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The purpose of this paper is to study the «¡-products (see [1]) from the point 
of view of isomorphic completeness for the class of all commutative automata. 
Namely, we give necessary and sufficient conditions for a system of automata to 
be isomorphically complete for the class of all commutative automata with respect 
to the «¡-products; It will turn out that if 1 then such isomorphically complete 
systems coincide with each other with respect to different «¡-products. Furthermore 
they coincide with isomorphically complete systems of automata. 

By an automaton we mean a finite automaton A = (X, A, <S) without output. 
Moreover isomorphism and subautomaton will mean ^-isomorphism and ,4-sub-
automaton. 

Take an automaton A = (X, A, S) and let us denote by X* the free monoid-
generated by X. The elements pdX* are called input words of A. The transition 
function (5 can be extended to AxX*^A in a natural way: for any p=p'x 
(p'dX*, xdX) and ad A 5(a, p) = §(5(a, p'), x). Further on we shall use the more 
convenient notation apA for 5(a,p) and A' pA for the set {apA: ad. A'} where A'cA 
and p£X*. If there is no danger of confusion, then we omit the index A in apA 
and A'pA. Define a binary relation a on X* in the following manner: for two input 
words p, qdX*, p = q (a) if and only if ap = aq for all ad A. The quotient semigroup 
X* la is called the characteristic semigroup of A, and it will be denoted by S(A). 
We use the notation [/?] for the element of S(A) containing pdX*. 

An automaton A = (X, A, 5) is commutative if ax1x2=ax2x1 for any ad A 
and X l , x 2 dX. Denote by 5\ the class of all commutative automata. 

Take an automaton A=(X, A, d) and let co be an equivalence relation of the 
set A. It is said that © is a congruence relation of A if a = b(co) implies ax = bx(co) 
for all a,bdA and xdX. The partition induced by the congruence relation co is 
called compatible partition of A. 

Let A = (X, A, 5) be an automaton. Define the relation C of A in the following 
way: a = b(C) if and only if there exist p,qdX* such that ap = b and bq—a. 
It is clear that C is a congruence relation of A if the automaton A is commutative. 
In the following we use the notation C(a) for the block of the partition induced 
by C which contains a. On the set A/C={C(a): ad A} we define a partial ordering 
in the following way: for any a,bdA, C(a)sC(b) if there exists pdX* such that 
ap = b. If C(a)SC(6) and C(a)^C(b) then we write C(a)<C(i>). 
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The automaton A = (A', A, 8) is called a permutation automaton if for any 
a,bd.A and pdX*, ap—bp implies a—b. The automaton A is connected if for 
any a,b£A there exist p,q£X* such that ap=bq. 

Let A , = ( X t , A,, 3,) (t— 1, . . . ,« ) be a system of automata. Moreover, let X 
be a finite nonvoid set and (p a mapping of AxX...XAnxX into X1X-..XXn such 
that (p(a1; ...,an, x)=(cpl(al, ...,an, x), ..., (pn(ai, *)), and each <pj (1 ^j^n) 
is independent of states having indices greater than or equal to j+i, where i is 
a fixed nonnegative integer. We say that the automaton A—(X, A, 3) with 
A=A1X...XAn and ¿((a l s . . . ,«„), x)=(51(a1 , ( p ^ , ...,an, x)), ...,3n(an, cp„(au 
...,a„,x))) is the a rproduct of A, ( / = 1 , ...,ri) with respect to X and (p. For this 

n 
product we use the notation JJ At(X, (p) and A^ X A2 (X, (p) for n=2. Moreover, 

(=i 
if in a r product A, A t = B for all t (t—l,...,n), then A is called an arpower of 
B and we use the notation A = B " (X, cp). 

Let SB be an arbitrary class of automata. Further on let E be a system of auto-
mata. I is called isomorphically complete for S with respect to the a r produc t if 
any automaton from S can be embedded isomorphically into an a r produc t of 
automata from I . If © is the class of all automata and I is isomorphically complete 
for 23, then it is said that I is isomorphically complete. 

Let us denote by E 2=({x, y}, {0, 1}, <5E) the automaton for which <5E(0, >0=0, 
<5e(0,X)=1,<5£(1,X)=<5e(1,>)=1. 

An automaton A=(X, A, 8) is called monotone if there exists a partial order-
ing ^ on A such that a^8(a, x) holds for any a£A and xdX. 

For monotone automata the following result holds: 
Lemma 1. Every connected monotone automaton can be embedded isomorphi-

cally into an a0-power of E2 . 

