On isomorphic representations of commutative automata with respect to α_{i}-products

By B. Іmreh

The purpose of this paper is to study the α_{i}-products (see [1]) from the point of view of isomorphic completeness for the class of all commutative automata. Namely, we give necessary and sufficient conditions for a system of automata to be isomorphically complete for the class of all commutative automata with respect to the α_{i}-products: It will turn out that if $i \geqq 1$ then such isomorphically complete systems coincide with each other with respect to different α_{i}-products. Furthermore they coincide with isomorphically complete systems of automata.

By an automaton we mean a finite automaton $\mathbf{A}=(X, A, \delta)$ without output. Moreover isomorphism and subautomaton will mean A-isomorphism and A-subautomaton.

Take an automaton $\mathbf{A}=(X, A, \delta)$ and let us denote by X^{*} the free monoid generated by X. The elements $p \in X^{*}$ are called input words of \mathbf{A}. The transition function δ can be extended to $A \times X^{*} \rightarrow A$ in a natural way: for any $p=p^{\prime} x$ ($p^{\prime} \in X^{*}, x \in X$) and $a \in A \delta(a, p)=\delta\left(\delta\left(a, p^{\prime}\right), x\right)$. Further on we shall use the more convenient notation $a p_{\mathrm{A}}$ for $\delta(a, p)$ and $A^{\prime} p_{\mathrm{A}}$ for the set $\left\{a p_{\mathrm{A}}: a \in A^{\prime}\right\}$ where $A^{\prime} \subset A$ and $p \in X^{*}$. If there is no danger of confusion, then we omit the index \mathbf{A} in $a p_{\mathbf{A}}$ and $A^{\prime} p_{\mathrm{A}}$. Define a binary relation σ on X^{*} in the following manner: for two input words $p, q \in X^{*}, p \equiv q(\sigma)$ if and only if $a p=a q$ for all $a \in A$. The quotient semigroup X^{*} / σ is called the characteristic semigroup of \mathbf{A}, and it will be denoted by $S(\mathbf{A})$. We use the notation $[p]$ for the element of $S(\mathbf{A})$ containing $p \in X^{*}$.

An automaton $\mathbf{A}=(X, A, \delta)$ is commutative if $a x_{1} x_{2}=a x_{2} x_{1}$ for any $a \in A$ and $x_{1}, x_{2} \in X$. Denote by Ω the class of all commutative automata.

Take an automaton $\mathbf{A}=(X, A, \delta)$ and let ω be an equivalence relation of the set A. It is said that ω is a congruence relation of \mathbf{A} if $a \equiv b(\omega)$ implies $a x \equiv b x(\omega)$ for all $a, b \in A$ and $x \in X$. The partition induced by the congruence relation ω is called compatible partition of \mathbf{A}.

Let $\mathbf{A}=(X, A, \delta)$ be an automaton. Define the relation C of A in the following way: $a \equiv b(C)$ if and only if there exist $p, q \in X^{*}$ such that $a p=b$ and $b q=a$. It is clear that C is a congruence relation of \mathbf{A} if the automaton \mathbf{A} is commutative. In the following we use the notation $C(a)$ for the block of the partition induced by C which contains a. On the set $A / C=\{C(a): a \in A\}$ we define a partial ordering in the following way: for any $a, b \in A, C(a) \leqq C(b)$ if there exists $p \in X^{*}$ such that $a p=b$. If $C(a) \leqq C(b)$ and $C(a) \neq C(b)$ then we write $C(a)<C(b)$.

The automaton $\mathbf{A}=(X, A, \delta)$ is called a permutation automaton if for any $a, b \in A$ and $p \in X^{*}, a p=b p$ implies $a=b$. The automaton \mathbf{A} is connected if for any $a, b \in A$ there exist $p, q \in X^{*}$ such that $a p=b q$.

Let $\mathbf{A}_{t}=\left(X_{t}, A_{t}, \delta_{t}\right)(t=1, \ldots, n)$ be a system of automata. Moreover, let X be a finite nonvoid set and φ a mapping of $A_{1} \times \ldots \times A_{n} \times X$ into $X_{1} \times \ldots \times X_{n}$ such that $\varphi\left(a_{1}, \ldots, a_{n}, x\right)=\left(\varphi_{1}\left(a_{1}, \ldots, a_{n}, x\right), \ldots, \varphi_{n}\left(a_{1}, \ldots, a_{n}, x\right)\right)$, and each $\varphi_{j}(1 \leqq j \leqq n)$ is independent of states having indices greater than or equal to $j+i$, where i is a fixed nonnegative integer. We say that the automaton $\mathbf{A}=(X, A, \delta)$ with $A=A_{1} \times \ldots \times A_{n}$ and $\delta\left(\left(a_{1}, \ldots, a_{n}\right), x\right)=\left(\delta_{1}\left(a_{1}, \varphi_{1}\left(a_{1}, \ldots, a_{n}, x\right)\right), \ldots, \delta_{n}\left(a_{n}, \varphi_{n}\left(a_{1}\right.\right.\right.$, $\left.\left.\ldots, a_{n}, x\right)\right)$) is the α_{i}-product of $\mathbf{A}_{t}(t=1, \ldots, n)$ with respect to X and φ. For this product we use the notation $\prod_{t=1}^{n} \mathbf{A}_{t}(X, \varphi)$ and $\mathbf{A}_{1} \times \mathbf{A}_{2}(X, \varphi)$ for $n=2$. Moreover, if in α_{i}-product $\mathbf{A}, \mathbf{A}_{t}=\mathbf{B}$ for all $t(t=1, \ldots, n)$, then \mathbf{A} is called an α_{i}-power of \mathbf{B} and we use the notation $\mathbf{A}=\mathbf{B}^{n}(X, \varphi)$.

Let \mathfrak{B} be an arbitrary class of automata. Further on let Σ be a system of automata. Σ is called isomorphically complete for \mathfrak{B} with respect to the α_{i}-product if any automaton from \mathfrak{B} can be embedded isomorphically into an α_{i}-product of automata from Σ. If \mathfrak{B} is the class of all automata and Σ is isomorphically complete for \mathfrak{B}, then it is said that Σ is isomorphically complete.

Let us denote by $\mathbf{E}_{2}=\left(\{x, y\},\{0,1\}, \delta_{\mathbf{E}}\right)$ the automaton for which $\delta_{\mathbf{E}}(0, y)=0$, $\delta_{\mathrm{E}}(0, x)=1, \delta_{\mathrm{E}}(1, x)=\delta_{\mathrm{E}}(1, y)=1$.

An automaton $\mathbf{A}=(X, A, \delta)$ is called monotone if there exists a partial ordering \leqq on A such that $a \leqq \delta(a, x)$ holds for any $a \in A$ and $x \in X$.

For monotone automata the following result holds:
Lemma 1. Every connected monotone automaton can be embedded isomorphically into an α_{0}-power of \mathbf{E}_{2}.

