
Dominant schedules of a steady job-flow pair* 

B y J . TANKO 

A specific approach to some non-finite deterministic scheduling problems is 
the scheduling of a steady job-flow pair model. Its non-preemptive scheduling prob-
lem was discussed earlier [4]. The more general preemptive scheduling is discussed 
below. A very simple scheduling discipline leads to the dominant set of the so-
called consistent economical schedules (CESs). The proof of dominance is the main 
goal of this article. An algorithm to evaluate the dominant schedules and choose 
an optimal one is given as well. 

1. Introduction 

In an earlier article [4] we defined the general scheduling model of steady job-
flow pairs as a new approach to some non-finite deterministic scheduling problems. 
There we referred to the study [2] and to the dissertation [3] of the author dealing 
with this problem and to other works dealing with scheduling problems related 
to our problem. Some practical cases the model may be applicable in are men-
tioned there. 

Some statements below bear some resemblance to those of non-preemptive 
scheduling [4] but, for example the cardinal of the dominant set, is not bounded 
as in the non-preemptive case. The task of determining the optimal schedule under 
the restriction of non-preemption is simpler than without this restriction. In a non-
preemptive case the dominant set of the so-called consistent natural schedules have 
six elements maximum. These elements can be evaluated at once, e.g., by the method 
of reduction [4]. The general problem of determining or producing an optimal 
schedule (preemptive if necessary) for any steady job-flow pair is not completely 
solved until now. 

We reduce below the set of feasible schedules to a dominant set of consistent 
economical schedules containing optimal schedules and give an algorithm to choose 
an optimal schedule by evaluation of the whole set if it is finite. 

* This article reports on some results of a study of the author supported by the Computer and 
Automation Institute of the Hungarian Academy of Sciences. 
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2. Definitions 

The scheduling problem of steady job-flow pairs is to schedule three pro-
cessors 3?=(PA, PB1, PB2) to service, without conflicts, pairs Q=(Q(1), Q[2)) of 
steady job-flows Q(i>= {Cu, 7=1, 2, ...} consisting of task-pairs Cij—(Aij, B^) 
with service demands fj; and 9f on processor PA and PBh respectively. The order 
of servicing the tasks is strictly serial within job-flows but it is not restricted among 
job-flows. Conflicts might only be on the processor PA and the efficiency of a schedul-
ing R is measured by the utilization of the processor PA. Define P¿-utilization of 
a section from time t1 to time t2 of a scheduling R by /.(t1, t2)/(t2 — h) with PA-usage 
X(tlt t2) as the sum of activity durations of PA in the while from tt to / , . Let X(t) — 
=A(0, /). The efficiency of a scheduling R is defined by the limit 

y = y(R) = ton M . (1) 
r-̂ oo J 

The efficiency of any scheduling cannot be greater than 1 or the sum y(1 '+)i(2) of 
the PA -utilizations of the job-flows Q(1> and Q(2) which are given by y(i) = ^/T;, 
i = 1,2. We use the notations 

= + ¿ = 1.2, tl = h+>l2, 3 = S 1 + 3 2 . 
The scheduling procedure is a decision process determining for all moment 

i ^ O and state of processors and job-flows the way of continuation of the servicing 
process. The plan or result of a scheduling procedure is a schedule R as an ordered 
set of situations a. The situation a characterises the state of processors, the state 
of demand cycles under service, if any, of both job-flows and the duration of these 
states in a given phase of the scheduling. 

Two components of a are the functions /?(i)(0> ¿=1,2 , / ^ 0 , the value of 
/3(i)(i) being the demand not served yet from the demand cycle started but not 
finished (active), if it exists, of the job-flow Q(i\ and 0 otherwise. 

A schedule is consistent if the scheduling decision is the same when the situa-
tion a has the same value. A schedule is tight if processor is never idle when demand 
it could serve exists. A schedule is non-preemptive if the service of every task finishes 
without breaks after its beginning. The specific class of non-preemptive schedules 
is discussed in [4]. Here now we allow the service of a task to be preempted and 
resumed later on the same processor. 

The instance of a scheduling problem is fully determined by the values 
Q=(t]1; SiJ rj2; 32) of the service demands of tasks type A1, B1, A2, B2, respec-
tively. rjy, t]2, 92 are called parameters and the quaternaries Q are called con-
figurations. The non-negative sixteenth 2. of the four-dimensional Cartesian space 
constitutes the configuration space. The goal of the study of the model defined is 
to find a method for choosing a schedule R* for every configuration Q£2. for which 
y(R*) exists and has the maximum value among all the feasible schedules. This 
schedule is called an optimal schedule. Simple method for finding optimal schedule 
for all Q£J2 i.e. an optimal scheduling strategy is not found yet. 

Two schedules R and R' are essentially-the-same and denoted by R % R' if 
they are congruent after some finite initial sections of them. y(R) = y(R') if R^tR'. 
The schedule R' dominates the schedule R if for the efficiency values y(R') and y(R) 
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defined by (1) the relation y(R')^y(R) is true. The set Si' of schedules is a dominant 
set if for every feasible schedule R there exists an R'£0t' dominating it. 

Looking for an optimal schedule the investigation of a dominant set 3k' is 
enough for. We obtain a dominant set of schedules by means of the concept of 
the dominant decision. 

The scheduling decision s' dominates s in a situation a if the minimal next 
following cycle-finishes of both job-flows are not later by s' than by s. A decision 
s is economical if decision s' dominating it does not exist (see Fig. 2 below). A schedule 
R is an economical schedule (ES) if the scheduling decisions in its every situation are 
economical. Let 3k(Q) denote the class of all economical schedules for the con-
figuration Let 3A = IJ 0t(Q). We will show that 3k is a dominant set of 
schedules. 

3. Economical schedules 

The importance of the economical schedules (ESs) lies in. their dominance 
which we show below. , _ 

Theorem 1. The class of economical schedules constitutes a dominant set. 

Proof. Let R be any feasible schedule having scheduling decisions not economical.. 
Let j be a not economical decision in the situation a of R. There exists an economical 
decision s' in a dominating j because s would be economical decision otherwise. 
By exchanging for s' both the next following cycle-ends could come forward and 
this eventually makes possible to anticipate all cycle-ends. This transformation 
does not diminish the function /.(/) and, consequently, y in (1). The new schedule 
R' obtained by this transformation dominates R as a result. Starting from t = 0 
and initial situation <J = G0, we can construct a dominating ES R' for any feasible 
schedule R. This was to be proven. • 

The class 3k is a true part of the set of all feasible schedules but it can be very 
big to choose an optimal schedule by direct evaluations. To show this and to look 
for further reduction of the dominant set we investigate the characteristics of the ESs. 

It is easy to be seen that the economical decision is unique in all situations a 
except an enumerable set of situations for every ES. The exceptional situations 
are called critical situations. The economical decisions made in this situations are 
defined as critical decisions. The initial situation o0 of every schedule and the initial 
decision Si, i= 1, 2, for servicing the task Aa first, are always critical but we mean 
by first critical situation of an ES the next one if it exists. Fig. 1 shows the types 
of critical situations and the possible alternative critical decisions. These and their 
conditions are the following: 

Type Decisions Conditions 

s1, s2 r > ( 0 = /? (2 )(0 = 0 
s0' J5(0(O = 0, 93_ - i - ^ ' H t ) ¿ = 1,2 

Fig. 2 illustrates the dominance of scheduling decisions. The graphs (a) and 
(b) illustrate that the idleness of a processor cannot be a dominating decision if 
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•demand waiting for service does exist. The graphs (c)—(d) show that the decisions 
si causing preemption for not a complete service of the preempting task are not 
dominant as well. The graph (e) shows the non-dominance of the preemption of 
a preempting task. 

