Lemma 3, **B** can be embedded isomorphically into an α_0 -product of the automata $\mathbf{B}_1 = = (X_1, \varrho, \overline{\delta}_1)$ and $\mathbf{B}_2 = (\varrho \times X_1, \varrho(b_0), \overline{\delta}_2)$ where \mathbf{B}_2 is isomorphic to an α_0 -product of \mathbf{M}_r with a single factor for some prime *r*. Define the automata $\mathbf{A}_1 = = (X, (A \setminus C(b)) \cup \varrho, \delta_1)$ and $\mathbf{A}_2 = (((A \setminus C(b)) \cup \varrho) \times X, \varrho(b_0) \cup \{*, \Box\}, \delta_2)$ in the following way: for any $a \in A \setminus C(b), \varrho(b_i) \in \varrho, x \in X$ and $b_0 p^i \in \varrho(b_0)$

$$\delta_{1}(a, x) = \begin{cases} \delta(a, x) & \text{if } \delta(a, x) \notin C(b), \\ \varrho(\delta(a, x)) & \text{otherwise,} \end{cases}$$

$$\delta_{1}(\varrho(b_{i}), x) = \begin{cases} \overline{\delta}_{1}(\varrho(b_{i}), x) & \text{if } x \in X_{1}, \\ \overline{a} & \text{if } x \in X_{2}, \end{cases}$$

$$\delta_{2}(b_{0}p^{j}, (\varrho(b_{i}), x)) = \begin{cases} \overline{\delta}_{2}(b_{0}p^{j}, (\varrho(b_{i}), x)) & \text{if } x \in X_{1}, \\ * & \text{if } x \in X_{2}, \end{cases}$$

$$\delta_{2}(\Box, (a, x)) = \begin{cases} \Box & \text{if } \delta(a, x) \in A \setminus (C(b) \cup \{\overline{a}\}), \\ \delta(a, x)q_{s} & \text{if } \delta(a, x) \in \varrho(b_{s}), \\ * & \text{if } \delta(a, x) = \overline{a}, \end{cases}$$

$$\delta_{2}(b_{0}p^{j}, (a, x)) = b_{0}p^{j}, \quad \delta_{2}(*, (a, x)) = \delta_{2}(*, (\varrho(b_{j}), x)) = *, \\ \delta_{2}(\Box, (\varrho(b_{j}), x)) = \Box. \end{cases}$$

(The notations coincide with those used in the proof of the Lemma 3.) Take the α_0 -product $A_1 \times A_2(X, \varphi)$ where $\varphi_1(x) = x$ and $\varphi_2(v, x) = (v, x)$ for any $x \in X$ and $v \in (A \setminus C(b)) \cup \varrho$. It is not difficult to prove that the correspondence

$$v(a) = \begin{cases} (a, \Box) & \text{if } a \in A \setminus (C(b) \cup \{\overline{a}\}), \\ (\varrho(b_i), b_0 p^j) & \text{if } a \in C(b) \text{ and } a = b_i p^j, \\ (\overline{a}, *) & \text{if } a = \overline{a}, \end{cases}$$

is an isomorphism of A into $A_1 \times A_2(X, \varphi)$. Consider the automata A_1 and A_2 . The automaton A_1 is commutative with number of states less than n. Thus, by our induction assumption, it can be decomposed in the required form. The automaton A_2 can be embedded isomorphically into an α_0 -product of E_2 and \overline{M}_r . This can be proved in a similar way as in the case (i). Thus we get a required decomposition of A.

The following statement is obvious for arbitrary natural number $i \ge 0$.

Lemma 4. If A can be embedded isomorphically into an α_i -product of B with a single factor and **B** can be embedded isomorphically into an α_i -product of **C** with a single factor, then A can be embedded isomorphically into an α_i -product of C with a single factor.

The next Theorem holds for α_i -products with $i \ge 1$.

• Theorem 2. A system Σ of automata is isomorphically complete for \Re with respect to the α_i -product $(i \ge 1)$ if and only if for any prime number r there exists an automaton $A \in \Sigma$ such that M, can be embedded isomorphically into an α_i product of A with a single factor.

Proof. To prove the sufficiency, by Lemma 4, it is enough to show that arbitrary automaton with n states can be embedded isomorphically into an α_1 -product of M, with a single factor for some prime r > n. This is trivial.

