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Introduction 

A large body of literature has grown up concerned with paging algorithms 
[e.g. 1, 3, 4, 6, 10]. In the terminology of Arato [2] a program's address space is 
divided into equal size blocks called page. There are two levels of memory: the 
first level is a fast access device and the second level is a larger, slower backing store. 
These levels are each divided into page frames. If a program references a page in 
the second level a page fault is said to occur. In this case the referenced page is 
brought into the first level and to make room for it another page is selected by the 
paging algorithm to be removed from the first to the second level. 

The objective of the algorithm is to minimize the expected number of page 
faults. Most authors. have considered this problem when either the probability 
distribution of the string of program references is known or when the algorithm 
stores information on the number of times each page has been referenced in order 
to estimate the distribution [1, 2, 3, 4, 10]. 

Interest has recently been shown in a different type of paging algorithm, when 
the distribution is unknown and no information on page references is collected 
[6, 7]. The page references are assumed to form an independent sequence. These 
are self-organizing algorithms. Since no information about the reference probabilities 
is available they can only select the page to be removed from first level memory 
on the basis of its position in the memory. The advantages of this approach are 
that no prior knowledge of reference probabilities is required, and no memory needs 
to be used in collecting information on these probabilities Changing, the algorithm 
will automatically adjust to the new distribution. 

The problem of finding the optimal self-organizing paging algorithm is re-
lated to another problem that has recently received much attention: there is a linear 
array of n storage positions 1, . . . ,« , containing n pages Iy , T2, . . . , / „ , together with 
a self-organizing algorithm T. T acts so that if the page referenced was in position 
j it is moved to position t ( j ) . If t ( j ) < / then the pages in positions j— 1 to x ( j ) 
are all moved back one position each to make room for the page moved from j 
to x(j). If x(/)>/, then the pages in positions j+1 to x ( j ) all move forward 
one position each. No other pages are moved. 
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The objective of the algorithm is to minimize the cost, which is the asymptotic 
expected position of the next page referenced. This is known as the library problem. 

In this context the algorithm r (y) = l, l ^ j ^ n , known as the "move to the 
front" algorithm, has been studied by several authors [5, 8, 11, 12, 13]. McCabe [13] 
found an expression for the cost and for its variance. Hendricks [8] gives the station-
ary distribution of arrangements of pages in the store and Burville and Kingman [5] 
show that the cost is less than 2m — 1, where m is the cost if the reference distribution 
is known and the pages arranged optimally. Letac [12] considers the extension of 
this system in an infinite set of storage positions. Hendricks [9] gives stationary 
distributions for the algorithms t(j)=k, 

McCabe [13] suggested that the algorithm t(j)=j—\, t ( l ) = l , the 
'transposition' algorithm, would have a cost less than that of the move to the front 
algorithm. Rivest [14] gives the stationary distribution of the transposition algorithm 
and shows that the cost of the transposition is always less than or equal to the cost 
of move to the front. He suggested that transposition is optimal for all reference 
distributions and supports this with simulation results. Thomas [15] proves that 
if such an optimal algorithm exists, it must be the transposition. 

Returning to the-specific paging algorithm setting with, two levels of memory, 
we take the first level to have a , capacity of M pages and the second level to have 
capacity N—M pages. The page frames in the first level are numbered 1 to M and 
those in the second level M + 1 to n. We can only consider paging algorithms of 
form T(Z')^M, i > M . ' 

To minimize the number of page faults we take the following cost structure. 
A cost of 1 is incurred whenever a 'page in any of the positions M+1 to N is ref-
erenced. The cost is 0 otherwise. From among the possible paging algorithms, the 
closest to the transposition algorithm is the paging algorithm 'CLIMB' for which 

T(J) = 

M, J > M 

j-1, 2-S j SM 
1, j = 1 

Franaszek and Wagner [6] suggest that CLIMB is the optimal self-organizing paging 
algorithm for all reference distributions. 

The purpose of this paper is to provide supporting analytical evidence for these 
suggestions by showing that in the special case of any reference distribution of 
form pi = ka,p2 =...=/>„=«, where pt is the reference probability of page / , , 
transposition and CLIMB are indeed optimal for their respective cost functions. 

1. Optimality for the special case of library problem 

The intuitive justification for self-organizing algorithms is that when a page 
is referenced its posterior reference probability will increase. Since it. is clear that 
it is optimal to have the pages with higher probability in the first positions, it 
follows that when a page has been referenced it should be moved forward. In this 
way the pages which are referenced most will tend to be moved into the first positions. 