It follows that the ESs are tight, usually preemptive schedules but have no 
superfluous preemptions. Only cycle-ends /] can be critical situations and they 
really are if the processor PA is busy or demanded simultaneously by the other 
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job-flow. Preemption can only occur in critical situations and every critical decision 
causes a delay of the service of the job-flow not preferred by the decision. Delay 
is not caused by decisions other than critical. Between critical situations the sections 
of any ES are uniquely determined by the initial situation and decision. These 
sections are, therefore, called determined sections. The infinite section starting with 
the last critical situation if it exists, is the last determined section. 

All ESs start with the service of the task An without preemption in the interval 
(0, t]i) in accordance with the initial decision st, / = 1 , 2 . Accordingly, the class 
31 bursts into two subclasses £%(i), / = 1 , 2, consisting of ESs with the initial deci-
sions Si, / = 1 , 2 , respectively. The initial decision s t uniquely determines the first 
determined section together with the closing critical situation — the first — if it 
exists. It follows that all elements of have the same first determined sections 
and critical situations if the latters exist at all. Let T[ be the length of the first 
determined section. There is no preemption and delay on the first determined sec-
tion except the initial delay of 2 ( 3 _ , ) in the interval (0, r^). Use the notation cr(i) 

for the situation Of schedules R£0t ( i ) in the point 
The concepts of critical situation and decision were introduced for the natural 

schedules defined in [4] as well. The types of critical situations were <r0 and o-i 0, 
/ = 1 , 2 , and the conditions for a0 were the same as here. The conditions of a i 0 
there and the Fig. 1 show that a situation type <t ; i in ESs is always preceded by 
a situation type <T3_'i;0 being critical situation of a natural schedule but not of an 
economical one. This simultaneousness of er3_; o and <7г>1 has a particular importance 
at the first determined sections playing a central role in the discussion of ECs 
(see Theorem 2). Out of types c 0 , cri 0 and <тг>1 the natural and economical deci-
sions are the same for every situation and cause no preemptions or delays. The 
first determined sections for the ESs are, therefore, almost the same as for the 
natural schedules. The differences are only in the last subsections of the ESs starting 
with (T3_i о and ending with a i f l . The processor PA is busy throughout the subsec-
tions. If the first critical situation does not exist, the set ?A(i) consists of a single 
schedule Ri0 being natural schedule, simultaneously. 

The connection between the first critical situations of the natural and economical 
schedules allow us to simply prove an important theorem concerning typical situa-
tions by reference. Typical situations of an ES are defined as its critical situations 
and the ^¡-situations which are not <r(i) situations directly following critical situations 
[4]. Pi-situation is a situation in which an Л ¡-task finishes and an /i3_;-task starts 
at the same moment. Let a* denote the first typical situation of the ESs of & ( i>(Q) 
if it exists. The possible first typical situations are illustrated in Fig. 3; We also use 
the wording characteristic situations for the critical and every ^¡-situations. 

Theorem 2. In one and the same cases all elements of &(a)(Q) have a first typical 
situation a* i f f the simultaneous inequalities 

have a solution, where coa — (Ba, Aa) are integers and Aa=Baza — AaT3_a, a=l,2. 
When (2) has no solution, 3?(a>(Q) consists of the single (non-preemptive and 

consistent) schedule Ra0. This occurs in the cases 

O s ^ . s i / , c o a ^ ( 1,0) (2) 

t] = 0, and Э2
 are rationally independent (3) 
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and 
T3_a = 0. (4) 

When (2) has a solution, the type (and place) of o* is determined by the error 
A* of the least solution oj* = (B*, A*) of (2) according to the table 

* Conditions 

Pa ¿t = 0 < Va 

Ps — a à*a = n >>/„, o 
00 A a = na or K=n^t!a b u t V « = 0 

1 la < < 1 
0 < At < r,a 

Proof The assertions of the theorem follow from Theorem 4 of the article [4] 
and the comments made above. • 

The problem of finding the least solution of (2) is a coincidence problem [2]. 
If ff(a) is not a critical situation, it is always a /?„-situation. It follows that ¡ia 

returns periodically and a'a does not exist if a*=Pa. If ot = Ps- a then the first 
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Fig. 4 
The cyclic graph C0 of the first determined sections 

determined section of 9)}a)(Q) from its ¡}3_a-situation on is congruent with the first 
determined section of &(3~a>(Q) from its <7(3~a)=/?3_0-situation on. 

The assertions of Theorem 2 are. well illustrated by the cyclical graph G0 of 
Fig. 4 showing the possible characteristic situations of the first determined sections 
of ESs. The vertices of the graph represent situations and the (directed) arcs succes-
sions or identities. The arcs are labeled by critical decisions after critical situations 
and by conditions for J * and the parameters after other vertices. The vertices framed 
by circles or squares can be the situations of âë(1> and âi (2), respectively, until the 
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The partitioning of the graph G0 

first typical situations. The graph G0 
represents all the possible cases for the 
whole configuration space 2. For every 
Q€2 only one arc going from a not 
critical situation is right. The graph can 
be partitioned into four subgraphs by 
Fig. 5. On the graphs the results of 
the decisions in the first critical situa-
tions are drawn by broken arcs. 

• Before we investigate further 
characteristic situations of the ESs, we 
show an example by Fig. 6. The part 
(a) shows the Gantt-chart of an 
R i M ^ i Q ) , the part (b) is the graph 
G0(Q) and the part (c) illustrates 
the graph G(Q) of the ESs of 
m[Q). 

EXAMPLE. Q=(4.5; 3.5; 1; 2), T1 = 8; T2=3, >? = 5.5, 9 = 5.5. 

a>* = (1,. 1), /d? = 5£(4.5; 5.5) and so = 

CL>2 = ( 1 , 0), A%=36(1; 5.5) and so <T% = a 2 1 . 

It is seen that always the characteristic situation a(3~a)€G0 occurs after the 
critical decision 50 in a critical situation type aa l . This means that new characteristic 
situation value can only be generated by decision in a situation type <x; x . The type 
of the generated critical situation can be either of ajyl, j= 1, 2, <r0 and fij, j= 1, 2. 
The situations except type are not new and lead back into the subgraph G0. 
But the generated critical situation value must be new if its type is ajA, j= 1, 2. 
This is the consequence of the fact that determined sections are determined by their 
closing critical situations as well. Returning of an earlier a J A value after would 
contradict this fact. 

All the possibilities of the ES elements R£3t can well be illustrated by G0 
and the further critical situations according to the graph G on Fig. 7. The vertices 
£7j j all illustrate different values of critical situations of type i and c 2 j l independ-
ently of each other. The graph G is composed from five subgraphs by Fig. 7/b. 
(7[a), a= 1,2, are the branches of G. The number of different vertices of G is in-
finite as we show below. 