Proof We proceed by induction on the number of states of the automaton. 
In the cases n = 1 and n=2 our statement is trivial. Now let n > 2 and suppose 
that the statement is valid for any natural number m<n. Denote by A=(X, A, 8) 
an arbitrary connected monotone automaton with n states. Since A is connected 
thus among the blocks C(a) (ad A) there exists exactly one maximal element under 
our partial ordering of blocks. On the other hand, since A is monotone thus the 
partition induced by C has one-element blocks only. Denote by a„ the element of 
the maximal block. Since « > 2 thus there exists an ad A such that C(a)<C(an). 
Denote by ak an element of A for which C(ak)<C(a„) and C(ak)<C(a) implies 
a—an for any ad A. Obviously there exists such an ak . It is also obvious that 
(X, H, 5\HxX) is a subautomaton of A, where H={ak,a„} and the restriction to 
HxX of the function 8 is denoted by Let us define the automata Ax = 
=(X, ( ¿ V ^ U i * } , ^ ) and A2=(((A\H)U{i})Xl, HiJ { • }, <5,) in the follow-
ing way: 

f S(a,x) if d(a, x)$H, 
3Aa, x) = i 

I * otherwise, 
¿i(*> = *> 

r8(a > X ) if 3(a,x)dH, 
« , ( • .<« .* ) ) = l D o t h e r w i s e j 

32(a',(a, x)) = a', S2(a',(*, x)) = 3(a', x), ¿ 2 ( C ] , ( * , X ) ) = • 
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for all a£A\H,xdX and a'£H. Take the a0-product B = A j X A 2 ( Z , (p) where 
<io1(x)—x,q>2(y,x)=(v,x) for all xdX and u € ( . 4 \ / f ) U { * } . It is easy to prove 
that the correspondence 

_ f ( a , • ) if a£A\H, 
V ( a ) - l ( * , a ) if a£H, 

is an isomorphism of. A into B. 
Now let us consider the automata Aj and A2. Since Ax is a connected monotone 

automaton with n — 1 states thus, by our assumption, Ax can be embedded iso-
morphically into an a0-power of E2 . Denote by TJ the set of input signals of A2 
and take the following partitions of U: 

Ux = {(a, x): a£A\H, x£X, 5(a, x)$H}U{(*, x): x£X}, 

U2 = {(a, x): a£A\H, x£X, 8 (a, x) = a J , 

U3 = {(a, x): a£A\H, xdX, 8 (a, x) = a„}, 

Vx = {(a, x): a£A\H, x £ X } U { ( * , x): xdX, 8(ak,x) = ak}, 

V2 = {(*, x): x£X, 8{ak, x) = a„}. 

Consider the a0-product E2(C/, <p) where (px(«0 =y, (py(M2)=(px(w3)=x, 
(p2(0,u1)=(p2(0,u2)=y, (p2(0,u3)=x, (p2(l,v1)=y and cp2(l,v2)=x for all u^U, 
(i= 1 ,2 ,3) and Vj£ Vj (7 = 1,2). It can easily be seen that the correspondence 
• —(0, 0), ak-*(l, 0) and an-*( 1, 1) is an isomorphism of A2 into E2(U, <p). Since 
the formation of the a0-product is associative thus we have proved that A can be 
embedded isomorphically into an a0-power of E2 . 

For any natural number « s i let M„=({x0 , . . . ,x„_1}, {0, ...,n—l},5) de-
note the automaton for which 8(j, x , )=y+/ (mod n) for any 7£{0, . . . , « — 1} 
and x,£{x0, . . . , x„_!}, where 7 + / ( m o d ri) denotes the least nonnegative residue 
of j+l modulo n. Moreover let 93i denote the set of all M„ such that n is a prime 
number. 

It holds the following 

Lemma 2. If the number of states of a strongly connected commutative auto-
maton A is a prime number, then there exists an automaton M£®i such that A 
is isomorphic to an a0-product of M with a single factor. 

Proof. First we prove that every strongly connected commutative automaton 
is a permutation automaton. Indeed, denote by A = ( X , A, 8) a strongly connected 
commutative automaton and assume that there exist a, b£ A and pdX* with ap—bp. 
Since A is strongly connected thus there exist input words q, w£X* such apq=a 
and aw=b. Using the commutativity of A, we have bpq=awpq=apqw=aw—b. 
Therefore, a=apq=bpq=b, showing that A is a permutation automaton. 