Because of this we restrict attention to algorithms for which T 1 = 7 = « , 
and initially, we will consider only 'forward moving' algorithms, that is T( . / )</ , 
1 ̂ j ^ n . (The results can easily be.extended to . t (y) —j, as will be indicated later.) 
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With the reference distribution p1=ka,p2 = ...=p„=a, pages I2 , . . . , / „ have 
the same probability of reference and hence are equivalent as far as the self-organis-
ing system is concerned, and it only has n different states, depending on the position 
of page I1 . Any algorithm x then gives rise to a Markov chain with n states, state 
i corresponding to being in the z',h position. Let Pz be the one step transition 
matrix for this algorithm, whose elements pjj are the probabilities that referencing 
one page and applying T changes the systém from state i to state - / The limiting 
"steady-state" probabilities for each state under x are ..., x'„) where 
n'=nTPr, provided this exists. Thus the average expected position of the next 
page referenced is 

" i l 
' a à n l [ 2 n (« + l) + i(a- 4 

We will show that the transposition algorithm, which we denote as T, where 
r ( l ) = l, T(j)=j— 1, minimises this expected position among all algo-
rithms t , where x(j)<j, and t(1) = 1. 

For any algorithm x of «4-1 positions, define an algorithm Dx on n positions by 

Z)T(0 = { J 

r ( i + l ) - l if 
if 

T ( I + 1 ) ^ 1 , 

T(i+1) = 1. 

As an example, suppose x is defined on four positions with r ( l ) = 1, t (2 )= 1, t(3) = 
T ( 4 ) = 3 . If the probability of referencing J1 is ka and of referencing the others is a„ 
then 

Pz = 

ka + a 
ka 
ka 
0 

2 a 
2 a 
0 
0 

0 0 
a 0 

2 a a 
ka. 3a, 

The corresponding algorithm Dx on 3 positions satisfied Dx(\)=\, Z ) T ( 2 ) = 1,. 

Z ) T ( 3 ) = 2 , and if the probabilities of referencing 7 1 ; /£, 7 3 are ka', a', a' respectively^ 
then 

ka' + a' a' 0~ ' 
ka' a' a' 
0 ka' 2a' 

pDz __ 

It can be shown (Appendix 1) that 

7TT = ( l -7ri)K?-l , i = 2, ..., n + 1 , ... (1> 

Lemma 1. For any forward moving algorithm x on n positions with px = ka, 

if k s l, 

(ii) k ^ - ^ ^ k ' - ' if N 1 . 

(2> 

(3> 
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Proof. Appendix. 

Lemma 2. With the conditions of lemma 1, n î ^ n } , l ^ i ^ n . 

• Proof. Appendix. 

Theorem 1. For any reference distribution on pages Ix , . . . , l n of the form 
j>l=ka, pz=...=p„=a, then amongst all algorithms t of the form r ( l ) = 1 , i(/)</, 
the transposition algorithm minimises the expected position of the next page 
referenced. 

Proof. We proceed by induction on the number of positions. The result is 
t rue if there are only two positions, as T is the only forward moving algorithm. 
So suppose the theorem is true for «-positions and consider a forward moving algo-
r i thm on n + l positions. The expected position under algorithm x is 

1 n+l 
T ( n + l ) ( n + 2 ) a + a ( f c - l ) 2 

Thus we want to show 

and 

n+l n+l 
TT 2 H ^ 2 if fc ^ 1 

¡=1 i= 1 

n + l n + l 
TT 2 ™J s 2 ^ k = 1 

¡=1 i=l 

fo r any algorithm x. Using (1) we have 

"2 W = ¿(1 - r c i K ^ i = 7Ti+(i -ni) 2 *?'+(! - * D 2 
i= 1 ¡=2 1=1 i=l 

= l iTT? ' . . (4) 
i = 1 

n n 
Assume k s 1, then by the induction hypothesis 2 ' K ? T — 2 i n ? T ' since DT 

i = l ¡=1 
is in fact transportation on «—1 items. Also from lemma 2, Hence the 
induction is completed. 

2. Optimal paging algorithm for the special case 

We can now use these results to prove the optimality of CLIMB as a paging 
algorithm. We consider a 2-level memory with M page frames in level 1 and n—M 
page frames in level 2. We denote the algorithm CLIMB by C. 

Lemma 3. n^nj, L S / ^ n , for all x of form T(1) = 1, T(I)</ , 2 ^ / ^ M ; 
7 i ( i ) = M , ; M < « . 