For any given configuration 062, the elements R£.9t{Q) can similarly be illus-
trated by a graph G(Q) which is the subgraph of G (see Fig. 6/c). The dotted arcs 
on Fig. 7/a, b may be present only of a branch of G(Q) is finite or missing. From 
the arcs going out from G^a) at most one can be present in any G(Q). The number 
of vertices of G(Q) can be infinite. Examples for infinity are the configurations with 

i]a93_a—0, and T3_„ rationally independent (5) 

(see Fig. 8/b, c). The general conditions of the infinite vertices of G(Q) is an open 
question. Perhaps, the above conditions are necessary. 
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a™ , a<2> 

(b) Graphs G0(Q) 

5o 
I 

(c)' Graph G(Q) 
Fig. 6 

Graphical illustrations of the ESs for the configuration Q = (4.5; 3.5; 1; 2) 

For any every R£l%(Q) can well be illustrated by a subgraph G(R) o f 
G(Q). The configurations Q£2. and the schedules R£M(Q) can be classified e.g. 
by some significant characteristics of their graphs as well. Such characteristics can 
be the existence and number (one or two) of the branches G[a)(R), the finiteness, 
the number of loops in G(R), etc. We will use some classifications below. 

Let R£0l(Q) be an ES and G(R) the graph representing it. G(R) may have 
finite or infinite vertices. Let us call the tour of R the passage along the arcs and 
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Fig- 7 
The graph G of the elements of 3A and its partitions 

vertices of G(R) in accordance with all the characteristic situations of R. The passage 
of R may be finite ending in a vertex Ri0 or infinite with finite or infinite number 
of loops. A simple loop in any graph is a loop having no other loops as its part. 
For any loop in G(Q) there is at least one path from the vertex <x0 to the loop with-
out any other loop. The first vertex of the loop reached by the path from cr0 to the 
loop is called a root of the loop. 

For some reasons it may be necessary to allow demands of tasks to be zeros. 
The job-flow Q(l> is defective if one of t]i and is zero and is degenerate if both are 
zeros. For degenerate configurations (for which T j=0 or t 2 = 0 ) we can impose 
specific restrictions to better model practical cases in which demands of one job-
flow are negligible with respect to others. In such cases our methods could lead 
to optimal schedule not reasonable with regard to other optimal schedules. A re-
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Fig. 8 
Examples for CESs not periodic and having infinitely many different 

critical situation values 

striction may be the prohibition of servicing repeatedly the cycles of the same de-
generate job-flow alone [2, 3]. Such restrictions further complicate the discussion 
of the schedules. In degenerate cases the ESs are non-preemptive and are discussed 
in the course of non-preemptive scheduling of steady job-flow pairs [3]. 

4. Consistent economical schedules 

After the preparations made in the previous paragraph, we are near to be able 
to prove our most important assertion: the class of consistent economical schedules 
is a dominant set. 

An ES is a consistent economical schedule (CES) if its critical decisions are 
consistent: they are the same in every occurrence of the same critical situation 
values. Note that two situations of the same type, a i t l say, may well have different 
values by having different values of PM(T) or /?(2)(r), for instance. Let á?(g)cá?(Q) 
be the class of CESs for Q and 3k= U 

_ QtS 
The graphs G(R') of CESs have specific characteristics. It can only 

have one out-arc from any vertex except the vertex Rm, /=1 , 2, if it is in G(R'). 
Ri0 has no out-arc. Any vertex has only one in-arc except eventually the vertex a0 
and one more. a0 has no in-arc if Ri0 is in G(R') or G(R') is infinite. In case 
of a finite number of vertices and without Ri0, G(R') has exactly one simple loop 
with root ff0 if <T0 has an in-arc or with another root which has two in-arcs then. 
The CES R' is said constructed from this loop. For any simple loop of G{Q) there 
is at least one G{R') composed from the loop and a path leading from a0 to. the root 
of the loop. The tour of R' is the path from tr0 to the root and infinitely many rep-
etitions of the loop after. The efficiency of the CES so constructed is the PA-

7 Acta Cybernetica V/t 
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utilization of the constituent loop. This CES is periodic with periods represented 
by the loop. If G(Q) is infinite, let Ra„ denote the CES with a tour from aQ through 
<r(o) and vertices to the infinity without any loop. 

Theorem 3. The class Si of the consistent economical schedules is a dominant set. 

Proof. Let be any ES with efficiency y(R). We will show a CES R'e<% 
dominating R. The dominance follows if R is CES or is essentially-the-same as 
a CES R'. 

If the graph G(Q) does not have loops, all ESs are consistent and R may not 
be other as well. If the PA-utilizations of the simple loops of G(Q) have a maximum, 
the R' constructed from a simple loop with maximal ^-uti l izat ion will dominate 
every other ESs except eventually those which are essentially-the-same as Ri0 
or Rla>, i = l, 2. 

The only crucial G(Q) is that in which the PA -utilizations of simple loops 
have no maximum. But if the G(R)<zG(Q) has a simple loop with PA-utilization 
not less than y(J?), the CES R' constructed from this loop will dominate R. Thus 
the dominatedness of R with finite G(R) by CESs is proved. If G(R) is infinite 
but with a finite' number of simple loops, the tour of R cannot have a loop after 
a finite initial section and is essentially-the-same as an i?i oo. 

The only crucial G(R) is, therefore, that which has infinitely many simple loops 
without one having maximum PA -utilization. Whether such a G(R) does or does 
not exist is an open but irrelevant question now. The length of loops cannot be 
bounded in this case. The schedule R is composed from two kinds of simple loops 
represented by Fig. 9. 

A Pt "2,1 Pi 
1 I 2 » W///A 1 

» 
WWMM 

Fig. 9 
The two possibilities of simple loops 
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By definition (1) of y(R) we can choose a sequence Zt, Z2, ..., Zn, ... of initial 
sections of R which are ending with simple loops and for which 

where k(Z„) and t(Z„) are the -usage and length, respectively, of the section 
Zn. But 

t(£n) 

is the weighted mean of the PA -utilizations of the finite many simple loops composing 
Zn. Let AZlt AZ2, ... a sequence of simple loops carved out of Z1,Z2, . . . , respec-
tively, with maximal PA -utilizations. By assumptions 

y(z„) * y(Jz„) < y(R) 

and so the convergence y(AZ„)—y(R) is true. The sequence AZ1, A Z2, ... must 
have a subsequence with monotonically increasing length and PA -utilization because 
the contrary would lead to contradiction with the assumptions y(A Z„)-<-y(R) and 
no finite loop with y(AZ„)^y(R) exists. Let AZ1,AZ2, ... be this subsequence 
already. Clearly y(AZ„)->-y(R). Every AZ„ could be composed either from an ini-
tial section I'n of an i?i oo, i= 1, 2, and a section A'„ of bounded length or from an 
initial section Z<1} of Rlt„, an initial section Z(

n
2) of a section A™ and a sec-

tion A(
n
2> of bounded lengths, as in Fig. 9. Because of boundedness of sections 

A'„, A™ and A(
n
2) they do not influence the limit of y(AZ„) and 

lim y(AZn) = lim 
oo n-*oo 

allowing one of Z*1' and to be missing. In the sequence AZ1, AZ2, ... at least 
one of ZW and Zj,2> tends to Rly„ or R2,„, respectively. y(AZ„) cannot be greater 
in limit than the maximum of limits of yCZ^) and y(X£2)). Therefore, the maximum 
of y(-/?!,«) and y(R2,~) will not be less than y(R) and the corresponding CES /J1)CO 
dominates R. This concludes our proof. • 

The set of CESs can have fairly many — if not infinite — elements in 
general. Methods for reducing further the dominant set or a simple algorithm to 
choose an optimal schedule from 01 (Q) are not known. A direct method to determine 
the optimal schedule is to survey the whole set 01 and compare the efficiencies of 
the elements. In some cases this is a feasible arrangement. To judge better the 
amount of work on this way we can use the number NL(Q) of simple loops in G(Q) 
and the number N(Q) of elements of 52(g). To determine these we need the graph 
6 ( 0 or at least some data of it. 