Proof. We proceed by induction on the number of states of the automaton. In the cases $n=1$ and $n=2$ our statement is trivial. Now let $n>2$ and suppose that the statement is valid for any natural number $m<n$. Denote by $\mathbf{A}=(X, A, \delta)$ an arbitrary connected monotone automaton with n states. Since \mathbf{A} is connected thus among the blocks $C(a)(a \in A)$ there exists exactly one maximal element under our partial ordering of blocks. On the other hand, since \mathbf{A} is monotone thus the partition induced by C has one-element blocks only. Denote by a_{n} the element of the maximal block. Since $n>2$ thus there exists an $a \in A$ such that $C(a)<C\left(a_{n}\right)$. Denote by a_{k} an element of A for which $C\left(a_{k}\right)<C\left(a_{n}\right)$ and $C\left(a_{k}\right)<C(a)$ implies $a=a_{n}$ for any $a \in A$. Obviously there exists such an a_{k} : It is also obvious that $\left(X, H, \delta_{\mid H \times X}\right)$ is a subautomaton of \mathbf{A}, where $H=\left\{a_{k}, a_{n}\right\}$ and the restriction to $H \times X$ of the function δ is denoted by $\delta_{1 H \times X}$. Let us define the automata $\mathrm{A}_{1}=$ $=\left(X,(A \backslash H) \cup\{*\}, \delta_{1}\right)$ and $\mathbf{A}_{2}=\left(((A \backslash H) \cup\{*\}) \times X, H \cup\{\square\}, \delta_{2}\right)$ in the following way:

$$
\begin{aligned}
& \delta_{1}(a, x)= \begin{cases}\delta(a, x) \quad \text { if } \quad \delta(a, x) \notin H, \\
* & \text { otherwise },\end{cases} \\
& \delta_{1}(*, x)=*, * \\
& \delta_{2}(\square,(a, x))= \begin{cases}\delta(a, x) & \text { if } \quad \delta(a, x) \in H, \\
\square & \text { otherwise },\end{cases} \\
& \delta_{2}\left(a^{\prime},(a, x)\right)=a^{\prime}, \delta_{2}\left(a^{\prime},(*, x)\right)=\delta\left(a^{\prime}, x\right), \delta_{2}(\square,(*, x))=\square
\end{aligned}
$$

for all $a \in A \backslash H, x \in X$ and $a^{\prime} \in H$. Take the α_{0}-product $\mathbf{B}=\mathbf{A}_{1} \times \mathbf{A}_{2}(X, \varphi)$ where $\varphi_{1}(x)=x, \varphi_{2}(v, x)=(v, x)$ for all $x \in X$ and $v \in(A \backslash H) \cup\{*\}$. It is easy to prove that the correspondence

$$
v(a)=\left\{\begin{array}{lll}
(a, \square) & \text { if } & a \in A \backslash H \\
(*, a) & \text { if } & a \in H
\end{array}\right.
$$

is an isomorphism of. \mathbf{A} into \mathbf{B}.
Now let us consider the automata \mathbf{A}_{1} and \mathbf{A}_{2}. Since $\mathbf{A}_{\mathbf{1}}$ is a connected monotone automaton with $n-1$ states thus, by our assumption, \mathbf{A}_{1} can be embedded isomorphically into an α_{0}-power of \mathbf{E}_{2}. Denote by U the set of input signals of $\mathbf{A}_{\mathbf{2}}$ and take the following partitions of U :

$$
\begin{aligned}
U_{1} & =\{(a, x): a \in A \backslash H, x \in X, \delta(a, x) \notin H\} \cup\{(*, x): x \in X\}, \\
U_{2} & =\left\{(a, x): a \in A \backslash H, x \in X, \delta(a, x)=a_{k}\right\}, \\
U_{3} & =\left\{(a, x): a \in A \backslash H, x \in X, \delta(a, x)=a_{n}\right\}, \\
V_{1} & =\{(a, x): a \in A \backslash H, x \in X\} \cup\left\{(*, x): x \in X, \delta\left(a_{k}, x\right)=a_{k}\right\}, \\
V_{2} & =\left\{(*, x): x \in X, \delta\left(a_{k}, x\right)=a_{n}\right\} .
\end{aligned}
$$

Consider the α_{0}-product $\mathbf{E}^{2}(U, \varphi)$ where $\varphi_{1}\left(u_{1}\right)=y, \varphi_{1}\left(u_{2}\right)=\varphi_{1}\left(u_{3}\right)=x$, $\varphi_{2}\left(0, u_{1}\right)=\varphi_{2}\left(0, u_{2}\right)=y, \varphi_{2}\left(0, u_{3}\right)=x, \varphi_{2}\left(1, v_{1}\right)=y$ and $\varphi_{2}\left(1, v_{2}\right)=x$ for all $u_{i} \in U_{i}$ $(i=1,2,3)$ and $v_{j} \in V_{j}(j=1,2)$. It can easily be seen that the correspondence $\square \rightarrow(0,0), a_{k} \rightarrow(1,0)$ and $a_{n} \rightarrow(1,1)$ is an isomorphism of \mathbf{A}_{2} into $\mathbf{E}^{2}(U, \varphi)$. Since the formation of the α_{0}-product is associative thus we have proved that \mathbf{A} can be embedded isomorphically into an α_{0}-power of \mathbf{E}_{2}.

For any natural number $n \geqq 1$ let $\mathbf{M}_{n}=\left(\left\{x_{0}, \ldots, x_{n-1}\right\},\{0, \ldots, n-1\}, \delta\right)$ denote the automaton for which $\delta\left(j, x_{l}\right)=j+l(\bmod n)$ for any $j \in\{0, \ldots, n-1\}$ and $x_{l} \in\left\{x_{0}, \ldots, x_{n-1}\right\}$, where $j+l(\bmod n)$ denotes the least nonnegative residue of $j+l$ modulo n. Moreover let \mathfrak{M} denote the set of all \mathbf{M}_{n} such that n is a prime number.

It holds the following
Lemma 2. If the number of states of a strongly connected commutative automaton \mathbf{A} is a prime number, then there exists an automaton $\mathbf{M} \in \mathfrak{M}$ such that \mathbf{A} is isomorphic to an α_{0}-product of \mathbf{M} with a single factor.

Proof. First we prove that every strongly connected commutative automaton is a permutation automaton. Indeed, denote by $\mathbf{A}=(X, A, \delta)$ a strongly connected commutative automaton and assume that there exist $a, b \in A$ and $p \in X^{*}$ with $a p=b p$. Since \mathbf{A} is strongly connected thus there exist input words $q, w \in X^{*}$ such $a p q=a$ and $a w=b$. Using the commutativity of \mathbf{A}, we have $b p q=a w p q=a p q w=a w=b$. Therefore, $a=a p q=b p q=b$, showing that \mathbf{A} is a permutation automaton.

Now let us assume that the number of states of \mathbf{A} is prime and denote it by r. Let $a \in A$ and $p \in X^{*}$ be arbitrary and consider the states $a, a p, a p^{2}, \ldots$. Since \mathbf{A} is a permutation automaton thus there exists a $t(1 \leqq t \leqq r)$ such that $a=a p^{t}$. Denote by (a, p) the set $\left\{a, a p, \ldots, a p^{t-1}\right\}$. Assume that $(a, p) \subset A$. Let $a^{\prime} \in A \backslash(a, p)$ and consider the set (a^{\prime}, p), which is defined as above. Since \mathbf{A} is a strongly connected
automaton thus there exists a $q \in X^{*}$ such that $a q=a^{\prime}$. Using the commutativity of \mathbf{A} we have $a p^{i} q=a q p^{i}=a^{\prime} p^{i} \quad(i=0, \ldots, t-1)$. From this it follows that (a, p) and (a^{\prime}, p) have the same cardinality since \mathbf{A} is a permutation automaton. On the other hand it can easily be seen that (a, p) and (a^{\prime}, p) are disjoint subsets of A. Therefore, the set $\varrho_{p}=\{(a, p): a \in A\}$ is a partition of A and the blocks of ϱ_{p} have the same cardinality. Since r is prime thus we get that ϱ_{p} has one-element blocks only, or it has one block only. Now we choose an $x \in X$ such that ϱ_{x} has one block only. The automaton \mathbf{A} is strongly connected therefore such an $x \in X$ exists. Let $a \in A$ be a fixed state of \mathbf{A} and write $a_{0}=a, a_{i}=a_{0} x^{i}(i=1, \ldots, r-1)$. Thus the mapping induced by x on A can be described in the form $a_{i} x=a_{i+1(\bmod r)}(i=0, \ldots, r-1)$. Now let y be an arbitrary input signal of \mathbf{A} and assume that $a_{0} y=a_{j}$ for some $j \in\{0,1, \ldots, r-1\}$. From the commutativity of \mathbf{A} we have $a_{i} y=a_{0} x^{i} y=a_{0} y x^{i}=a_{j} x^{i}=a_{i+j(\operatorname{modr})}$ for all $i \in\{0,1, \ldots, r-1\}$. Take the α_{0}-product $\mathbf{B}=\Pi \mathbf{M}_{r}(X, \varphi)$ with a single factor, where $\varphi(x)=x_{k}$ if $a_{0} x=a_{k}$ for all $x \in X$. It is easy to prove that \mathbf{A} is isomorphic to \mathbf{B}, which completes the proof of Lemma 2.