Now let us assume that the number of states of A is prime and denote it by r. 
Let ad A and pdX* be arbitrary and consider the states a, ap, ap%, . . . . Since A is 
a permutation automaton thus there exists a t ( l S i S / - ) such that a=ap'. Denote 
by (a,p) the set {a,ap, ..., ap'-1}. Assume that {a,p)aA. Let a'dA\(a, p) and 
consider the set (a' ,p), which is defined as above. Since A is a strongly connected 
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automaton thus there exists a qdX* such that aq=a'. Using the commutativity 
of A we have ap'q = aqp'~a'p' (i=0, ...,t— 1). From this it follows that (a,p) 
and (a ' ,p) have the same cardinality since A is a permutation automaton. On the 
other hand it can easily be seen that (a,p) and (a' ,p) are disjoint subsets of A. There-
fore, the set gp= {(a,p): ad A} is a partition of A and the blocks of gp have the same 
cardinality. Since r is prime thus we get that gp has one-element blocks only, or it 
has one block only. Now we choose an xdX such that gx has one block only. The 
automaton A is strongly connected therefore such an x£X exists. Let ad A be a 
fixed state of A and write a0=a, a^a^x1 ( i '=l, ..., r — 1). Thus the mapping induced 
by x on A can be described in the form i(m0dr) 0 = 0 , . . . , r— 1). Now let y be 
an arbitrary input signal of A and assume that a^y^aj for some jd {0, 1, . . . , r — 1}. 
From the commutativity of A we have a,y=a0 x'y=a0yx'=aj x'=ai+J (mod r) for all 
id {0, 1, ...,/* — 1}. Take the a0-product B = iTMr(X, q>) with a single factor, 
where q>(x)=xk if a0x = ak for all x f X . It is easy to prove that A is isomorphic 
to B, which completes the proof of Lemma 2. 

Lemma 3. Every strongly connected commutative automaton can be em-
bedded isomorphically into an a0-product of automata from 5Di. 

Proof. We prove by induction on the number of states of the automaton. In 
case « < 4 , by Lemma 2, the statement holds. Now let 4 and assume that our 
statement is valid for any natural number m-<n. Denote by A=(X, A, S) an ar-
bitrary strongly connected commutative automaton with n states. If n is prime then, 
by Lemma 2, the statement holds. Assume that n is not prime. Let pdX* be ar-
bitrary. Consider the partition gp. Since A is commutative thus gp is a compatible 
partition of A. Denote by Q the set of all partitions gp of A such that [p\d SOAJXfle]}, 
where e denotes the empty word of X*. Take the partition Q of A given by g= (~) gp. 
We distinguish two cases. 

First assume that g has one-element blocks only. In this case it can easily be 
seen that A can be embedded isomorphically into the direct product of the quotient 
automata A j g p (gpdQ). On the other hand, for any gpd Q the quotient automaton 
A/gp is a strongly connected commutative automaton with number of states less 
than n. Therefore, by our induction hypothesis the statement is valid. 

Now assume, that there exist a, bdA such that a^b and a=b(g). Take an 
input signal A: of A such that the mapping induced by it on A is not the identity. 
Then gxdS2 and thus Qx

T=g. Therefore, a=b(gx). This means that there exists 
a natural number / > 0 such that axl=b. Since g is compatible thus axl=bx\g). 
From this, by the above equality, we get that the states a, ax1, ax21, ... are in g(a). 
Therefore, (a, xl)^g(a). On the other hand gxi^g thus (a, x') — g(a), showing 
that gxi = g. Denote by p the word xl and assume that g(a) = {a, ap, ..., apk~1}. 
We show that k is prime. Indeed, if l < i x i and „|k then (a,pv)a(a,p) which 
contradicts the relation gp„^g. Denote by g(a0), g(a±), ..., g(as_x) the blocks of g. 
From the equality g = gp it follows that g{a^)={ai, a^p, ..., aiP

k~1} 0 = 0 , 1, ...,s— 1). 
Thus n=k'S. From this we get that s ^ l because k is prime. On the other hand, 
since A is strongly connected thus there exist words pt, qt 0 = 0 , ..., s—1) such that 
aoPi = ai a n d atqi = aa for all /£{0, 1, ..., s— 1}. Using the commutativity of A 
we have af)pipi=aipJ and aipJqi=a0pJ for any jd {0, 1, ..., k — 1} and 
id {0, 1, . . . , s— 1}. Now define two automata A j = ( X , g, ¿j) and A 2 = 
= (gXX, g(a0), ¿>2) in the following way: S1(g(ai), x) = g(S(ah x)) for all g(at)dg 
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and xeX,d2(a0pi,(e(at),x)) = a0p}pixqu if o ( < 5 , x)) = o(au) for all a0pJ£g(a0) 
and (g(di), x)£gXX. Take the a0-product B=A 1 XA 2 (Z , cp), where <px(x)=x 
and $>2(0(^1), x)={g(fli), x) for any x£X and g(at)dg- It is not difficult to prove 
that the correspondence v: aipi-<-(g(ai), a0pJ) (7=0, 1, ...,.s—1; j=0, 1, ..., k—\) 
is an isomorphism of A into B. Now consider the automata Ax and A2 . They are 
strongly connected commutative automata with number of states less then n. There-
fore, by our assumption, the statement holds. 

For any prime number r, let M r = ({x 0 ,x 1 , ...,*,.}, {0, ...,/•}, <5) denote the 
automaton for which 5(1, XJ) = l+j(mod r), 5(r, XJ)=r, <5(7, x,)=r and d(r, xr)=r 
for any /£{0, .. . , r—1} and Xj£ {x0, . . . , xr_1}. 