To prove the necessity take a prime r. First we prove that M, can be embedded isomorphically into an α_i -product of automata from Σ with at most *i* factors if **M**, can be embedded isomorphically into an α_i -product of automata from Σ . Indeed, assume that M, can be embedded isomorphically into the α_i -product $\mathbf{B} = \prod_{j=1}^{n} \mathbf{A}_{j}(\{x_{0}, \dots, x_{r-1}\}, \varphi) \text{ of automata from } \Sigma \text{ with } k > i \text{ and denote by } \mu$ such an isomorphism. For any $l \in \{0, ..., r-1\}$ denote by $(a_{l1}, ..., a_{lk})$ the image of l under μ . We may suppose that there exist natural numbers $s \neq t$ ($0 \leq s, t \leq r-1$) such that $a_{s1} \neq a_{t1}$ since in the opposite case M, can be embedded isomorphically into an α_i -product of automata from Σ with k-1 factors. Now assume that there exist natural numbers $u \neq v$ $(0 \leq u, v \leq r-1)$ such that $a_{ul} = a_{vl}$ (l=1, ..., i). Then $\varphi_1(a_{u1}, \ldots, a_{ui}, x_j) = \varphi_1(a_{v1}, \ldots, a_{vi}, x_j)$ for any $x_j \in \{x_0, \ldots, x_{r-1}\}$. Thus in the α_i -product **B** the automaton A_1 obtains the same input signal in the states a_{u1} and a_{v1} for any $x_j \in \{x_0, \dots, x_{r-1}\}$. Since μ is an isomorphism thus we have that $a_{u+j \pmod{r}} = a_{v+j \pmod{r}}$ for any $j \in \{0, \dots, r-1\}$. On the other hand, r is prime thus from the above equations we get that $a_{u1}=a_{l1}$ for any $l \in \{0, ..., r-1\}$ which contradicts our assumption. Therefore, we have that the elements (a_{i1}, \ldots, a_{il}) $(0 \le l \le r - 1)$ are pairwise different. Take the α_i -product following $\mathbf{C} = \prod_{i=1}^{i} \mathbf{A}_{i}(\{x_{0}, ..., x_{r-1}\}, \psi) \text{ where for any } j \in \{1, ..., i\}, (a_{1}, ..., a_{i}) \in A_{1} \times ... \times A_{i}$ and $x_s \in \{x_0, ..., x_{r-1}\}$

 $\psi_j(a_1, \dots, a_i, x_s) = \begin{cases} \varphi_j(a_{l1}, \dots, a_{lj+i-1}, x_s) & \text{if } j+i-1 \leq k \text{ and there exists} \\ 0 \leq l \leq r-1 \text{ such that } a_u = a_{lu} \quad (u = 1, \dots, i), \\ \varphi_j(a_{l1}, \dots, a_{lk}, x_s) & \text{if } j+i-1 > k \text{ and there exists} \\ 0 \leq l \leq r-1 \text{ such that } a_u = a_{lu} \quad (u = 1, \dots, i), \\ \text{arbitrary input signal from } X_j \text{ otherwise.} \end{cases}$

3F

It is not difficult to prove that the correspondence $v(l) = (a_{l1}, ..., a_{ll})$ (l=0, ..., r-1) is an isomorphism of **M**, into **C**.

Now we prove that if \mathbf{M}_r can be embedded isomorphically into an α_i -product $\prod_{j=1}^k \mathbf{A}_j(\{x_0, \dots, x_{r-1}\}, \varphi)$ of automata from Σ with $k \leq i$, then there exists an automaton $\mathbf{A} \in \Sigma$ such that $\mathbf{M}_{\text{primel}}(\mathbf{v}_r)$ can be embedded isomorphically into an α_i -product of \mathbf{A} with a single factor, where prime $[\sqrt[4]{r}]$ denotes the largest prime less than $\sqrt[4]{r}$. Denote by μ such an isomorphism. For any $l \in \{0, \dots, r-1\}$ denote by (a_{i1}, \dots, a_{ik}) the image of l under μ . Since μ is a 1-1 mapping thus the elements (a_{i1}, \dots, a_{ik}) ($l=0, \dots, r-1$) are pairwise different. Therefore, there exists an $s \in (1 \leq s \leq k)$ such that the number of pairwise different elements among $a_{0s}, a_{1s}, \dots, a_{r-1s}$ is greater than or equal to prime $[\sqrt[4]{r}]$. Let $a_{j_0s}, \dots, a_{j_{u-1}s}$ denote pairwise different elements different elements, where $u = \text{prime}[\sqrt[4]{r}]$, and denote by \overline{X} the set $\{x_0, \dots, x_{u-1}\}$. Take the α_0 -product $\mathbf{C} = \prod \mathbf{A}_s(\overline{X}, \psi)$ with a single factor, where for any $a_{j_ts} \in \{a_{j_0s}, \dots, a_{j_{u-1}s}\}$ and $x_v \in \overline{X}, \quad \psi(a_{j_ts}, x_v) = \varphi_s(a_{j_t1}, \dots, a_{j_tk}, x_d)$ if $\delta_{\mathbf{M}r}(\mu^{-1}(a_{j_t1}, \dots, a_{j_tk}), x_d) = = \mu^{-1}(a_{j_{t+v(mod u)}1}, \dots, a_{j_{t+v(mod u)}k})$. It is not difficult to prove that \mathbf{M}_u can be embedded isomorphically into \mathbf{C} which ends the proof of Theorem 2.

From Theorem 2 we get the following.

COROLLARY. A system Σ of automata is isomorphically complete for \Re with respect to the α_i -product if and only if it is isomorphically complete with respect to the α_i -product $(i \ge 1)$.

DEPT. OF COMPUTER SCIENCE A. JÓZSEF UNIVERSITY ARADI VÉRTANUK TERE 1. SZEGED, HUNGARY H--6720

Reference

[1] Gécseg, F., Composition of automata, Proceedings of the 2nd Colloquium on Automata, Languages and Programming, Saarbrücken, Springer Lecture Notes in Computer Science, v, 14, 1974, pp. 351-363.

(Received Feb. 29, 1980)