Lemma 3. Every strongly connected commutative automaton can be embedded isomorphically into an α_{0}-product of automata from \mathfrak{M}.

Proof. We prove by induction on the number of states of the automaton. In case $n<4$, by Lemma 2, the statement holds. Now let $n \geqq 4$ and assume that our statement is valid for any natural number $m<n$. Denote by $\mathbf{A}=(X, A, \delta)$ an arbitrary strongly connected commutative automaton with n states. If n is prime then, by Lemma 2, the statement holds. Assume that n is not prime. Let $p \in X^{*}$ be arbitrary. Consider the partition ϱ_{p}. Since \mathbf{A} is commutative thus ϱ_{p} is a compatible partition of \mathbf{A}. Denote by Ω the set of all partitions ϱ_{p} of \mathbf{A} such that $[p] \in S(\mathbf{A}) \backslash\{[e]\}$, where e denotes the empty word of X^{*}. Take the partition ϱ of \mathbf{A} given by $\varrho=\bigcap_{\Omega \in \Omega} \varrho_{p}$. We distinguish two cases.

First assume that ϱ has one-element blocks only. In this case it can easily be seen that A can be embedded isomorphically into the direct product of the quotient automata $\mathbf{A} / \varrho_{p}\left(\varrho_{p} \in \Omega\right)$. On the other hand, for any $\varrho_{p} \in \Omega$ the quotient automaton \mathbf{A} / ϱ_{p} is a strongly connected commutative automaton with number of states less than n. Therefore, by our induction hypothesis the statement is valid.

Now assume, that there exist $a, b \in A$ such that $a \neq b$ and $a \equiv b(\varrho)$. Take an input signal x of \mathbf{A} such that the mapping induced by it on A is not the identity. Then $\varrho_{x} \in \Omega$ and thus $\varrho_{x} \geqq \varrho$. Therefore, $a \equiv b\left(\varrho_{x}\right)$. This means that there exists a natural number $l>0$ such that $a x^{l}=b$. Since ϱ is compatible thus $a x^{l} \equiv b x^{l}(\varrho)$. From this, by the above equality, we get that the states $a, a x^{l}, a x^{2 l}, \ldots$ are in $\varrho(a)$. Therefore, $\left(a, x^{l}\right) \sqsubseteq \varrho(a)$. On the other hand $\varrho_{x^{r}} \geqq \varrho$ thus ($\left.a, x^{l}\right)=\varrho(a)$, showing that $\varrho_{x^{l}}=\varrho$. Denote by p the word x^{l} and assume that $\varrho(a)=\left\{a, a p, \ldots, a p^{k-1}\right\}$. We show that k is prime. Indeed, if $1<v<k$ and $\left.{ }_{v}\right|^{k}$ then $\left(a, p^{v}\right) \subset(a, p)$ which contradicts the relation $\varrho_{p^{v}} \geqq \varrho$. Denote by $\varrho\left(a_{0}\right), \varrho\left(a_{1}\right), \ldots, \varrho\left(a_{s-1}\right)$ the blocks of ϱ. From the equality $\varrho=\varrho_{p}$ it follows that $\varrho\left(a_{i}\right)=\left\{a_{i}, a_{i} p, \ldots, a_{i} p^{k-1}\right\}(i=0,1, \ldots, s-1)$. Thus $n=k \cdot s$. From this we get that $s \neq 1$ because k is prime. On the other hand, since \mathbf{A} is strongly connected thus there exist words $p_{i}, q_{i}(i=0, \ldots, s-1)$ such that $a_{0} p_{i}=a_{i}$ and $a_{i} q_{i}=a_{0}$ for all $i \in\{0,1, \ldots, s-1\}$. Using the commutativity of \mathbf{A} we have $a_{0} p^{j} p_{i}=a_{i} p^{j}$ and $a_{i} p^{j} q_{i}=a_{0} p^{j}$ for any $j \in\{0,1, \ldots, k-1\}$ and $i \in\{0,1, \ldots, s-1\}$. Now define two automata $\mathbf{A}_{1}=\left(X, \varrho, \delta_{1}\right)$ and $\mathbf{A}_{2}=$ $=\left(\varrho \times X, \varrho\left(a_{0}\right), \delta_{2}\right)$ in the following way: $\delta_{1}\left(\varrho\left(a_{i}\right), x\right)=\varrho\left(\delta\left(a_{i}, x\right)\right)$ for all $\varrho\left(a_{i}\right) \in \varrho$
and $x \in X, \delta_{2}\left(a_{0} p^{j},\left(\varrho\left(a_{i}\right), x\right)\right)=a_{0} p^{j} p_{i} x q_{u}$ if $\varrho\left(\delta\left(a_{i}, x\right)\right)=\varrho\left(a_{u}\right)$ for all $a_{0} p^{j} \in \varrho\left(a_{0}\right)$. and $\left(\varrho\left(a_{i}\right), x\right) \in \varrho \times X$. Take the α_{0}-product $\mathbf{B}=\mathbf{A}_{1} \times \mathbf{A}_{2}(X, \varphi)$, where $\varphi_{1}(x)=x$ and $\varphi_{2}\left(\varrho\left(a_{i}\right), x\right)=\left(\varrho\left(a_{i}\right), x\right)$ for any $x \in X$ and $\varrho\left(a_{i}\right) \varrho \varrho$. It is not difficult to prove that the correspondence $v: a_{i} p^{j} \rightarrow\left(\underline{g}\left(a_{i}\right), a_{0} p^{j}\right)(i=0,1, \ldots, s-1 ; j=0,1, \ldots, k-1)$. is an isomorphism of \mathbf{A} into \mathbf{B}. Now consider the automata \mathbf{A}_{1} and \mathbf{A}_{2}. They are strongly connected commutative automata with number of states less then n. Therefore, by our assumption, the statement holds.

For any prime number r, let $\overline{\mathbf{M}}_{r}=\left(\left\{x_{0}, x_{1}, \ldots, x_{r}\right\},\{0, \ldots, r\}, \delta\right)$ denote the automaton for which $\delta\left(l, x_{j}\right)=l+j(\bmod r), \delta\left(r, x_{j}\right)=r, \delta\left(l, x_{r}\right)=r$ and $\delta\left(r, x_{r}\right)=r$ for any $l \in\{0, \ldots, r-1\}$ and $x_{j} \in\left\{x_{0}, \ldots, x_{r-1}\right\}$.

The next Theorem gives necessary and sufficient conditions for a system of automata to be isomorphically complete for Ω with respect to the α_{0}-product.

Theorem 1. A system Σ of automata is isomorphically complete for Ω with respect to the α_{0}-product if and only if the following conditions are satisfied:
(1) There exists $\mathbf{A}_{0} \in \Sigma$ such that the automaton \mathbf{E}_{2} can be embedded isomorphically into an α_{0}-product of \mathbf{A}_{0} with a single factor;
(2) For any prime number r there exists $\mathbf{A} \in \Sigma$ such that the automaton $\overline{\mathbf{M}}_{r}$ can be embedded isomorphically into an α_{0}-product of the automata \mathbf{A}_{0} and \mathbf{A}.

Proof. In order to prove the necessity assume that Σ is isomorphically completefor $\mathfrak{\Omega}$ with respect to the α_{0}-product. Then \mathbf{E}_{2} can be embedded isomorphically into an α_{0}-product $\prod_{i=1}^{k} \mathbf{A}_{i}(\{x, y\}, \varphi)$ of automata from Σ. Assume that $k>1$ and let μ denote a suitable isomorphism. For any $j \in\{0,1\}$ denote by ($a_{j 1}, \ldots, a_{j k}$) the image of j under μ. Among the sets $\left\{a_{0 t}, a_{1 t}\right\}(t=1, \ldots, k)$ there should be at least one which has more than one element. Let l be the least index for which $a_{0 l} \neq a_{11}$. It is obvious that the automaton $\mathbf{A}_{t} \in \Sigma$ satisfies condition (1).