Let us define the following data (see Fig. 6 and Fig. 7 as illustration): 

n0 is the number of Ri0 vertices in G(Q) 
naJ is the number of vertices ajA of the branch G[a)(Q) ^ 

7* 
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for a — 1,2, j = 1, 2 

{1 if the last arc of G(a) leads to vertex <t0) 

0 otherwise ( 7 ) 

for a= 1,2 j = 0, 1, 2 and <r(0) = a0. 

Use the notations 
na = noi+na2> a = 1,2. (8) 

na is the number of vertices in the branch G{a) (g). All the data can be read from 
two schedule-sections I ( o ) , a =1 ,2 , constructed in the following way. For Z M 

schedule Q economically with critical decisions s(0)=so and s(aitl)=si, / = 1 , 2, 
until the first typical situation other than a i A occurs. This procedure is finite iff 
G(Q) is finite. From these two schedule-sections we can read the PA -usages 1(AZ) 
and lengths t(AI) of determined sections A I which are necessary to evaluate the 
CESs of Q. These two schedule-sections enable us to draw simply the graph G(Q) 
and determine the data (6)—(8). To illustrate this method, Fig. 12 below can be 
considered. The way to use the data to determine NL(Q) and N(Q) is stated by the 
following lemma. 

Lemma 1. The number NL of the simple loops of G(Q) and the number N of the 
elements of can be expressed as 

NL = ON + ¿10 + ¿12) («22 + ¿20 + ¿21) + ("12 + ¿10 + <$11) + (" 21 + ¿20 + ¿22) — ¿10 ¿20 (9) 

N = («11 + ¿12) (N2 + ¿20 + ¿21 + ¿22) + («22 + ¿21) («1 + ¿10 + ¿11 + ¿12) + 

+ ("12 + ¿10 + ¿LL) + («21 + ¿20 + ¿22) + «0 (10) 
where nj,naJ and 5aj are defined by (6)—(8). 

Proof. Consider Fig. 7 as illustration. We count the number of simple loops 
of the graph G(Q) and the number of different paths from tr0 to the loop without 
other loops. 

The number N[aa) of loops not leading out from the subgraph GM is the number 
of vertices <r3_ail plus one if the last arc of G(a) leads to the vertex tr(a). This gives 
Nkaa)=nar3..a + 'daa. The root <r(o) of these loops can be reached directly from a0 
or through <7(3_a) if arcs connect G ( 3 - a ) to <r(a). The number of the latter arcs is the 
number of vertices in G(3~a) plus one if the last arc of G(3~a) leads to o<a). This 
gives the number of paths from <r0 to as l+n3_a 3_a+53_a a and the number 
N(aa) of the CESs as Niaa)=(nat3_a+Saa)(\+n3_ai3_a'+53_a,a). Further loops arise 
from arcs leading from Gm to cr(2) and back from G(2i to om. The number of arcs 
leading from G(a) to CT(3-o) is the number of vertices o a l in the branch G^ plus 
one if the last arc of G(a) leads to o<3~a) as well. This gives the number N[0) of simple 
loops as N[0) = (nn+(512) (n22+¿21)- Any of these loops_can be reached directly 
through tr(1) or ff(21 giving the number of CESs as A f (0 )=2 +<512) (n22+<521). 
There are loops between a0 and G(o) if the last arc in G(a) leads to a0. Because the 
vertex cr0 is the component of the loop, one or other of the paths <70—cr(1) and 
a0—a-(2> is an arc of the loop and determine the possible loops. The arc cr0^a(a> 
is the part of only one loop if ¿ a 0 =l - The arc cr0—<7(3~0) is the part of loops 
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ff0—ff3_fl)3_0—<T(a)->cr0 the number of which is n 3 _ a : 3 _ a + d 3 _ a a . These 
give the number of loops =(1 +«з-< I,з- (,+¿з-a,a)¿ í lo• Each loop is the con-
stituent of exactly one CES and this fact gives the number N(a)=(l +n3_a 3_a + 
+ ¿3-0,<¿¿<.0-

Adding up the numbers for a = l and a = 2 , we have 

NL = + JV[22) + JV[°> + NP + JV[2) = 
= «12 + ¿11 + «21 + ¿22 + («11 + ¿12> («22 + ¿2l) + (1 + «11 + ¿12) ¿20 + (1 + «22 + ¿2l) ¿10 

and _ _ _ _ _ _ 
jV'=iV (11)+iV (a2) +N<-°> + N W +iV ( 2 )=(n1 2 + <5n) (1 + «22 + ¿21) + 

+ («21 + ¿ 2 2 ) (1 + «II+<512) + 2 («U 4- <512) (N 2 2 + <521) + (1+M U+<5 1 2)<5 2 0 + (1 + N 2 2 + <S21)<510. 

If G^(Q) contains the vertex RA0, the subgraph G^A) in Fig. 7/b has no out-arc 
and cannot take part in any cycle but represents a CES the path of which ends in 
vertex RA0. This means that the value N' obtained above must be corrected by 
adding n0 to the number of CESs generated by loops. The identity of the so ob-
tained expressions of NL and N'+n0 with (9) and (10) is obvious. . • 

For the example of Fig. 6 we get 

»11 = 1. «12 = 0, ¿10 = 0, <5U = 0, <512 = 1 

«21 = 0, «22 — 4, (520 - 1, ¿21 = ¿22 = 0. 

From these data the numbers are 

NL=U a n d N = 19. 

If G(Q) has no branches, i.e. nai=0, a=1, 2, / = 1 , 2, then the particular for-
mulae are 

NL(Q) = (¿10+¿12)(<520+¿21)+(S10+8U)+(S20+¿22) - ¿10 ¿20 S 2 (9') 

N(Q) = 2. (10') 

The relations can be proved simply by taking the possible values of n0 and 
every 3aJ. 

The CESs having the same simple loop as their constituent (period) are essen-
tially-the-same. The number of essentially different CESs is NL and 8%(Q) represents 
at most NL different efficiency values. 

Except the trivial cases of existence of a vertex RA0 in G0(Q) — which can only 
be in the defective cases (3) and (4) — the relations 

¿ ^ + ¿ ^ + ¿ „ 2 = 1. a = 1.2, no = 0 (11) 
are always true and the expressions (9) and (10) can be written in the simpler forms 

N l = («11+1 - ¿11) (»22 + 1 - ¿22)+(«12+1 - ¿12)+(«2i + 1 - ¿21) - ¿10 ¿20 (9") 
N = (nU + ¿12) («2 + 1) + («22 + ¿21)(«1 + 1) + («12+ 1 -¿1 2 ) +(«21+ 1 ¿21)• (10") 

The expressions (9) and (9") show how the number NL of the possible CESs 
representing different values of efficiency depends on the numbers naJ, a, j = 1 , 2 , 
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of the vertices in the branches of (7 (0 . NL is finite if all naj are finite and if nu=« 
but /ij,3_i, «a^i.i are finite and fls^/.s-i+^a-i.o+^s-M1^ (provided that this 
last case is possible for some configuration Q). 