The next Theorem gives necessary and sufficient conditions for a system of 
automata to be isomorphically complete for 5v with respect to the a0-product. 

Theorem 1. A system E of automata is isomorphically complete for 5\ with 
respect to the a0-product if and only if the following conditions are satisfied: 

(1) There exists A0€£ such that the automaton E2 can be embedded isomorphi-
cally into an a0-product of A0 with a single factor; 

(2) For any prime number r there exists such that the automaton M r 
can be embedded isomorphically into an a0-product of the automata A0 and A. 

Proof. In order to prove the necessity assume that I is isomorphically complete 
for ft with respect to the a0-product. Then E2 can be embedded isomorphically 

k 
into an a0-product JJ At({x, y}, (p) of automata from I. Assume that 1 and 

i=l 
let n denote a suitable isomorphism. For any {0, 1} denote by (a jX, . . . ,a J k ) the 
image of j under p. Among the sets {a0t, alt} ( f = l , ..., k) there should be at least 
one which has more than one element. Let I be the least index for which a m ^ a 1 { . 
It is obvious that the automaton A¡£1 satisfies condition (1). 

Now take an arbitrary prime number r and consider the automaton M r . By 
our assumption M r can be embedded isomorphically into an a0-product 

k 
[J A,({x0, ...,xr},<p) of automata from E. Assume that k> 1 and let /1 denote 

¡=1 
a suitable isomorphism. For any td{0, ..., ;*} denote by (an, atk) the image of 
t under /¿. Define compatible partitions Uj (j= 1, ..., k) of M r in the following 
way: for any 0, ...,/"}, u = v(%}) if and only if aul=avl, ..., auj=avj. -It is 
obvious_that n ^ n . ^ . . . ^ n k and nk has one-element blocks only. On the other 
hand MP has only one nontrivial compatible partition: <7={{0, . . . , r—1}, {/•}}. 
Denote by s the least index for which G>IIs. It is not difficult to prove that the 
automaton AS£E satisfies condition (2). 

To prove the sufficiency of the conditions of Theorem 1 we shall show that 
arbitrary commutative automaton can be embedded isomorphically into an a0-
product of automata from where 9t={E 2}U{M r : r is a prime number}. 

We prove by induction on the number of states of the automaton. In the case 
our statement is trivial. Now let 2 and assume that for any m < n the 

statement is valid. Denote by A = (X, A, 5) an arbitrary commutative automaton 
with n states. 

If A is not connected then it can be given as a direct sum of its connected sub-
automata. Denote by At = (X, A,, §,) (t= 1, ... ,k) these subautomata of A. Take 
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an arbitrary symbol z such that z$X. Define the automata A; =(A"U{z}, A h 
</ = 1, k) in the following way: $i{ait x )=5 j ( a i , x) and $i(ai,z)=ai, for all 
¿¡¿At and x£X(i= 1, ...,k). Take the a0-products Bi=E2XAi(X, <p(i)) (i-1,..., k) 
where (pi"(x)=y, (p«\Q, x)=z and </><''>(1, x ) = x for all x£X. It is clear that A 

k 
can be embedded isomorphically into the direct product JJ B, . On the other hand, 

¡=1 
fo r any index i ( l s / ^ A : ) the automaton A; is commutative with number of states 
less than n. Therefore, by our induction hypothesis the statement holds. 

Now assume that A is connected. Consider the partition {C(a): a£A} and the 
partial ordering of blocks introduced on page 1. Since A is connected thus among 
the blocks there exists one maximal only. Let C(a) denote this block. We distinguish 
two cases. 

(I) Assume that the cardinality of C(a) is greater than one. In this case 
(X, C(a), <5|C(a)xx) is a strongly connected subautomaton of A. If C(a)=A then, 
by Lemma 2 and Lemma 3, the statement holds. If C(a)czA then we distinguish 
three cases. 

(a) Assume that the cardinality of C(a) is prime and denote it by r. Let us 
•define the automata A 1 = ( Z , G4\C(a) ) U { * }, and A 2 = ( ( ( ¿ \ C ( a ) ) U { * }) X X 
C(a )U{d} , 82) in the following way: 

(8(a, x) if 8(a, x)$C(a), 
¿i(a> *) | ^ otherwise, 

S2(a', (a, x)) = a', 82(a', ( * , x)) = 8(a\ x), 32(n, ( * , x)) = • , 

( 8 ( a , x) if 8(a, x)£C(a), 
« . ( • , ( « , * ) ) = t n o t h e r w i s e j 

fo r all x£X, a£A\C(a) and a'fC(a). Take the a0 -product B ^ A i X A a p f , cp) where 
(p1(x)=x and <p2(v, x)=(v, x) for any x£X, (A\C(d))U { * }. It can be proved 
easily that the correspondence 