Now take an arbitrary prime number r and consider the automaton $\overline{\mathbf{M}}_{r}$. By our assumption $\overline{\mathbf{M}}_{r}$ can be embedded isomorphically into an α_{0}-product $\prod_{i=1}^{k} \mathbf{A}_{i}\left(\left\{x_{0}, \ldots, x_{r}\right\}, \varphi\right)$ of automata from Σ. Assume that $k>1$ and let μ denote a suitable isomorphism. For any $t \in\{0, \ldots, r\}$ denote by $\left(a_{t 1}, \ldots, a_{t k}\right)$ the image of t under μ. Define compatible partitions $\pi_{j}(j=1, \ldots, k)$ of $\overline{\mathbf{M}}_{r}$ in the following way: for any $u, v \in\{0, \ldots, r\}, u \equiv v\left(\pi_{j}\right)$ if and only if $a_{u 1}=a_{v 1}, \ldots, a_{u j}=a_{v j}$. It is obvious that $\pi_{1} \geqq \pi_{2} \geqq \ldots \geqq \pi_{k}$ and π_{k} has one-element blocks only. On the other hand $\overline{\mathbf{M}}_{r}$ has only one nontrivial compatible partition: $\sigma=\{\{0, \ldots, r-1\},\{r\}\}$. Denote by s the least index for which $\sigma>\pi_{s}$. It is not difficult to prove that the automaton $\mathbf{A}_{s} \in \Sigma$ satisfies condition (2).

To prove the sufficiency of the conditions of Theorem 1 we shall show that arbitrary commutative automaton can be embedded isomorphically into an α_{0} product of automata from \mathfrak{N} where $\mathfrak{N}=\left\{\mathbf{E}_{2}\right\} \cup\left\{\overline{\mathbf{M}}_{r}: r\right.$ is a prime number $\}$.

We prove by induction on the number of states of the automaton. In the case $n \leqq 2$ our statement is trivial. Now let $n>2$ and assume that for any $m<n$ the statement is valid. Denote by $\mathbf{A}=(X, A, \delta)$ an arbitrary commutative automaton with n states.

If \mathbf{A} is not connected then it can be given as a direct sum of its connected subautomata. Denote by $\mathbf{A}_{t}=\left(X, A_{t}, \delta_{t}\right)(t=1, \ldots, k)$ these subautomata of A. Take
an arbitrary symbol z such that $z \notin X$. Define the automata $\overline{\mathbf{A}}_{i}=\left(X \cup\{z\}, A_{i}, \delta_{i}\right)$ $(i=1, \ldots, k)$ in the following way: $\delta_{i}\left(a_{i}, x\right)=\delta_{i}\left(a_{i}, x\right)$ and $\delta_{i}\left(a_{i}, z\right)=a_{i}$, for all $a_{i} \in A_{i}$ and $x \in X(i=1, \ldots, k)$. Take the α_{0}-products $\mathbf{B}_{i}=\mathbf{E}_{2} \times \overline{\mathbf{A}}_{i}\left(X, \varphi^{(i)}\right)(i=1, \ldots, k)$ where $\varphi_{1}^{(i)}(x)=y, \varphi_{2}^{(i)}(0, x)=z$ and $\varphi_{2}^{(i)}(1, x)=x$ for all $x \in X$. It is clear that \mathbf{A} can be embedded isomorphically into the direct product $\prod_{i=1}^{k} \mathbf{B}_{i}$. On the other hand, for any index $i(1 \leqq i \leqq k)$ the automaton $\overline{\mathbf{A}}_{i}$ is commutative with number of states less than n. Therefore, by our induction hypothesis the statement holds.

Now assume that \mathbf{A} is connected. Consider the partition $\{C(a): a \in A\}$ and the partial ordering of blocks introduced on page 1 . Since \mathbf{A} is connected thus among the blocks there exists one maximal only. Let $C(\bar{a})$ denote this block. We distinguish two cases.
(I) Assume that the cardinality of $C(\bar{a})$ is greater than one. In this case ($\left.X, C(\bar{a}), \delta_{1 C(\bar{a}) \times X}\right)$ is a strongly connected subautomaton of A. If $C(\bar{a})=A$ then, by Lemma 2 and Lemma 3, the statement holds. If $C(\bar{a}) \subset A$ then we distinguish three cases.
(a) Assume that the cardinality of $C(\bar{a})$ is prime and denote it by r. Let us define the automata $\mathbf{A}_{1}=\left(X,(A \backslash C(\bar{a})) \cup\{*\}, \delta_{1}\right)$ and $A_{2}=(((A \backslash C(\bar{a})) \cup\{*\}) \times X$, $\left.C(\bar{a}) \cup\{\square\}, \delta_{2}\right)$ in the following way:

$$
\begin{aligned}
& \delta_{1}(a, x)= \begin{cases}\delta(a, x) & \text { if } \quad \delta(a, x) \notin C(\bar{a}), \\
* & \text { otherwise },\end{cases} \\
& \delta_{1}(*, x)=*, \\
& \delta_{2}\left(a^{\prime},(a, x)\right)=a^{\prime}, \quad \delta_{2}\left(a^{\prime},(*, x)\right)=\delta\left(a^{\prime}, x\right), \quad \delta_{2}(\square,(*, x))=\square, \\
& \delta_{2}(\square,(a, x))= \begin{cases}\delta(a, x) & \text { if } \quad \delta(a, x) \in C(\bar{a}), \\
\square & \text { otherwise },\end{cases}
\end{aligned}
$$

for all $x \in X, a \in A \backslash C(\bar{a})$ and $a^{\prime} \in C(\bar{a})$. Take the α_{0}-product $\mathbf{B}=\mathbf{A}_{1} \times \mathbf{A}_{2}(X, \varphi)$ where $\varphi_{1}(x)=x$ and $\varphi_{2}(v, x)=(v, x)$ for any $x \in X, v \in(A \backslash C(\bar{a})) \cup\{*\}$. It can be proved easily that the correspondence

$$
v(a)=\left\{\begin{array}{lll}
(a, \square) & \text { if } \quad a \in A \backslash C(\bar{a}) \\
(*, a) & \text { if } \quad a \in C(\bar{a})
\end{array}\right.
$$

is an isomorphism of \mathbf{A} into \mathbf{B}. Consider the automata \mathbf{A}_{1} and $\mathbf{A}_{2} . \mathbf{A}_{1}$ is a commutative automaton with number of states less than n. Therefore, by our induction assuption, it can be decomposed in the form required. For investigating \mathbf{A}_{2} we need the automaton $\mathrm{C}=\left(\left\{x_{0}, \ldots, x_{r}\right\},\{0, \ldots, r\}, \delta_{\mathrm{C}}\right)$ where $\delta_{\mathrm{C}}\left(l, x_{i}\right)=l+i(\bmod r)$, $\delta_{\mathrm{C}}\left(l, x_{r}\right)=l, \delta_{\mathrm{C}}\left(r, x_{i}\right)=i$ and $\delta_{\mathrm{C}}\left(r, x_{r}\right)=r$ for any $l \in\{0, \ldots, r-1\}, x_{i} \in\left\{x_{0}, \ldots, x_{r-1}\right\}$. Now denote by U the set of the input signals of \mathbf{A}_{2} and consider the following partitions of U :

$$
\begin{aligned}
U_{1} & =\{(*, x): x \in X\} \cup\{(a, x): a \in A \backslash C(\bar{a}), x \in X, \delta(a, x) \nsubseteq C(\bar{a})\}, \\
U_{2} & =\{(a, x): a \in A \backslash C(\bar{a}), x \in X, \delta(a, x) \in C(\bar{a})\}, \\
V_{1} & =\{(a, x): a \in A \backslash C(\bar{a}), x \in X\} \\
V_{2} & =\{(*, x): x \in X\} .
\end{aligned}
$$