Proof. Appendix 4. 
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Theorem 2. For any reference distribution p^ka, p2= ...=pn=a, with M 
page frames in first-level memory, M<w, the algorithm CLIMB asymptotically 
minimizes the number of paging faults among all algorithms of form r ( l ) = l, 

Proof. We use induction on n. If n=2, then independent of whether M = 1 
or 2, CLIMB is the only policy in the class we are dealing with. Moreover, for 
any n, if M= 1, then again CLIMB is the only possible policy. Assume the results 
holds for n positions, and look at the case with n + 1 positions and first level memory 
of M+1 items, M=> 1. For any algorithm T in this class, Dx is an algorithm on 
n items with a first level memory of M items. The expected paging cost using algo-
rithm r is 

M+l n+l n+l 

2 n\(n-M)a+ 2 nJ(n-M+k-l)a =(n-M)a+(k-l)a 2 
¡ = 1 I= AI + 2 i-M+2 

Hence we need to show that 

By (1) 

n + l n + l 

2 ^ 2 i=M+2 i=M + 2 

"2 7Zj = (\~7Zl) 2 
i=M + 2 i=M +1 

The induction hypothesis implies that 2 71 fC — 2 n?V' a r | d lemma 3 gives 
i = M +1 i=M +1 

n + l n + l 
jtf^TTi, so 2 2 

i = M + l i=M + 2 

Other algorithms. Two other paging algorithms which can be run in a self 
organizing manner are [6] namely: 

Least Recently Used — where the page which is moved from first-level memory 
is the one least recently referenced. This corresponds to an algorithm t ( j ' ) = 1, 
1 =jSn, which is forward moving and hence inferior to CLIMB at least for this 
reference distribution. 

First In, First Out — where the one to leave is the one which arrived first, 
of those presently in the first level. This is an algorithm where 

T ( / ) = 1 , i=l,...,M, T ( J ) = 1 , 

This algorithm does not seem to be covered by the theorem. However, all the above 
results can be extended to include the cases where x(7)—7- The difficulty is that 
one can then have algorithms which give rise to a Markov chain in which it is not 
possible to get from some states to others. Thus the 'steady state' probabilities 
depend on the initial ordering of the pages. However, if we assume that the initial 
ordering is equally likely to be any of the possible orderings, the above results 
still hold. This is because any set of connected states corresponds to the page with 
reference probability ka being in a set of consecutive positions, and an overall 
transposition algorithm is better than one which is a transposition algorithm on 
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each set individually. Thus Theorems 1 and 2 can be extended to allow algorithms 
where 

A P P E N D I X 1. Proof of 7RF=(1 — n^nfl^, i=2, ..., n+1. 
For a forward moving T, let S(/|T)— |{r | r>/ , R(/-)̂ /'}|, where \A\ denotes 

the cardinality of the set A. Let 

r(«|T) = {r|r > /7 t ( r ) = i}. 

The / + l l h component of the equation nz—n^Pz then reads 

*f+i = (fca 2 N ; ) + 7ti+1(l-kfl-flS(I+l |T)) + 7rfflS(I|T), IA= 1. (1.1) rem+i|o 

This follows because as z is forward moving a page will only move if it is referenced 
or if the referenced page moves from behind it to in front of it. Thus 7X is in the 
i'+ l 'h position, because either it was in the r'h position previously and was referenced, 
where z ( r ) = i + l , or it was in the / +1 t h position and the page referenced did not 
move it, or was in the zth position and the page referenced moved in front of it. 
Thus 1.1 becomes 

S(i\x)ni+ JTF+1(FC+S(/+L|T))-K 2 TF- (1.2) 
rer(i+i|t) 

Applying the same procedure to the z'lh component of n D = n D z P D \ when the 
probabilities of referencing the pages are (ka', a', ..., a') gives 

S(i-UDz)nfc1 = nft(k+S(ilDr))-k 2 ' — 2- (1.3) 
r€r(i|Dt) 

By the definition of D it is obvious that 

r(i|/>x) = 0'-I |j€7*Ci + I | T ) } , S(i\Dx) = 5 ( i + l | z ) , i = 2, ..., n. (1.4) 

Thus if we identified nflj^ with nj, equations 1.2 and 1.3 would be the same. 
Consider 1.2 for the case i—n. The right hand side of the equation can only 

contain terms in nT
n+1 since z is forward moving and so T ( « + l | z ) is empty, while 

S(«|z) is 1. We thus have a linear equation nz„=Knnl+1 for some constant Kn. 
Since 1.3 is identical with 1.2 except that n f l 1 replaces n] throughout, in the corre-
sponding case it becomes n^lx=K„n%x. 

Now consider 1.2 with i=n — 1. The right hand side can now only contain 
terms in Til a n d nz

n+1. We can substitute K„n„+1 for nT„ and so obtain another linear 
equation n'n_1=K„_ ] TT„+1, for some Kn_x . The same argument implies that 1.3 
will give N°I2=K„_1N°Z. Repeating the procedure gives 

Thus 

and 

Ki-l ni _ v ; , 
~ —T~ - 1 ~

 2 > "n "n + 1 
(1.5) 

i = l \i=2 J 



On optimal performance in self-organizing paging algorithms 83' 

s o 7Ii+i = (l ~ a n d hence 

rii =(l-7rD7T?_1, i = 2, ..., n+l. (1,6) 

A p p e n d i x 2. Proof of Lemma 1 . 