•(«,•) if a£A\C(a), 
a) if a£C(a), 

is an isomorphism of A into B. Consider the automata Ax and A2. Ax is a com-
mutative automaton with number of states less than n. Therefore, by our induction 
assuption, it can be decomposed in the form required. For investigating A2 we need 
the automaton C=({x 0 , . . . , xr}, {0, .. . , r}, 8C) where 8C(/, x , ) = / + / (mod r), 
¿c(l,xr)=l, 8c(r, xt)=i and 8c(r,xr)=r for any /£{0 , . . . , r - 1 } , x ^ x , , , x ^ } . 
Now denote by U the set of the input signals of A2 and consider the following parti-
tions of U: 

Ux = {( '*,*): x€X}U{(a ,x) : aZA\C(a), x€Z, 8(a, x)$C(a)}, 

U2= {(a, x): a£A\C(a), x£X, 8{a, x)€C(a)}, 

Vx = {(a, x): a £ ^ \ C ( a ) , x£Z}, 

V2 = { (* ,x ) : x£X). 

((a 
v<«)={ ( , 
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By Lemma 2, we have that (X , C(a), S¡C(s)xX) is isomorphic to an a0-product of 
MP with a single factor. Denote by p this isomorphism. We write a=a¡ if / i{ i )=a 
( i=0, 1, ...,/•— 1). Now take the a„-product E 2 X C ( U , <p) where for any 
u2<lU2 and Vlt V2£V2, <p1(u1)=y, <p1(u¿=x, q>2(0,u¿ = xr, <p2(0, «2)=x f if 
^ ( 0 , u 2 ) = f l j , rp2(l, Vi)=x r and (p2(\ ,v2)=Xj if 52(a0,v2)=aj. It is clear that 
the correspondence v given by v(m)=(0 , r) and v(a,)=(l , /) ( /=0, .. . , r — 1) is 
an isomorphism of A2 into E 2 x C ( U , <p). On the other hand, it is not difficult to 
prove that C can be embedded isomorphically into an a0-product of E2 and M,. 
Thus A2 can be embedded isomorphically into an a0-product of E2 and M r . Taking 
into consideration the above decomposition of Ax, this ends the discussion of (a) 
in case (I). 

(b) Assume that the cardinality of C(a) is not prime and the partition g of 
(X, C(a), <5|C(a)xx) has one-element blocks only where g is defined for (X, C(a), 
¿¡c(a)xx) in the same way as in the proof of Lemma 3. Now for any gp£Q, 
define the partition gp of A in the following way: 

{a} if 
QP(A) otherwise. 

Now let Í2 denote the set of all such gp. It can easily be seen that A can be embedded 
isomorphically into the direct product ]J A/gp. On the other hand for any gp£ Q 

the quotient automaton A jg p is commutative with number of states less than n. 
Thus, by our induction assumption, we have a required decomposition of A. 

(c) Assume that the cardinality of C(a) is not prime and the partition g of 
(X, C(a), ¿|C(a)xx) has at least one block whose cardinality is greater than one. 
Then, by the proof of Lemma 3, (X,_C(a), ¿|C(s)Xx) can be embedded isomorphically 
into an a0-product of automata A l = (X,g,d1) and A2 = (gXX, g(a0), S2) where 
A2 is isomorphic to an a0-product of M r with a single factor for some prime r<n. 
Define the automata Ax=(X, G4\C(5) )Ue , and A 2 = ( ( ( ^ \ C ( a ) ) U e ) X X , 

{ •} , <52) in the following way: for any adA\C(a), g(a¡)dg, x£X and 

Si{g(a¡), x) = d^gicii), x), 

d(a,x) if 5(a, x)eA\C(a) 

}(a¿) if 5(a, x)dC(a) and 5(a, x)(ig(a¡), 

<52(aoPJ\ (a, x)) = a0pi, S2(a0pJ, (g(a¡), x)) = 32(a0pJ', (eO;)> xj), • 

(8(a¡), x)) = • , 

, ^ i&(a,x)qs if 
«,(•.(«,*))={• d(a,xHc(a). 

Notations used in the above definition coincide with those used in the proof of 
Lemma 3. Take the a0-product A1XA2(Ar, cp) where (p1(x)=x and cp2(v, x)—(v, x) 
for any x 4 X and í ) c (^ \C(á ) )Uo . It can easily be seen that the correspondence 

f (a , • ) if fl£AC(fl), 
1 (g(a¡), a0pJ) if aeg(a¡) and a = a¡pJ, 

xt ^ í ó ( 
S^a, x) = | 
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is an isomorphism of A into A i X A ^ Z , <p). Consider the automata Ax and A 2 . 
The automaton Ax is commutative with number of states less than n. Therefore, 
by our induction hypothesis, it can be decomposed in the form required. The auto-
maton A2 can be embedded isomorphically into an a0-product of automata E 2 
and M r . This can be proved in a similar way as in the case (a). Thus we get a re-
quired decomposition of A. 