By Lemma 2, we have that $\left(X, C(\bar{a}), \delta_{\mid C(\bar{a}) \times X}\right)$ is isomorphic to an α_{0}-product of \mathbf{M}_{r} with a single factor. Denote by μ this isomorphism. We write $a=a_{i}$ if $\mu(i)=a$ $(i=0,1, \ldots, r-1)$. Now take the α_{0}-product $\mathbf{E}_{2} \times \mathbf{C}(U, \varphi)$ where for any $u_{1} \in U_{1}$, $u_{2} \in U_{2}$ and $v_{1} \in V_{1}, v_{2} \in V_{2}, \quad \varphi_{1}\left(u_{1}\right)=y, \quad \varphi_{1}\left(u_{2}\right)=x, \quad \varphi_{2}\left(0, u_{1}\right)=x_{r}, \quad \varphi_{2}\left(0, u_{2}\right)=x_{i}$ if $\delta_{2}\left(\square, u_{2}\right)=a_{i}, \varphi_{2}\left(1, v_{1}\right)=x_{r}$ and $\varphi_{2}\left(1, v_{2}\right)=x_{j}$ if $\delta_{2}\left(a_{0}, v_{2}\right)=a_{j}$. It is clear that the correspondence v given by $v(\square)=(0, r)$ and $v\left(a_{i}\right)=(1, i)(i=0, \ldots, r-1)$ is an isomorphism of \mathbf{A}_{2} into $\mathbf{E}_{2} \times \mathbf{C}(U, \varphi)$. On the other hand, it is not difficult to prove that \mathbf{C} can be embedded isomorphically into an α_{0}-product of \mathbf{E}_{2} and \mathbf{M}_{r}. Thus \mathbf{A}_{2} can be embedded isomorphically into an α_{0}-product of \mathbf{E}_{2} and \mathbf{M}_{r}. Taking into consideration the above decomposition of \mathbf{A}_{1}, this ends the discussion of (a) in case (I).
(b) Assume that the cardinality of $C(\bar{a})$ is not prime and the partition ϱ of $\left(X, C(\bar{a}), \delta_{\mid C(\bar{a}) \times X}\right)$ has one-element blocks only where ϱ is defined for $(X, C(\bar{a})$, $\delta_{1 C(\bar{a}) \times X)}$ in the same way as in the proof of Lemma 3. Now for any $\varrho_{p} \in \Omega$, define the partition $\bar{\varrho}_{p}$ of \mathbf{A} in the following way:

$$
\bar{\varrho}_{p}(a)=\left\{\begin{array}{l}
\{a\} \quad \text { if } \quad a \in A \backslash C(\bar{a}) \\
\varrho_{p}(a) \quad \text { otherwise }
\end{array}\right.
$$

Now let $\bar{\Omega}$ denote the set of all such $\bar{\varrho}_{p}$. It can easily be seen that \mathbf{A} can be embedded isomorphically into the direct product $\prod_{\bar{\varrho}_{p} \in \Omega} \mathbf{A} / \bar{\varrho}_{p}$. On the other hand for any $\bar{\varrho}_{p} \in \bar{\Omega}$ the quotient automaton $\mathbf{A} / \bar{\varrho}_{p}$ is commutative with number of states less than n. Thus, by our induction assumption, we have a required decomposition of \mathbf{A}.
(c) Assume that the cardinality of $C(\bar{a})$ is not prime and the partition ϱ of $\left(X, C(\bar{a}), \delta_{1 C(\bar{a}) \times X}\right)$ has at least one block whose cardinality is greater than one. Then, by the proof of Lemma 3, $\left(X, C(\bar{a}), \delta_{\mid C(\bar{a}) \times X}\right)$ can be embedded isomorphically into an α_{0}-product of automata $\overline{\mathbf{A}}_{1}=\left(X, \varrho, \delta_{1}\right)$ and $\overline{\mathbf{A}}_{2}=\left(\varrho \times X, \varrho\left(a_{0}\right), \bar{\delta}_{2}\right)$ where $\overline{\mathbf{A}}_{2}$ is isomorphic to an α_{0}-product of \mathbf{M}_{r} with a single factor for some prime $r<n$. Define the automata $\quad \mathbf{A}_{1}=\left(X,(A \backslash C(\bar{a})) \cup \varrho, \delta_{1}\right)$ and $\mathbf{A}_{2}=(((A \backslash C(\bar{a})) \cup \varrho) \times X$, $\left.\varrho\left(a_{0}\right) \cup\{\square\}, \delta_{2}\right)$ in the following way: for any $a \in A \backslash C(\bar{a}), \varrho\left(a_{i}\right) \in \varrho, x \in X$ and $a_{0} p^{j} \in \varrho\left(a_{0}\right)$

$$
\begin{aligned}
& \delta_{1}\left(\varrho\left(a_{i}\right), x\right)=\bar{\delta}_{1}\left(\varrho\left(a_{i}\right), x\right), \\
& \delta_{1}(a, x)=\left\{\begin{array}{l}
\delta(a, x) \quad \text { if } \quad \delta(a, x) \in A \backslash C(\bar{a}) \\
\varrho\left(a_{i}\right) \quad \text { if } \quad \delta(a, x) \in C(\bar{a}) \quad \text { and } \quad \delta(a, x) \in \varrho\left(a_{i}\right),
\end{array}\right. \\
& \delta_{2}\left(a_{0} p^{j},(a, x)\right)=a_{0} p^{j}, \delta_{2}\left(a_{0} p^{j},\left(\varrho\left(a_{i}\right), x\right)\right)=\bar{\delta}_{2}\left(a_{0} p^{j},\left(\varrho\left(a_{i}\right), x\right)\right), \\
& \delta_{2}\left(\square,\left(\varrho\left(a_{i}\right), x\right)\right)=\square, \\
& \delta_{2}(\square,(a, x))= \begin{cases}\delta(a, x) q_{s} & \text { if } \delta(a, x) € \varrho\left(a_{s}\right), \\
\square & \text { if } \delta(a, x) \notin C(\bar{a}) .\end{cases}
\end{aligned}
$$

Notations used in the above definition coincide with those used in the proof of Lemma 3. Take the α_{0}-product $\mathbf{A}_{1} \times \mathbf{A}_{2}(X, \varphi)$ where $\varphi_{1}(x)=x$ and $\varphi_{2}(v, x)=(v, x)$ for any $x \in X$ and $v \in(A \backslash C(\bar{a})) \cup \varrho$. It can easily be seen that the correspondence

$$
v(a)= \begin{cases}(a, \square) & \text { if } \quad a \in A \backslash C(\bar{a}) \\ \left(\varrho\left(a_{i}\right), a_{0} p^{j}\right) & \text { if } \\ a \in \varrho\left(a_{i}\right) & \text { and } \quad a=a_{i} p^{j},\end{cases}
$$

is an isomorphism of \mathbf{A} into $\mathbf{A}_{1} \times \mathbf{A}_{2}(X, \varphi)$. Consider the automata \mathbf{A}_{1} and \mathbf{A}_{2}. The automaton \mathbf{A}_{1} is commutative with number of states less than n. Therefore, by our induction hypothesis, it can be decomposed in the form required. The automaton \mathbf{A}_{2} can be embedded isomorphically into an α_{0}-product of automata \mathbf{E}_{2} and \mathbf{M}_{r}. This can be proved in a similar way as in the case (a). Thus we get a required decomposition of \mathbf{A}.
(II) Now assume that the cardinality of $C(\bar{a})$ is equal to one. Denote by R^{\prime} the set of all $a \in A$ for which the cardinality of $C(a)$ is equal to one and $C(a)<C(b)$ implies $b=\bar{a}$ for all $b \in A$. Let R be the set $R^{\prime} \cup\{\bar{a}\}$. We distinguish two cases:
(a) First assume that R^{\prime} is nonvoid. Then $\left(X, R, \delta_{\mid R \times X}\right)$ is a connected monotone subautomaton of \mathbf{A}. Define the automata $\mathbf{A}_{1}=\left(X,(A \backslash R) \cup\{*\}, \delta_{1}\right)$ and $A_{2}=$ $=\left(((A \backslash R) \cup\{*\}) \times X, R \cup\{\square\}, \delta_{2}\right)$ in the following way: for any $a \in A \backslash R, a^{\prime} \in R$ and $x \in X$