For the sake of reference, we have to identify the elements of £%(Q). In view 
of evaluation, the identification of the simple loops is enough: We introduce a sym-
bolism for this purpose. 

We identify the vertices of the branches G{a),a= 1,2, by numbering them 
serially with 1, 2, . . . , na in the order of.occurrences in G{a). Let the vertex <r(a> have 
the serial number 0 and the vertex of G(Q) the last arc of G(a)(Q) leads to the serial 
number na+1. This last vertex can be either a0 or am or <r(2). The serial numbers 
of vertices of G(1) and G(2 ' of our example in Fig. 6 will be 0, 1, 2 and 0, 1,2, 3, 4, 5, 
respectively. The last number of G(1) represents the vertex,<r(2) and the last number 
of G(2) represents the vertex a 0 . Every simple loop is composed from one or two 
sections belonging to subgraphs G(1) and G(2), respectively. Every loop-section of 
G(a) starts with the vertex o-(o), goes through some further vertices of G'ia) if they 
exist, and finishes in a0, o(1> or.er(2). A loop-section of a given G(a>(Q) can be identi-
fied by the maximum of serial numbers of its vertices. The character of a loop-
section can well be given by a code (abc) constructed from the number " a " of the 
subgraph it belongs to, from the maximal serial number "b" of its vertices and 
from the code "c " of its last vertex by the coding: 

/ type (To <r(2) 

c-code 0 1 2 

The code (ac) identifies the shape of the loop-section which can be symbolized in 
the following way: 

N. C 
a N. 0 1 2- (T0^<T(a> 

1 e n t \ 
2 I r : ^ / 

The simple loops are composed from one or two sections directly. of by means of 
a section o0-~<r(1) or <70—<r(2> symbolized by \ and 

To identify a simple loop we can. use the ¿-codes of its component loop-
sectidns. The loop identified with (b1 b2) has vertices from G(1 ' and G.(2) with maximum 
serial number bx and b2, respectively. If a loop has no vertex from G^"', the com-
ponent ba is zero. 

The, elements R of Si can be characterized by the code of its simple, loop. 
The CESs Ra0 for degenerate configurations (3) and (4) will be characterized' by 
the code (00): The code (bxb2) of a CES is called its type. The code (¿^¿^represents 
an essentially-the-same class of Sk{Q), the number of which was counted in_the proof 
of Lemma 1. 

' Not every code (^¿>2) can represent an existing loop in G(Q). In Table 1 we 
marked by. sign + or .— that a loop of code (bxb2) composed from the existing 

1 
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loop-section pair ( 1 ^ ^ ) , (2b2c2) did or did not exist, respectively. The code (00) 
is possible if at least one vertex Ra0 6f G(Q) exists (and na =0, of course). In this 
case the only possible value of ba is 0. The other (¿>i62) entries of Table 1 for given 
(abc) codes can be easily made. We put sign — in every entries of rows with c, = 1 
and of columns with c2 = 2 except their first entries. In row ¿^ = 0 we put — in 
entries with heading c 2 = l and in column b2=0 we put — in entries with heading 
c1 = 2. If an entry with ci = c2 = 0 existed, we put — in it. In the remaining entries 
we put signs + . 

Table 1. The existing codes of simple loops-

b2 0 ... ¿>2 ••• n2 + l 

bi 

№ 0) 

0 №0) ( + ) 

C D * 

t 2 

0 
a 1 

t 2 

2 1 
[ f 

0 2 1 

+ 

+ 

- + 

Example of Fig. 6 

\ 
b2 0 1 2 3 4 5 

\ C2 
\ - 1 1 1 1 0 

b C \ 
0 _ e 
1 2 - e + + + + 
2 2 - e + + + + 

Table 1 says which loops have to be evaluated for determining the optimal 
one. The possibilities for some specific types of CESs are represented by Fig. 10/a. 

The set M(Q) always contains exactly two non-preemptive schedules R, a, 0> 
a= 1, 2, which are the two tight consistent natural schedules defined in [4]. These 
are the non-preemptive priority ^schedules, at the same time [2]. Two other remark -

' able elements of are the priority schedules i? f l j3_0, a= 1, 2. R a t 3 - a is defined 
as the CES in which the job-flow Q<a) has absolute priority against Q(3~"> which 
means that every task Aaj, j= 1, 2, . . . , is serviced by PA at the moment it is ready 
for service, independently of the state of PA. The priority schedules are schedules 
of great practical importance. With the help of Table 1 it is easy to determine the 
types (b'ib'2) of the priority schedules Ra0 and R0iS^a, a= 1,2, by their definitions. 

J?a>0 is determined by the restriction that no preemption is allowed and j ( 0 ) = j a . 
This means that Ra 0 = Ra0 and has type (00) if the vertex Ra0 exists. Otherwise, 

i=3 — a when ¿ 3 - „ = l , and c = 3—a when b'a=l, f>3_a=0, except if 
b'a=0, moreover. 

Ra,z-a is determined by the fact that any task type A3_a must and any task 
type Aa must not be preempted in conflicting situations <ri(1, ¿=1,2. This means 
that s (a a l ) = s a and •?(c3_ a i l)=J0 . The possibilities are illustrated by Fig. 10/b. 
If the vertex Ra0 exists, then Ra,z-a—Ra,o=Rao with type (00). Otherwise, b'a cf 
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r № 

R(10) 

M 
= 0 

S 

à 
Rw 

-^2,1 — -^2,0 

*<M>, (b > 1) 
I - I - - V 
I < 1 6 - 1 

I r J J 
¿11 = 1 

Ji<w, (b > 1) 

b-1 
* "n ••• t I 1 I J I 

£ _ i I 

-Kl,2 = ^1,0 = i?io ( c a s e s (3) a n d (4)) 

I 

Î 
' 1 = 1 11Z1Z 
î t , t _ _ Rl,2 — Rl.0 

-A-* — 

< 

/?lf2 = Rl,0 ^2,1 — Ri.O ~ -^1,2 — -^1,0 
~ i?l,0 ~ -^2,0 

_ J 

t - I- V 

! L f c T ^ D 
I I TL i i 
I t - Jt J 

¿ 1 0 = 1 

< 1 
J. i 4- — 

I I_JL 
¿12= 1 (a) «a > 0 

&1.0 ~ "^2,0 

I - . - -V 
I I < 1 
î î — 

-I Ï—L 
t t i . 