(II) Now assume that the cardinality of C(a) is equal to one. Denote by R' 
the set of all a£A for which the cardinality of C(a) is equal to one and C(a)<C(b) 
implies b—a for all b£A. Let R be the set i?'U{a}. We distinguish two cases: 

(a) First assume that R' is nonvoid. Then (X, R, <5|KxX) is a connected monotone 
subautomaton of A. Define the automata A1=(A r, {*}, ¿j) and A2= 
= ( ( ( . -4 \^)U{*})XA r , i ?U{n},5 2 ) in the following way: for any a£A\R, a\R 
and x£X 

(8 (a, x) if S(a,x)$R, 
¿ i ( a > x ) | ^ otherwise, 

S2(a', (a, x)) =a\ S,(a', (*,x)) = 8(a', x), &>(•, ( * , x ) ) = • , 

(d(a,x) if 8(a,x)£R, 
£),(•, (a, x)) = i ^ . -v v >> n otherwise. 

Take the a0-product A1XA2(X, (p) where <p1(x)=x, <p2(v, x)=(v, x) for any x£X 
and {*}. It is obvious that the correspondence 

(a, • ) if a£A\R, 
(#, a) if a£R, 

is an isomorphism of A into A j X A ^ X , (p). Consider Ax and A2. A t is commutative 
with number of states less than n. Thus by our induction assumption, it can be de-
composed in the form required. On the other hand A2 is a connected monotone 
automaton thus, by Lemma 1, it can be embedded isomorphically into an a0-power 
of E2 . Therefore, we get a required decomposition of A. 

(b) Now assume that R! is empty. Denote % Q the set of all blocks C(a) for 
which the cardinality of C(a) is greater than one, and C(a)<C(&) implies b—a 
for all b£A. Since A is connected and R' is empty thus the set Q contains at least 
one block. We distinguish two cases. 

(1) First assume that Q contains the bloks C ^ ) , . . . , C(ak) where k> 1. De-
fine compatible partitions gt (i= 1, ...,k) of A in the following way: 

f M if a$C(a,.)U{a}, 
Ql( ) ~ 1 C(aJU{a} otherwise. 

It is not difficult to prove that (") £?;={{a}: a£A}. From this we get that A can 
ISiSfc k 

be embedded isomorphically into the direct product JJ A/g^. On the other hand, 
¡=i 

for any ¿€{1, . : . , k} the quotient automaton A/g( is commutative with number of 
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states less than n. Therefore, by our induction assumption, we have a required 
decomposition of A. 

(2) Now assume that Q contains one block only and denote it by C(b). Since 
C is a compatible partition of A thus {Xx, X2} is a partition of X where Xx — 
= {x: xeX, C(b)xQC(b)} and X2 = {x: x£X, C(b)x=a). It is clear that X1 and 
X2 are nonvoid sets and B ^ A ^ , C(b), &\C(b)xxd is a strongly connected commuta-
tive automaton. Now we distinguish three cases according to Lemma 3. 

(i) Assume that the number of states of B is prime and denote it by r. Define 
the automata Ax = (X, (A\(C(b) U {a})) U {* }, <5j) and A2 = (((/1\(C(6)U {a}))U 
U{*})XA-, C(Z>)U{a, • } , in the following way: for any x£X, aiA\(C(b)U 
U {a}) and a'dC(b){J{a} 

(S(a,x) if S(a,x)iC(b)iJ{a}, 
x) | ^ otherwise, 

<5i(*> x) = * , 
r S(a, x) if <5(a,x)€C(b)U{a}, 

« . ( • . ( « , * ) ) = l D o t h e r w i s C j 

S2(a', (a, x)) = a', S2(a\ (*, x)) = 5(a', x), S2(a, (*, x)) = • . 

Take the a0-product AxXAaiA', <p) where cp1(x) = x and cp2(v, x)=(v, x) for any 
x£X, t>g(,4\(C(6)U{a}))U{*}. It is clear that the correspondence 

_ f ( a , • ) if- a$C(b)U{a}, 
V ( a ) _ l ( * , a ) if aeC(b)U{a} 

is an isomorphism of A into A1XA2(X, cp). Consider the factors of the previous 
a0-product. Ax is commutative with number of states less than n. Thus, by our 
induction assumption it can be decomposed in the required form. For investigating 
A2, we need the following automaton. Denote by W = ({x0, . . . , xr, 5c}, {0, ..., r, r}, 
<5W) the automaton where dw(/ , Xi) = l+i (mod r), <5w(r, x;) = i, <5W(/, xr)=r, 
<5W(/, = 5v/(r, xt) = r for any /€ {0, ..., r-\) and {x0, . . . , xr_x}, and 
8w(r, xr)=Sw(r, x)—Sw(r, xr)=r, <5w(r, x)=r. Now denote by U the set of the input 
signals of A2 and take the following partitions of U. 