$$
\begin{aligned}
& \delta_{1}(a, x)= \begin{cases}\delta(a, x) & \text { if } \quad \delta(a, x) \notin R, \\
* & \text { otherwise },\end{cases} \\
& \delta_{1}(*, x)=*, \\
& \delta_{2}\left(a^{\prime},(a, x)\right)=a^{\prime}, \delta_{2}\left(a^{\prime},(*, x)\right)=\delta\left(a^{\prime}, x\right), \delta_{2}(\square,(*, x))=\square, \\
& \delta_{2}(\square,(a, x))= \begin{cases}\delta(a, x) & \text { if } \quad \delta(a, x) \in R, \\
\square & \text { otherwise } .\end{cases}
\end{aligned}
$$

Take the α_{0}-product $\mathbf{A}_{1} \times \mathbf{A}_{2}(X, \varphi)$ where $\varphi_{1}(x)=x, \varphi_{2}(v, x)=(v, x)$ for any $x \in X$ and $v \in(A \backslash R) \cup\{*\}$. It is obvious that the correspondence

$$
v(a)=\left\{\begin{array}{lll}
(a, \square) & \text { if } & a \in A \backslash R, \\
(*, a) & \text { if } & a \in R,
\end{array}\right.
$$

is an isomorphism of \mathbf{A} into $\mathbf{A}_{1} \times \mathbf{A}_{2}(X, \varphi)$. Consider \mathbf{A}_{1} and $\mathbf{A}_{2} . \mathbf{A}_{1}$ is commutative with number of states less than n. Thus by our induction assumption, it can be decomposed in the form required. On the other hand \mathbf{A}_{2} is a connected monotone automaton thus, by Lemma 1 , it can be embedded isomorphically into an α_{0}-power of \mathbf{E}_{2}. Therefore, we get a required decomposition of \mathbf{A}.
(b) Now assume that R^{\prime} is empty. Denote by Q the set of all blocks $C(a)$ for which the cardinality of $C(a)$ is greater than one, and $C(a)<C(b)$ implies $b=\bar{a}$ for all $b \in A$. Since A is connected and R^{\prime} is empty thus the set Q contains at least one block. We distinguish two cases.
(1) First assume that Q contains the bloks $C\left(a_{1}\right), \ldots, C\left(a_{k}\right)$ where $k>1$. Define compatible partitions $Q_{i}(i=1, \ldots, k)$ of \mathbf{A} in the following way:

$$
o_{i}(a)=\left\{\begin{array}{l}
\{a\} \quad \text { if } a \in C\left(a_{i}\right) \cup\{\bar{a}\} \\
C\left(a_{i}\right) \cup\{\bar{a}\} \text { otherwise } .
\end{array}\right.
$$

It is not difficult to prove that $\bigcap_{1 \leqq i \leqq k} o_{i}=\{\{a\}: a \in A\}$. From this we get that \mathbf{A} can be embedded isomorphically into the direct product $\prod_{i=1}^{k} \mathbf{A} / a_{i}$. On the other hand, for any $i \in\{1, \therefore, k\}$ the quotient automaton \mathbf{A} / ϱ_{i} is commutative with number of
states less than n. Therefore, by our induction assumption, we have a required decomposition of \mathbf{A}.
(2) Now assume that Q contains one block only and denote it by $C(b)$. Since C is a compatible partition of \mathbf{A} thus $\left\{X_{1}, X_{2}\right\}$ is a partition of X where $X_{1}=$ $=\{x: x \in X, C(b) x \sqsubseteq C(b)\}$ and $X_{2}=\{x: x \in X, C(b) x=\bar{a}\}$. It is clear that X_{1} and X_{2} are nonvoid sets and $\mathbf{B}=\left(X_{1}, C(b), \delta_{1 C(b) \times X_{1}}\right)$ is a strongly connected commutative automaton. Now we distinguish three cases according to Lemma 3.
(i) Assume that the number of states of \mathbf{B} is prime and denote it by r. Define the automata $\mathbf{A}_{1}=\left(X,(A \backslash(C(b) \cup\{\bar{a}\})) \cup\{*\}, \delta_{1}\right)$ and $\mathbf{A}_{2}=(((A \backslash(C(b) \cup\{\bar{a}\})) \cup$ $\left.\cup\{*\}) \times X, C(b) \cup\{\bar{a}, \square\}, \delta_{2}\right)$ in the following way: for any $x \in X, a \in A \backslash(C(b) \cup$ $\cup\{\bar{a}\})$ and $a^{\prime} \in C(b) \cup\{\bar{a}\}$

$$
\begin{aligned}
& \delta_{1}(a, x)=\left\{\begin{array}{l}
\delta(a, x) \cdot \text { if } \quad \delta(a, x) \notin C(b) \cup\{\bar{a}\}, \\
* \\
\text { otherwise, }
\end{array}\right. \\
& \delta_{1}(*, x)=*, \\
& \delta_{2}(\square,(a, x))= \begin{cases}\delta(a, x) \quad \text { if } \quad \delta(a, x) \in C(b) \cup\{\bar{a}\}, \\
\square & \text { otherwise },\end{cases} \\
& \delta_{2}\left(a^{\prime},(a, x)\right)=a^{\prime}, \quad \delta_{2}\left(a^{\prime},(*, x)\right)=\delta\left(a^{\prime}, x\right), \quad \delta_{2}(\square,(*, x))=\square
\end{aligned}
$$

Take the α_{0}-product $\mathbf{A}_{1} \times \mathbf{A}_{2}(X, \varphi)$ where $\varphi_{1}(x)=x$ and $\varphi_{2}(v, x)=(v, x)$ for any $x \in X, v \in(A \backslash(C(b) \cup\{\bar{a}\})) \cup\{*\}$. It is clear that the correspondence

$$
v(a)= \begin{cases}(a, \square) & \text { if } \\ (*, a \notin C(b) \cup\{\bar{a}\}, \\ (*, a) & \text { if } \quad a \in C(b) \cup\{\bar{a}\}\end{cases}
$$

is an isomorphism of \mathbf{A} into $\mathbf{A}_{1} \times A_{2}(X, \varphi)$. Consider the factors of the previous α_{0}-product. \mathbf{A}_{1} is commutative with number of states less than n. Thus, by our induction assumption it can be decomposed in the required form. For investigating \mathbf{A}_{2}, we need the following automaton. Denote by $\mathbf{W}=\left(\left\{x_{0}, \ldots, x_{r}, \vec{x}\right\},\{0, \ldots, r, \bar{r}\}\right.$, δ_{w}) the automaton where $\delta_{\mathrm{w}}\left(l, x_{i}\right)=l+i(\bmod r), \delta_{\mathrm{w}}\left(\bar{r}, x_{i}\right)=i, \delta_{\mathrm{w}}\left(l, x_{r}\right)=r$, $\delta_{\mathrm{W}}(l, \bar{x})=l, \delta_{\mathrm{W}}\left(r, x_{i}\right)=r$ for any $l \in\{0, \ldots, r-1\}$ and $x_{i} \in\left\{x_{0}, \ldots, x_{r-1}\right\}$, and $\delta_{\mathrm{W}}\left(r, x_{r}\right)=\delta_{\mathrm{W}}(r, \bar{x})=\delta_{\mathrm{W}}\left(\bar{r}, x_{r}\right)=r, \delta_{\mathrm{W}}(\bar{r}, \bar{x})=\bar{r}$. Now denote by U the set of the input signals of \mathbf{A}_{2} and take the following partitions of U.