"12 > 0 

Rl,2 

N ^ 
I T-
I 

B l = 0, « ! = 0, c _ | ' I f — j I J _ 
« ¿ i o = l I L _t _ ± _ 

(10) ¿11 = 1 ' «12 > o 
(10) (60) 

J=0(00) 

Y I , »1, 

m 
«12 = 0, ¿12 = 1, 
«22 + ¿21 > 0 
(nib) 

r - 1 
1 " 2 

-"T*T*j 

(b) 

«12 = 0, ¿12 = 1 
«22 = 0, ¿20 = 1 
(«1 «2) 

r 
I 

I A 
«12 = 0, ¿10 = 1 
("lO) 

1 «2 

«12 = 0, ¿12 = 1 
«22 = 0, ¿22 = 1 
(Oils) 

10 
Special types R(t>ih) and types of Rlt 
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is the serial number of the first vertex type ff3_0il in the branch C{a), if it 
exists (wfl,3_„>0) and b'a=na+1 or b'a=0 otherwise (when n a , 3 _ o =0) . b'a=na+1 
if ¿o ,3- a = 0 or ¿ a , 3 _ a = l and «3_ a ,3_ a + 1 - ¿ s - o . s - ^ O . b'a=0 if <5a.3_a=l 
and n3- o ,3 - o +l-<53-o ,3- a =0- The value of b'3_a of R0y3_a is 0 when nai3_a+ 
+ 1 — 5 a . 3 _„>0, the serial number of the first vertex ¿ 3_ f l j l in the branch G{3_l i ), 
if it exists (n3_0 3_ac=~0) and « 3 _ a + l , otherwise, when n„ , 3 _ a +1 — <5Dj3_fl=0. 

In the completed Table 1 we can pick out the types of Ra>0 and i?a,3_a as follows. 
Ra o is represented by the sign + encounters first in counter-clockwise for a = 1 
and clockwise for a—2 in the left upper 2 x 2 subtable and RBi3-a is represented 
by the first + encounters on the border of the whole table counter-clockwise for 
a= 1 and clockwise for a=2 starting from the entry (00). If Table 1 consists only 
from one row then ^1,0 = ^1,2 = ^10 and if it consists only from one. column then 
R 2,0 = -^2,1 —-^20- -> 

Let &0(Q)= {R1I2, ^2,1} be the pair of priority schedules. This is a subset 
ofä(Q). If « ( ß ) = « 0 ( ß ) t h e n ^ 0 ( 6 ) is a dominant set. In this case RA,3-A=RA,0, 
a= 1,2. An example for this is the configuration ß = ( 1; 4; 2; 5) with RLY2(Q) 
optimal. If ^ ( 0 t ^ O ( 0 ) > the set ^ 0 ( ß ) is n o t necessarily dominant. Trivial 
examples for this are the configurations ß with $ ¡ < ^ - ¡ < 2 9 , - , / = 1 , 2 . For these 
configurations the CESs a r e optimal with efficiency 7 = 1. A non-
trivial example is the configuration ß = (4.5; 3.5; 1; 2) in Fig. 6 as we will see 
in the next paragraph. 

Though the priority schedules are not dominant, they are interesting on their 
own, because they are often used in practice and can be produced by simple rules. 
They are investigated in the study [2]. The evaluation of 2 and R21 is not a trivial 
task at all. The priority schedules were investigated also for the stochastic version 
of job-flow pairs [1, 5]. 

5. Evaluation of the CESs 

Though the cardinal of the dominant set 0t{Q) of the consistent economical 
schedules is not necessarily finite, we give an algorithm for the direct evaluation 
of the CESs. This is applicable only when ¿%(Q) is finite. iM(Q) is finite exactly 
then when the graph G(Q) is finite. For some cases the automatic application of 
the given algorithm can be superfluously complicate. Four such cases will be men-
tioned below as cases (i)—(iv). These cases contain the configurations we know 
as having G(Q) with infinite vertices. By general case non-defective configurations 
are meant. The special cases (i)—:(iv) are illustrated by Fig. 11. 

Case (i). Tj T2=0, degenerate configurations (see (4)). The CESs are the Ra 0, 
a= 1,2, and ya > 0=0. If the number of cycles of the same degenerate job-flow 
scheduled directly after each other is restricted, the maximal efficiency +y ( 2 ) 

can be achieved. 

Case (ii). /7 = 0, 3132>0. i?a>0, a= 1, 2, are the only CESs with y=0. Ra 0=Ra0 
and has no typical situations for the configurations (3). 

Case (iii). t j x 2 > 0 , ^ > 0 but ß is defective. If >/ a93_ a=0 then i?a 3__a has the 
maximum efficiency of y=y<3_0> (see Fig. 8). The shape of the graph G(Q) depends 
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Case (i). t lT2 = 0 

5 2 > 0 

Case (ii). n = 0, > 0 

< < ̂  
9. > 0 9 = 0 

< 4 
9 9 

irrational - rp rational 
9« 9o 

Case (iii). r1r2 > 0, rj > 0, = 0 

9 = 0 

I 

.Lt 

•l-r -, a* = O 
\_l -I = - f /2 y w V-i -i — '/2 
V - L - r ¿ î = o 

frf - l x « • 1. _i -i 

> 0, 92 = 0, -¡r— rational //j = 0, 9 , > 0 , solution o f ( * ) exists 
9-2 

Case (iv). % > 92 > 0, jj2 > 9i > 0 
t jJW(î) < 

1 
1 « 

1 

ßi ffi.i 
Sl 

i 
W Z M M T W R N 

"l.l ßs 02,1 

Fig. 11 
Trivial cases for optimal schedule 

So s i 

on the existence and relations of the least non-trivial non-negative integer solutions 
(A^*, X*) of the equations 

Aa = Xa9a—X3-aTs = l 0 
. l i i f a -

a = 1 , 2 

but this fact is irrelevant from the point of view of optimality. There is no solution 
o j ( * ) in cases (5). 

Case (iv). 0, / = 1 , 2 . The maximal efficiency of the CESs is y = 1 
and any R£St(Q) with decisions s (c^ if only j S ( 3 - i ) ( i ) — i s optimal. 
E.g. also the Ra 0, a—1,2, are optimal with ya ,o=l-

Before we give an algorithm for the general case, we show the evaluation of 
the CESs of the example configuration Q—(4.5; 3.5; 1; 2). 
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Pi Pz <T2,1 Pi 
m 

j i i 
AZ[» A Z^ AZ<*> A{V 

I 
I d ) 

P2 02,1/02,1 02,1 °2,1 00 1 

A[V dp A*> LU 
A? 

i_i u J 
J¿2) J I<2> A Z?> A Z<2> A I<2> 

1 1 
1(2) 

i f 

•^2,1 

(C) 

Pi 02,1 02,lPl01,l P2 

' ' 2 ^ 2 1 1 1 2 ) 
, 4 2 ) 

. I f « z<2> 

R* 

(à) 

J t 1 
A<V 

< W y f A l f AZp dZ<» AZf A Z'52) ¿P < 

A Z™ A Z? G ( 0 

A{« ^ 

Fig. 12 
The sections Z(a), a— 1,2, the priority and the optimal schedules of the example 

g = (4.5; 3.5; 1; 2) 
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In Fig. 12/a, b we show the Gantt-charts of the two schedule sections J a ) 

and J ( 2 ) expanded here to provide R 1 2 and J?2,i at the same time. It can be realized 
that every loop-section is composed from consecutive subsections AZW ,j= 1, ..., b, 
of X(a) and a section Aia) of full PA-utilization as Z(

b
a) U Aia). This fact is illustrated 

by Fig. 12/d. The lengths and PA -usages of the subsections can be read from £ ( 1 ) 

and T(2) and are given in Table 2. The data (lengths and PA -usages) of loop-sections are 

K X ^ H ^ and + 
with b 

ZP=\JAS<-\ b = 1,2,..., na+l, a = 1,2. 
j=i 

These data are given in Table 2 as well. 