= { (* ,* ) : x<EX}U{(«,x): aG4\(C(&)U {a}), x€Z, <5 (a, x )$C(b)U{a}} , 

U2 = {(a,x): a£A\(C(b)U {a}), x6A", 5(a, x)£C(b)}, 

U3 = {(a, x): a£A\(C(b)U {a}), x£X, d(a, x) = a}, 

V% = {(a,x): a€^\(C(ft)U{a}), xdX}, 

V2 = { (* ,* ) : xdX^ and V3 = {(*,*): x£X2}. 

By definitions, we have that (J^U F2, C(Z>), ¿2 |C{6)x(KlUK2)) is a strongly con-
nected commutative automaton with r states. Thus, by Lemma 2, it is isomorphic 
to an a0-product of M r with a single factor. Denote by ¿u a suitable isomorphism, 
and for any i£{0,1, .. . , r — 1} denote by b, the image of t under (i. Now take the 
a„-product E 2 x W ( t / , (p) where <Pi(uj=y, (Pi(ud=(Pi(.u3)—x> <p2(0, u1)=x, 
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(p2(P,ii2)=Xi if <52(D, u2) = bi, (p2(0,u3) = xr, <p2(l,i;1) = x, <p2(l, = if 
82(b0, v2)=bs, (p2(l, v3) — xr for any u,£ U, (/ = 1,2, 3), v^Vj (j=\, 2, 3). It is 
obvious that the correspondence v given by v ( d ) = ( 0 , r), v ( a ) = ( l , r), v (6 , )= ( l , 1) 
( /=0 , ...,/-—1) is an isomorphism of A2 into E 2 X\V( t / , q>). On the other hand, 
it is not difficult to prove that the automaton W can be embedded isomorphically 
into an a0-product of E2 and M r . Thus we get a required decomposition of A. 

(ii) Assume that the number of states of B is not prime and the partition g 
of B has one-element blocks only where g is defined for B in the same way as above. 
Now for any Gp£Q define a partition QP of A in the following way: 

f W if a€A\C(a), 
e" a ~ X gp(a) otherwise. 

Let Q denote the set of all such gp. It is clear that A can be embedded isomorphi-
cally into the direct product J ] A/gp . The quotient automaton Ajgp is commuta-

sP i ! } _ -
tive and its number of states is less than n for any gp£ Q. Thus, by our induction 
assumption we have a required decomposition of A. 

(iii) Assume that the number of states of B is not prime and the partition g 
of B has at least one block whose cardinality is greater than one. Then, by Lemma 3, 
B can be embedded isomorphically into an ot0-product of the automata Bi = 
= (X1,g,81) and B2 = (gXAr

1, eO>0), 52) where B2 is isomorphic to an a0 -product 
of M r with a single factor for some prime r. Define the automata Ax = 
=(X, (A\C(b))U g, 5j and A 2 = ( ( ( A \ C ( b ) ) U o ) X l , oO>0)U{*, • } , <52) in the 
following way: for any a£A\C(b), g(bi)£g, x£X and b0pJ€g(b0) 

[ ¿ ( a , * ) if <5 (a,x)iC(b), 
1 ' 10(¿(a, x)) otherwise, 

v iSi (e(bd,x) if 
S1(g(bd,x) = \ - jf ^ 

stu ! f tt Mb0p>,(Q{bd,x)) if x£Xlt 
WoP,.ie(Pd,x)) = [ t if ^ 

' • if S(a,x)£A\(C(b)\J{3}), 
Sz(D,(a,x))= d{a, x)qs if 5{a, x)£g(bs), 

* if 5(a, x) = a, 

d2(b0PJ, (a, x)) = ^p3, <52(*, (a, x)) = S2(*, (g(bj, x)) = *, 

<$a(D. (e&d, x)) = • . 
(The notations coincide with those used in the proof of the Lemma 3.) Take the 
a0-product AjXAaOV, <p) where (p1 (x) = x and (p2(v, x) = (v, x) for any x£X and 
v£(A\C(b)){Jg. It is not difficult to prove that the correspondence 

v ( « ) 

( a , D ) i f - a € ^ \ ( C ( 6 ) U { a } ) , 
•(e(bd, b0PJ) if atC(b) and a = b ^ , 
(a, *) if a = a, 
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is an isomorphism of A into AiXA^A', <p). Consider the automata Ax and A 2 . 
The automaton Ax is commutative with number of states less than n. Thus, by ou r 
induction assumption, it can be decomposed in the required form. The automaton 
A2 can be embedded isomorphically into an a0-product of E2 and M r . This can 
be proved in a similar way as in the case (i). Thus we get a required decomposi-
tion of A. 