$$
\begin{aligned}
& U_{1}=\{(*, x): x \in X\} \cup\{(a, x): a \in A \backslash(C(b) \cup\{\bar{a}\}), x \in X, \delta(a, x) \notin C(b) \cup\{\bar{a}\}\}, \\
& U_{2}=\{(a, x): a \in A \backslash(C(b) \cup\{\bar{a}\}), x \in X, \delta(a, x) \in C(b)\}, \\
& U_{3}=\{(a, x): a \in A \backslash(C(b) \cup\{\bar{a}), x \in X, \delta(a, x)=\bar{a}\}, \\
& V_{1}=\{(a, x): a \in A \backslash(C(b) \cup\{\bar{a}\}), x \in X\}, \\
& V_{2}=\left\{(*, x): x \in X_{1}\right\} \text { and } V_{3}=\left\{(*, x): x \in X_{2}\right\} .
\end{aligned}
$$

By definitions, we have that $\left(V_{1} \cup V_{2}, C(b), \delta_{2 \mid C(b) \times\left(V_{1} \cup V_{3}\right)}\right)$ is a strongly connected commutative automaton with r states. Thus, by Lemma 2, it is isomorphic to an α_{0}-product of \mathbf{M}_{r} with a single factor. Denote by μ a suitable isomorphism, and for any $t \in\{0,1, \ldots, r-1\}$ denote by b_{t} the image of t under μ. Now take the α_{0}-product $\quad \mathbf{E}_{2} \times \mathbf{W}(U, \varphi) \quad$ where $\quad \varphi_{1}\left(u_{1}\right)=y, \quad \varphi_{1}\left(u_{2}\right)=\varphi_{1}\left(u_{3}\right)=x, \quad \varphi_{2}\left(0, u_{1}\right)=\bar{x}$,
$\varphi_{2}\left(0, u_{2}\right)=x_{i} \quad$ if $\quad \delta_{2}\left(\square, u_{2}\right)=b_{i}, \quad \varphi_{2}\left(0, u_{3}\right)=x_{r}, \quad \varphi_{2}\left(1, v_{1}\right)=\bar{x}, \quad \varphi_{2}\left(1, v_{2}\right)=x_{s} \quad$ if $\delta_{2}\left(b_{0}, v_{2}\right)=b_{s}, \varphi_{2}\left(1, v_{3}\right)=x_{r}$ for any $u_{t} \in U_{t}(t=1,2,3), v_{j} \in V_{j}(j=1,2,3)$. It is obvious that the correspondence v given by $v(\square)=(0, \bar{r}), v(\bar{a})=(1, r), v\left(b_{i}\right)=(1, i)$ $(i=0, \ldots, r-1)$ is an isomorphism of \mathbf{A}_{2} into $\mathbf{E}_{2} \times \mathbf{W}(U, \varphi)$. On the other hand, it is not difficult to prove that the automaton \mathbf{W} can be embedded isomorphically into an α_{0}-product of \mathbf{E}_{2} and $\overline{\mathbf{M}}_{r}$. Thus we get a required decomposition of \mathbf{A}.
(ii) Assume that the number of states of \mathbf{B} is not prime and the partition ϱ of \mathbf{B} has one-element blocks only where ϱ is defined for \mathbf{B} in the same way as above. Now for any $\varrho_{p} \in \Omega$ define a partition $\bar{\varrho}_{p}$ of \mathbf{A} in the following way:

$$
\bar{\varrho}_{p}(a)=\left\{\begin{array}{l}
\{a\} \quad \text { if } \quad a \in A \backslash C(\bar{a}), \\
\varrho_{p}(a) \text { otherwise }
\end{array}\right.
$$

Let $\bar{\Omega}$ denote the set of all such $\bar{\varrho}_{p}$. It is clear that A can be embedded isomorphically into the direct product $\prod_{\bar{\varrho}_{p} \in \Omega} \mathbf{A} / \bar{\varrho}_{p}$. The quotient automaton $\mathbf{A} / \bar{\varrho}_{p}$ is commutative and its number of states is less than n for any $\bar{\varrho}_{p} \in \bar{\Omega}$. Thus, by our induction assumption we have a required decomposition of \mathbf{A}.
(iii) Assume that the number of states of \mathbf{B} is not prime and the partition ϱ of \mathbf{B} has at least one block whose cardinality is greater than one. Then, by Lemma 3, \mathbf{B} can be embedded isomorphically into an α_{0}-product of the automata $\mathbf{B}_{1}=$ $=\left(X_{1}, \varrho, \bar{\delta}_{1}\right)$ and $\mathbf{B}_{2}=\left(\varrho \times X_{1}, \varrho\left(b_{0}\right), \bar{\delta}_{2}\right)$ where \mathbf{B}_{2} is isomorphic to an α_{0}-product of \mathbf{M}_{r} with a single factor for some prime r. Define the automata $\mathbf{A}_{1}=$ $=\left(X,(A \backslash C(b)) \cup \varrho, \delta_{1}\right)$ and $\mathbf{A}_{2}=\left(((A \backslash C(b)) \cup \varrho) \times X, \varrho\left(b_{0}\right) \cup\{*, \square\}, \delta_{2}\right)$ in the following way: for any $a \in A \backslash C(b), \varrho\left(b_{i}\right) € \varrho, x \in X$ and $b_{0} p^{j} \in \varrho\left(b_{0}\right)$

$$
\begin{aligned}
& \delta_{1}(a, x)= \begin{cases}\delta(a, x) & \text { if } \quad \delta(a, x) \notin C(b), \\
\varrho(\delta(a, x)) & \text { otherwise },\end{cases} \\
& \delta_{1}\left(\varrho\left(b_{i}\right), x\right)=\left\{\begin{array}{l}
\bar{\delta}_{1}\left(\varrho\left(b_{i}\right), x\right) \text { if } x \in X_{1}, \\
\bar{a} \quad \text { if } \quad x \in X_{2},
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{2}(\square,(a, x))=\left\{\begin{array}{lll}
\square & \text { if } & \delta(a, x) \in A \backslash(C(b) \cup\{\bar{a}\}), \\
\delta(a, x) q_{s} & \text { if } & \delta(a, x) \in \varrho(b), \\
* & \text { if } \delta(a, x)=\bar{a},
\end{array}\right. \\
& \delta_{2}\left(b_{0} p^{j},(a, x)\right)=b_{0} p^{j}, \quad \delta_{2}(*,(a, x))=\delta_{2}\left(*,\left(\varrho\left(b_{i}\right), x\right)\right)=*, \\
& \delta_{2}\left(\square,\left(\varrho\left(b_{i}\right), x\right)\right)=\square .
\end{aligned}
$$

(The notations coincide with those used in the proof of the Lemma 3.) Take the α_{0}-product $\mathbf{A}_{1} \times \mathbf{A}_{2}(X, \varphi)$ where $\varphi_{1}(x)=x$ and $\varphi_{2}(v, x)=(v, x)$ for any $x \in X$ and $v \in(A \backslash C(b)) \cup \varrho$. It is not difficult to prove that the correspondence

$$
v(a)= \begin{cases}(a, \square) & \text { if } a \in A \backslash(C(b) \cup\{\bar{a}\}), \\ \left(\varrho\left(b_{i}\right), b_{0} p^{j}\right) & \text { if } a \in C(b) \text { and } a=b_{i} p^{j}, \\ (\bar{a}, *) & \text { if } a=\bar{a},\end{cases}
$$

is an isomorphism of \mathbf{A} into $\mathbf{A}_{1} \times \mathbf{A}_{2}(X, \varphi)$. Consider the automata \mathbf{A}_{1} and \mathbf{A}_{2}. The automaton \mathbf{A}_{1} is commutative with number of states less than n. Thus, by our induction assumption, it can be decomposed in the required form. The automaton \mathbf{A}_{2} can be embedded isomorphically into an α_{0}-product of \mathbf{E}_{2} and $\overline{\mathbf{M}}_{r}$. This can be proved in a similar way as in the case (i). Thus we get a required decomposition of \mathbf{A}.