Table 2. The data of loop-sections of the example of Fig. 12 

a b Type of sect. c t(*Z) A /(2T-M) 

0 a'1' 4.5 __ 
1 1 2 1.5 3.5 0.5 2 4 

2 0.(2) . 2 6 8 0 7.6 11.5 

0 aw 1 
1 1 2 2 2.5 4.5 4.5 

o 2 02,1 1 3 3 0.5 5.5 5.5 
" 3 02, l 1 3.5 6 3.5 12 14.5 

4 <32,1 1 3 3 1.5 13 15.5 
5 Oo 0 3.5 6 0 15 20 

Table 3. The simple loops and their characteristics for the example of Fig. 12 

No. (M2) G(R) Composition ).(Z) t(£) y(L) Rmk. 

0.762 R l t l 

0.765 R^o^Rz.o 

0.789 R* 

0.757 

0.769 

0.754 

0.750 Rlt 

0.765 

0.750 

0.759 

0.750 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

(0,5) 

(1,1) 

(1,2) 

(1.3) 

( 1 . 4 ) 

( 1 . 5 ) 

(2,1) 

(2,2) 

(2.3) 

(2.4) 

(2.5) 

g 

• Z^'LMS" 16 21 

¿ ^ ' L M ^ ' U ^ ' l M Î 2 ' 6.5 8.5 

X P ' l M P u r P ' l M l " 7.5 9.5 

- r ^ ' l M ^ ' U ^ ' l M ^ 14 18.5 

i ^ ' l M ^ ' U X f ' l M l 2 ' 15 19.5 

3 r P ' U ^ ' U ^ ' U ^ S 1 1 21.5 28.5 

I ^ ' U ^ ' l M i 2 ! 12 16 

r ^ ' U X ^ ' L M ^ 13 17 

i ^ ' U X ^ ' U ^ 2 ' 19.5 26 

' ¿•^»UXÎ^U^i2 ' 20.5 27 

D I P ' U I ^ U ^ S " 27 36 
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The c-codes of the loop-sections are easy to determine from the fact that the 
result of the decision s ( a u i ) = s 0 is < 7 ( 3 - I ) , / = 1 , 2 , and the vertex the last arc of 
G(fl) leads to can be obtained as the last typical situation of Z(a) with fii=o(i), / = 1 , 2. 

From the possible (abc) codes Table 1 of the possible types b2) of the simple 
loops can be completed. The data of the simple loops can be obtained from those 
loop-sections which are shown in Table 3. The last datum is y(S), the efficiency 
of the corresponding simple loop. Comparing these data we can choose the max-
imum value as 0.789. The type of the optimal schedule R* is (1, 2) and its Gantt : 
chart can be seen in Fig. 12/c. 

The table 

R ( ¿ A ) R 100 y/y* 

R* 0 , 2 ) 0.789 100 
(1,1) 0.765 96.9 

^2,0 (1,1) 0.765 96.9 
^1,2 (2, 1) 0.750 95.0 
^2,1 (0,5) 0.762 96.5 

shows that the priority schedules are not optimal. The efficiency y* of the optimal 
schedule is 88% of the sum y'1>+y<2>=4.5/8+1/3 = 0.896 and the efficiency of 
every priority schedule is. less than y*. y1>2 is the minimum of the efficiency values 
of the CESs. This is 95% of the value y*. To find a good estimation for the 
min y(R)/y* is an open question. A trivial estimation is clearly max y(i>/(y(1> + y(2))-

Ri0l(Q) l = 1-2 

In the example y2>1 is not minimal but there are 8 other CESs with greater effici-
ency. Also R j 0^^2,0 have better efficiency. 

Fig. 12/c shows that the economic decisions in the optimal schedule are chosen 
such that the delay d caused by the decision be minimal. This heuristic scheduling 
strategy can often give a not bad schedule but not optimal in general. One can argue 
that a unit delay of the job-flow with a higher /^-utilization y(I)=/7,/Ti is worse 
than a unit delay of the other job-flow. Therefore, we can expect better schedule 
by the strategy which decides such that the loss of utilization Dj — y^dt by the 
delay dt of 0(i> be minimum. For our example the critical situations of R*, the 
delays dit the losses Z>; and the decisions s* are from the Fig. 12/c as follows:: 

a' dx ; Di d2 D2 s* 

1 0.56 4.5 1.50 «2 
02,1 1 0.56 2.5 0.83 S2 

02,1 1 0.56 0.5 0.17 So 
01,1 0.5 0.28 4.5 1.50 s0 

The table shows that the optimal decisions correspond to the strategy of minimizing 
local losses of utilization. This strategy is not optimal in every cases either. We-
show this by the example configuration Q = ( 1; 3.5; 2; 1.5) in Fig. 13. The graph. 
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<G(Q) with the data X(AZ), t{AI) and A is the part (d). The data ( 6 ) — ( 1 0 ) are* 

"o = 0, n u = 0, «12 = 0, ¿10.= 1, ¿n = 0, ¿i2 = 0, = 0, 

«21 = 0, «22 = 1. ¿20 = 0, ¿21 = 1, ¿22 = 0, /12 = 1, 

NL = 3 , N = 3 . 

The possible three CESs are /? l i 2=/? ] 0, / ? 2 1 and I?2,o BY Fig. 13/a, b, c. The 
•efficiency values are 71,2=71,0=0.667, y2 1 = 0 . 7 4 3 , y 2 > 0 = 0 . 7 2 7 . -R*=/?2,i is the 

go 

(a) 
1 

i j j 
WH 

A 

^1.1 = ^ , 0 , y = j y = 0.667 

y -
13 

17.5 = 0.743 

(c) 

go ft ff2,l 
•4 

PI g0 ft 
2 1 a 2 ^ 1' 2 ^ 2 1 P) 

« S 1 1 1 / 
WM7V/M1V//M2 ^ B" 

J J ^2,o. V = Yf = 0.727 

0 . 5 Q) . 

V A 
2 / C D Q 

.^¡(Qjjp 

Fig. 13 
Example configuration for no optimal minimum local losses strategy g=(1; 3.5; 2; 1.5) 
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optimal -schedule. The delays, losses and optimal decisions are the following 
(y<*>=0.222, yW=0.571): 

a' di Dx d2 D2 s* 

0o 2 0.444 1 0.571 sa 

02,1 2 0.444 0.5 0.285 S2 

The preemption i(o-2 , i)=i2 causes a greater delay (2) and local loss (0.444) than 
the decision s(a2,i)=so would but it is, nevertheless, optimal. The decision 
J(CT2j1)=5'0 results in i ? 2 0 which is not an optimal schedule (see Fig. 13/c). This 
example shows that the "locally optimal" decisions are not "totally optimal". 
An evident problem is the ratio y/y* of the efficiency of the schedule with minimal 
local losses and the efficiency of the optimal schedule. , . 

After the examples we give, now, an algorithm to determine an optimal schedule 
by direct evaluation and comparison of the CESs in finite cases. Formally we 
divide the algorithm into two parts and formulate the parts as the ¿-algorithm and 
the ^-algorithm. 