The following statement is obvious for arbitrary natural number z'^0. 

Lemma 4. If A can be embedded isomorphically into an a r product of B with 
a single factor and B can be embedded isomorphically into an «¡-product of C 
with a single factor, then A can be embedded isomorphically into an a r produc t 
of C with a single factor. 

The next Theorem holds for af-products with i ^ l . 

Theorem 2. A system Z of automata is isomorphically complete for ft with 
respect to the a r product 0 = 1) if and only if for any prime number r there exists 
an automaton such that M r can be embedded isomorphically into an a r 
product of A with a single factor. 

Proof. To prove the sufficiency, by Lemma 4, it is enough to show that ar-
bitrary automaton with n states can be embedded isomorphically into an ax -product 
of M r with a single factor for some prime /•>«. This is trivial. 

• To prove the necessity take a prime r. First we prove that M r can be embedded 
isomorphically into an a r product of automata from I with at most i factors if 
M r can be embedded isomorphically into an a f-product of automata from I . In-
deed, assume that M r can be embedded isomorphically into the a r product 

k 
B = [J Aj({x0,..., xr_x}, <p) of automata from I with k>i and denote by ¡.i 

i = i 
such an isomorphism. For any /€{0, ...,/•— 1} denote by (an, ..., alk) the image 
of I under /i. We may suppose that there exist natural numbers s^t (0=s, tsr— 1) 
such that a s l ^ a n since in the opposite case M, can be embedded isomorphically 
into an a r product of automata from I with k— 1 factors. Now assume that there 
exist natural numbers u^v (O^w, v^r—\) such that aul — avl (1= 1, . . . , i). Then 
<Pi(aul, •••,aui,Xj) = (p1(avl, ...,avl,Xj) for any Xj£ {x0, . . . , x r_j}. Thus in the 
a rproduct B the automaton Ax obtains the same input signal in the states aul and 
av l for any x f i {x0, . . . , Since fi is an isomorphism thus we have that 
flu+y(modr)i=aD+i(modr)i for any j£ {0, .. . , r - 1}. On the other hand, r is prime 
thus from the above equations we get that aul = an for any /€{0, .. . , r — 1} which 
contradicts our assumption. Therefore, we have that the elements (an, ..., a,;) 
( 0 ^ / S r — 1 ) are pairwise different. Take the following a,-product 

i 
C = IJ A,({x0, . . . , </0 where for any {1, . . . , /} , (alt . . . , XAT t=i 
and x s € { x 0 , . . . , 

f , ( a 1 ; . . . , ai,xs) = 

<Pj(an, ..., alj+i_1, xh) if j+i — l-^k and there exists 
0 S I ^ r— 1 such that au=a!u (u = 1, ..., i), 

q>j(an, ..., alk, x j if j + i — 1 > k and there exists 
0 I = v — 1 such that au = alu (u — 1, ..., i), 

arbitrary input signal from X} otherwise. 
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It is not difficult to prove that the correspondence v(/)—(an, ..., au) (1=0, ..., r — 1) 
is an isomorphism of M r into C. 

Now we prove that if M r can be embedded isomorphically into an a r product 
k 

77A.-({x0, ..., x,_i}, <p) of automata from I with k^i, then there exists an autó-
é i 
maton A £ 1 such that M .<._. can be embedded isomorphically into an a.r primelKrJ 

product of A with a single factor, where prime [ / 7 ] denotes the largest prime less < _ 
than yV. Denote by p such an isomorphism. For any /£{0, . . . ,r— 1} denote by 
(a,i, . . . , alk) the image of / under p. Since p. is a 1 — 1 mapping thus the elements 
•(an, ..., a,k) (1=0, ..., r—1) are pairwise different. Therefore, there exists an s 
(l^s^k) such that the number of pairwise different elements among a0s, als, ..., ar_ls 

is greater than or equal to prime [j/r]. Let aJoS, ..., aJu_lS denote pairwise different 
i 

•elements, where w=prirne [ / r ] , and denote by X the set {x0, . . . , x„_j}- Take the 
a0-product C=nAs(X,i[/) with a single factor, where for any ajtS£ {aJoS, ..., aJu_lS} 
and xv£X, 4/(aJtS, xv) = cps(aJtl, ...,aJtk,xd) if SMr(ß~1(aJtl, ajtk), xd) = 
= u~1(aI i, . . . . a,• it). It is not difficult to prove that M„ can be em-™ v J t + u(raodu) ' J t + f í m o d u r ' c u 

bedded isomorphically into C which ends the proof of Theorem 2. 
From Theorem 2 we get the following. 
COROLLARY. A system Z of automata is isomorphically complete for 5T with 

respect to the a rproduct if and only if it is isomorphically complete with respect 
to the a rproduct ( ¿ s i ) . 
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