The following statement is obvious for arbitrary natural number $i \geqq 0$.
Lemma 4. If \mathbf{A} can be embedded isomorphically into an α_{i}-product of \mathbf{B} with a single factor and \mathbf{B} can be embedded isomorphically into an α_{i}-product of \mathbf{C} with a single factor, then \mathbf{A} can be embedded isomorphically into an α_{i}-product of \mathbf{C} with a single factor.

The next Theorem holds for α_{i}-products with $i \geqq 1$.
Theorem 2. A system Σ of automata is isomorphically complete for Ω with respect to the α_{i}-product ($i \geqq 1$) if and only if for any prime number r there exists. an automaton $\mathbf{A} \in \Sigma$ such that \mathbf{M}_{r} can be embedded isomorphically into an α_{i-} product of \mathbf{A} with a single factor.

Proof. To prove the sufficiency, by Lemma 4, it is enough to show that arbitrary automaton with n states can be embedded isomorphically into an α_{1}-product of \mathbf{M}_{r} with a single factor for some prime $r>n$. This is trivial.

To prove the necessity take a prime r. First we prove that \mathbf{M}_{r} can be embedded isomorphically into an α_{i}-product of automata from Σ with at most i factors if \mathbf{M}_{r} can be embedded isomorphically into an α_{i}-product of automata from Σ. Indeed, assume that \mathbf{M}_{r} can be embedded isomorphically into the α_{i}-product $\mathbf{B}=\prod_{j=1}^{k} \mathbf{A}_{j}\left(\left\{x_{0}, \ldots, x_{r-1}\right\}, \varphi\right)$ of automata from Σ with $k>i$ and denote by μ such an isomorphism. For any $l \in\{0, \ldots, r-1\}$ denote by ($a_{l 1}, \ldots, a_{l k}$) the image of l under μ. We may suppose that there exist natural numbers $s \neq t(0 \leqq s, t \leqq r-1)$ such that $a_{s 1} \neq a_{t 1}$ since in the opposite case \mathbf{M}_{r} can be embedded isomorphically into an α_{i}-product of automata from Σ with $k-1$ factors. Now assume that there exist natural numbers $u \neq v(0 \leqq u, v \leqq r-1)$ such that $a_{u l}=a_{v l}(l=1, \ldots, i)$. Then $\varphi_{1}\left(a_{u 1}, \ldots, a_{u i}, x_{j}\right)=\varphi_{1}\left(a_{v 1}, \ldots, a_{v i}, x_{j}\right)$ for any $x_{j} \in\left\{x_{0}, \ldots, x_{r-1}\right\}$. Thus in the α_{i}-product \mathbf{B} the automaton \mathbf{A}_{1} obtains the same input signal in the states $a_{u 1}$ and $a_{v 1}$ for any $x_{j} \in\left\{x_{0}, \ldots, x_{r-1}\right\}$. Since μ is an isomorphism thus we have that $a_{u+j(\bmod r) 1}=a_{v+j(\bmod r) 1}$ for any $j \in\{0, \ldots, r-1\}$. On the other hand, r is prime thus from the above equations we get that $a_{u 1}=a_{l 1}$ for any $l \in\{0, \ldots, r-1\}$ which contradicts our assumption. Therefore, we have that the elements ($a_{11}, \ldots, a_{i i}$) $(0 \leqq l \leqq r-1)$ are pairwise different. Take the following α_{i}-product $\mathbf{C}=\prod_{t=1}^{i} \mathbf{A}_{t}\left(\left\{x_{0}, \ldots, x_{r-1}\right\}, \psi\right)$ where for any $j \in\{1, \ldots, i\},\left(a_{1}, \ldots, a_{i}\right) \in A_{1} \times \ldots \times A_{i}$ and $x_{s} \in\left\{x_{0}, \ldots, x_{r-1}\right\}$

$$
\psi_{j}\left(a_{1}, \ldots, a_{i}, x_{s}\right)=\left\{\begin{array}{l}
\varphi_{j}\left(a_{l 1}, \ldots, a_{l j+i-1}, x_{s}\right) \text { if } j+i-1 \leqq k \text { and there exists } \\
0 \leqq l \leqq r-1 \text { such that } a_{u}=a_{l u}(u=1, \ldots, i), \\
\varphi_{j}\left(a_{11}, \ldots, a_{l k}, x_{s}\right) \text { if } j+i-1>k \text { and there exists } \\
0 \leqq l \leqq r-1 \text { such that } a_{u}=a_{l u}(u=1, \ldots, i), \\
\text { arbitrary input signal from } X_{j} \text { otherwise. }
\end{array}\right.
$$

It is not difficult to prove that the correspondence $v(l)=\left(a_{i 1}, \ldots, a_{i i}\right)(l=0, \ldots, r-1)$ is an isomorphism of \mathbf{M}_{r} into \mathbf{C}.

Now we prove that if \mathbf{M}_{r} can be embedded isomorphically into an α_{i}-product $\prod_{j=1}^{k} \mathbf{A}_{j}\left(\left\{x_{0}, \ldots, x_{r-1}\right\}, \varphi\right)$ of automata from Σ with $k \leqq i$, then there exists an automaton $A \in \Sigma$ such that $\mathbf{M}_{\text {primel }[\sqrt{r}]}$ can be embedded isomorphically into an α_{i-} product of \mathbf{A} with a single factor, where prime $[\sqrt[i]{r}]$ denotes the largest prime less than $\sqrt[i]{r}$. Denote by μ such an isomorphism. For any $l \in\{0, \ldots, r-1\}$ denote by ($\left(a_{l 1}, \ldots, a_{l k}\right.$) the image of l under μ. Since μ is a $1-1$ mapping thus the elements $\left(a_{l 1}, \ldots, a_{l k}\right)(l=0, \ldots, r-1)$ are pairwise different. Therefore, there exists an s ($1 \leqq s \leqq k$) such that the number of pairwise different elements among $a_{0 s}, a_{1 s}, \ldots, a_{r-1 s}$ is greater than or equal to prime $[\sqrt[i]{r}]$. Let $a_{j_{0} s}, \ldots, a_{j_{u-1} s}$ denote pairwise different elements, where $u=$ prime $[\sqrt[i]{r}]$, and denote by \bar{X} the set $\left\{x_{0}, \ldots, x_{u-1}\right\}$. Take the α_{0}-product $\mathbf{C}=\Pi \mathbf{A}_{s}(\bar{X}, \psi)$ with a single factor, where for any $a_{j_{t} s} \in\left\{a_{j_{0 s}}, \ldots, a_{j_{u-1} s}\right\}$:and $\quad x_{v} \in \bar{X}, \quad \psi\left(a_{j_{s} s}, x_{v}\right)=\varphi_{s}\left(a_{j_{r} 1}, \ldots, a_{j_{k} k}, x_{d}\right) \quad$ if $\quad \delta_{M_{r}}\left(\mu^{-1}\left(a_{j_{t} 1}, \ldots, a_{j_{k} k}\right), x_{d}\right)=$ $=\mu^{-1}\left(a_{j_{t+v(\bmod u)^{1}}}, \ldots, a_{j_{t+v(\bmod u)} k}\right)$. It is not difficult to prove that \mathbf{M}_{u} can be embedded isomorphically into \mathbf{C} which ends the proof of Theorem 2.

From Theorem 2 we get the following.
Corollary. A system Σ of automata is isomorphically complete for Ω with respect to the α_{i}-product if and only if it is isomorphically complete with respect to the α_{i}-product ($i \geqq 1$).

DEPT. OF COMPUTER SCIENCE
A. JÓZSEF UNIVERSITY

ARADI VÉRTANUK TERE 1
:SZEGED, HUNGARY
H-6720

Reference

[1] Gécseg, F., Composition of automata, Proceedings of the 2nd Colloquium on Automata, Languages and Programming, Saarbrücken, Springer Lecture Notes in Computer Science, v, 14, 1974, pp. 351-363.