Proof. Proceed by induction on n. The result is true when n=2 for the only 
algorithm satisfying the requirements is the transposition algorithm T where 7X1) = 
= 7(2) = 1, and n i l n l = a . Assume the bounds hold for forward moving algo-
rithms on n items, and look at x, a forward moving algorithm o n - n + l items. Since 
Dx is a forward moving algorithm on n items, (1) gives 

nj __ 0 —nl)nfll nP_! 
( l - ^ i ) ^ 

and so, because of the induction hypothesis, 

i — 2, ..., n (2.1:) 

k s i — - s k"-«'-« = i f f c a l , i = 2, ..., n. (2.2) 
K+1 . 

nr 

Thus we only have to prove that k s ^ k". 
7tn +1 

Consider the first component of the equation nT=nTP. Since 7(1 |T) is the 
set of positions that are mapped on the first position by x, page Ix can only be in 
the first position if it was in one of the positions of 7(1 |x) and was referenced, or 
if it was in the first position and the page referenced was not in the set T(l|x). 
Then 

n{=(ka Z 0 + Tri( l-« |7(l |x) | ) (2.3) 
r€r(Ht) 

where |7(1|t)| denotes the number of positions in the set {j|x(j') = 1, j > 1}. Thus 

* , 2 *zrK+i-If k^l, (2.2) already gives 
^i+i |7(l |x)| remit) K+\ 

nT 

^ k r + 1 _ 2 . Thus kn^ —— gfc for k & l . The induction is complete and a similar 
<+x 

proof works for k < l . 

A p p e n d i x 3. Proof of Lemma 2. 

Proof Assume A:Si (the coresponding result for k < 1 follows similarly), 
and assume that n [ ^ n j for algorithms acting on n positions. The result is trivially 
true for n = 2, and so we proceed by induction. For « + 1 positions, using (2.3) 
and (1) gives 

Ki = (fc 2 7 iW(i |T) | = (k 2 ^ : i ( i - ^ ) ) / | 7 ( i | x ) | . (3.1) 

By the inductive hypothesis, so 

Tri ^ a7rfT(l-7ri). (3.2) 
n? 

Rivest's result [4] is that —Y=k"~1, so n\=kn\, while (1) gives n\=7t?T(l — ri[). 

6* 
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Thus 
nI = ki$T(l-n[). C3.3) 

Thus we have 
* R 

1 - n J " l - n j 
and so 

^ ^ N L ( 3 . 4 ) 

For itj, i '=2, (1) gives 

nj = T t f J . d - n i ) s ^ ( 1 -Ki ) = x r r ^ t ) • (3-5) 

So it is sufficient to show that 

l - j i f ~ 
Writing TTj—/rf7ri+x as before, we get 

= (l + 2 • 
Thus 

• + i ( - ) l + 

i-*i= 2 n = ^+1M+ 2 K\ = ~ir (3-6> 

i=l 
n 

l + m a x Ki 
^ —N • (3-7) 

l+/c+ m a x £ K, 
i=2 

The inequality follows since (3.6) is a maximum when is as small as it can be, 
which is k f rom Lemma 1, and the sum of the rest of the Kt are as large as they 
can be. 

Using the inequalities of Lemma 1 

l + m a x 2 1 + k " ~ l 

1=2 ¡=2 

1 + fc+max 2K; 1 +fc + 2 ki • kn + k2-k-1 
¡=2 i=2 

k" — 1 
From Rivest's result ( 1 ~ 7 r i ) = . ^ n + 1 _ 1 , s o w e have (1 — rc^-M1 — JT[), since 

k" — l k(k" — l) " for k positive. This completes the induction 
fc".+ /c2 —fc — 1 ~(kn+1-l) 

APPENDIX 4 . Proof of Lemma 3 . 

Proof. The lemma is trivially true for n—2. Assume that it is true for up to 
n positions, and consider C and another such algorithm t on n + 1 positions. Since 
C acts as the transposition algorithm T, on the first M+1 positions, it follows that 
n%=kn$ just as nf=knZ. Thus ( 3 . 2 ) , ( 3 . 3 ) , ( 3 . 4 ) follow as in Appendix 3 , replacing 
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T by C, giving jriS7tf. For i=2, ...,n-\-\, we have 

nt = nPlAl-nl) 711 ^ (1 -*!) 
1 — nz 

It is sufficient to show As C is a forward moving algorithm the in-
1 — 71 x 

duction of theorem 1 gives n ^ n ^ and so 
1 ^ 1 

l-nl - 1 — Trf ' 
So 

< < b-
l-7tf = l-7t{~ 

Abstract 

A brief survey is given of developments in the study of self organizing paging algorithms and 
the associated library problem. It has been conjectured that two related algorithms, transposition 
and climb, are optimal in these fields and we establish this optimality for a specific distribution 
of page references. 
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