The ¿"-algorithm produce the series of vectors 

Zab = (4f>> {ab> Cab)> b = 1, 2, . . . , «„+ 1, 0 = 1 ,2 
with components 

Xab = X(Z^) + Ai"\ tab = t(ZP) + Aj,°\ cab 

as PA-usage, length and c-code of the loop-section with code (ab). An auxiliary 
variable is in the algorithm X= (/., t, A) as PA-usage, length of subsections of 
Z(a) and the length of_a next section which will be inspected afterwards. Another 
auxiliary variable is Y=(X, t) the cumulated PA -usages and lengths of the sub-
sections. The algorithm supplies also the data naJ, 6aJ defined by (6)—(7) and used 
in (9)—(10). 

S-algorithm. Input data: Q = (i^; 91; t]2; 92); 

Output data: na, naJ, j= 1, 2, 8aJ, j=0,1,2, a= 1,2, Zab=(),ab, tab, cab), 
6=1, ..., na+\, a=\, 2; 

Step 0: r i ^ / h + Si; r2:=ri2 + 92; a : = 1; «: = 1; i:= 2; 
Step 1: X : = ( 0 , 0 , 9 a ) ; F : = ( 0 , 0 ) ; 
Step 2: / : = [ J / T J ; A':=A-ht-, 
Step 3: If A'^rji then X: = ( A + ( / + 1 ) ^ , t+A, %i-A'), i: = 3-i and 

go to Step 2; 
If A'=tif then Y:=(X+X+(l+l)t]i, t + t + A), Za„:=(X, t, i), ¿ a i : = l and 
go to Step 4; _ 
If A'=Q then Y:=(X+X+lt]h t+t+A), Zan:=(X, I, 0), <5a0: = l and 
go to Step 4; 
¥'.=(!+l+lr\i+A', l+t+A)\ A:=ni~A'; Zan:=(X+A, t+A, i); 
«a,3-a:="«,3-«+lL!:=3_i' k:=[A/9J; A'\=A-k9i, 
If 0 then Y:=(X + Thl + rt), Z„„+ j:=(X + A-j9i,i + A -j9t, 3 - /), 
j=l, ...,k and nai:=nai+k; 
n:=n+k; 
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If A'=0 then Y : = ( I + T f , i+T f); Zan:=(l, i, 3-i); nai:=nai-l; 
n:=n—1; <5a>3_j: = l and go to Step 4; 
n:=n +1; 
If then X - . ^ f a + A ' , T ^ & s - t + A ' - S i ) and 
go to Step 2; 
X: = (rit+A',ti,+A'+9s-„9,-V,-A'); i: = 3 — i; go to Step 2; 

Step 4: If a=2 then n2:=n and go to End; 
nx:=n~, n: = 1; a: = 2; i: = l; go to Step 1; 

End. 

The output data of the S-algorithm corresponds to the data of Table 2 and 
the data (6)—(7). From these data the efficiency values of the possible simple loops 
can be determined by the ¿-algorithm. The flow-chart of the S-algorithm is shown 
in Fig. 14. 

The ¿-algorithm uses the output data n0,a = 1, 2, and Zaba, ba= 1, ..., na+l, 
a=1,2, of the S-algorithm and determines the efficiency values y of the simple 
loops and provides the type (b*b2) and efficiency y* of a simple loop with maximum 
efficiency. The order of evaluation of the simple loops will determine which of the 
possibly more than one simple loops with maximum efficiency will be chosen. 
This order can be seen in Table 1: the + entries of the first column with increasing 
blt the + entries of the first row with increasing b2 and the other + entries by 
rows after. 

E-algorithm. Input data: , rj2, nx, n2, Zab = (XAB, tab, cab), b = \,2, ...,na+\, 
a= 1, 2; 

Output data: bx,bt,y*l 

Definition of operation F: If y>y* then b*:=b1, b2:=b2 and y*: = y; 

Begin: bt:=bt:=y*:=b2:=0; 

For bx: = 1 step 1 until n„ + l do if clbl=l then y:—/-lbJtlbi and F; 
If clfcl = 0' then y . H ^ + niWut + rii) and F; ¿ i : = 0 ; 
For b2: = l step 1 until n2+1 do if c2bi =2 then y'=k2bJt2bi and F; 
If e2b2=0 then y . ^ ^ + n M ^ + l i ) and F; 
For b-y\ = \ step 1 until nx+\ do if clbl = 2 then 
begin For b2: = l step 1 until n 2 + l do 

if c2H= 1 then y:=(Mbl + hM)l{tlbi+t2bi) and F; 
If c2b= 0 then y: = (/.lbl + /.2i), + r]x)l(tlbl + t2bl + and F; 
end; 
If c i» ,=0 then for b2. = \ step 1 until H2+1 do 

if c2b„= 1 then y: = (/.^j + ).2bi + rj^)/(tlbl + t2b2 + >;2) and F; 
End. 

Fig. 15 shows the flow-chart of the ¿-algorithm. This clarifies the meaning of 
the "for-step-until-do" cycles used in the algoritm. 

The verification of the S-algorithm is easy e.g. by following its operations 
graphically on the Gantt-charts of some configurations as of 2 = ( 4 . 5 ; 3.5; 1; 2) 
in Fig. 12. The ¿-algorithm does not need further verification. 
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Î1== li + S^ 
a:= 1; n := ;• i := 2 

Ó 
X : = ( 0 , 0 , 9„); ?:= (0, 0) 

X:={7.+(1+ 1)IJ„ i + A, T¡ — A')\ 
i := 3-i 

r ^ í + A + O + l H , i + t + A);-
Z„„ • - (} . , ! , 0 ; ¿OI:= 1 - - 0 

yes T:=(X+?. + ln¡, i + t+Á); 
Z„:=(X,t, 0); 5M:= 1 l. 

Y:= (7.+?.+ li¡t+A', t + t + A); A:=r¡¡-A'; 
Z„„ := (X + A, t + ¿1, i); "«.s-« := "».3-. + 1 

| i := 3 — i ; fc:= [i/9,1; , d ' : = ¿ - * 9 ¡ 

F : = ( Í + t „ Î+T,); Z„„:= y , i, 3 - i ) ; 
«„¡-1; <5«,3-¡:= 1 ; ii := n — 1 i := 3 - ¡ 

Q 
:= n; ii := 1 ; a := 2; i := 1 

The flow-chart of the S-algorithm 

8 Acia Cybernetics V/l 
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Fig. 15 
The flow-chart of the £-algorithm 

6. Summary 

No simple rule to produce nor any simple method to choose an optimal 
schedule R*(Q) of any job-flow pair configuration Q is known. The dominance 
of the class of the consistent economical schedules (CESs) is proven here. We in-
vestigated the structure of the CESs and gave a classification for them. This is 
based upon the graph G(Q) of the typical, (critical) situations of two schedule sec-
tions I(a), a= 1,2. The information necessary to obtain G(Q) and its data can be 
got by the S-algorithm if only G(Q) is finite. In this case the ¿-algorithm supplies 
an optimal schedule and its efficiency. The discussion has shown the importance 
of some' open problems which require further investigation. Such problems are: 
necessary and sufficient conditions for G(Q) to be finite; estimations for the ratio 
of the efficiency values of CESs to the maximum value; detailed information about 
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some heur is t ic strategies such as pr ior i ty schedules a n d the schedule wi th m i n i m u m , 
local losses. 

KEYWORDS: s teady job- f low pai rs , p reempt ive schedul ing, economic schedules, , 
dominance . 
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