
Remarks on finite commutative automata 
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A. C. Fleck has proved in [1] that a strongly connected commutative quasi-
automaton — called- perfect quasi-automaton in [2] •— is directly irreducible if 
and only if its characteristic semigroup, which is actually an Abelian group, is 
directly irreducible. I. Peak generalized this result for commutative cyclic automata 
(cf. [4]). In this paper we point out that this connection between automata and 
their characteristic semigroups is based on the fact that the congruence lattice of 
a commutative cyclic automaton is isomorphic to the congruence lattice of its 
characteristic semigroup. Furthermore, we give a characterization of strongly con-
nected commutative automata through their corresponding algebraic structures. 
Finally, we employ these results to obtain isomorphically complete systems for 
the class of all strongly connected commutative automata with respect to the direct 
product and quasi-direct product. 

By an automaton A = ( A , X, ¿) we always mean a finite automaton. Isomorph-
isms of automata are ^-isomorphisms. For arbitrary automaton A we denote by 
C(A) and C(£(A)) the congruence lattices of A and its characteristic semigroup,* 
respectively. Otherwise we use the terminology and notations in accordance with [2]. 

Theorem 1. The following three conditions are satisfied for arbitrary commuta-
tive cyclic automaton A = ( A , X, 5): 

(i) 5(A) - E(A), 

(ii) \A\ = |£(A)|, 

(hi) C ( A ) ~ C ( S ( A ) ) . 

Proof. The validity of (i) and (ii) was already proved by I. Peak in [4]. The 
proof of this fact is based on the observation that every commutative cyclic auto-
maton A is a free commutative automaton generated by one of its states. In other 
words, A is a free commutative unoid in the equational class generated by A and 
each generator of A is a free generator of A. This means that if a0£A generates 
the automaton A then every correspondence a0—a(£A) has a unique ,4-homo-
morphic extension of A into itself. By Corollary to Theorem 24.2 in [3] this implies 
that A'ssA where A '=(S(A), X, 5') and 5' is defined by d'(Ce(p), x)=Ct(px). 

* By the characteristic semigroup 5(A) of an automaton A we always mean a monoid with 
identity Ce(X), where X denotes the empty word. 



144 Z. Esik and B. Imreh 

Indeed, if a0 denotes an arbitrary generator of A then a natural isomorphism can 
be given by the correspondence Ce(p)-+d(a0, p) (Ce(p)£S(A)). Therefore C(A) = 
= C(A'). On the other hand C(A') = C(A") where the automaton A" is the semi-
group-automaton corresponding to A' with transition 8"(Ce(p),Ce(q))=Ce(pq). 
It is evident that each congruence relation of the semigroup 5(A) is a congruence 
relation of the semigroup-automaton A" as well. The converse follows by the 
commutativity of 5(A). Thus C(A") = C(5(A)). Putting together these isomorph-
isms we get C(A) = C(5(A)). This ends the proof of Theorem 1. 

It is interesting to note that I. Peak gave an example in [4] for a commutative 
automaton which is not cyclic but satisfies conditions (i) and (ii) of Theorem 1. 
It is not difficult to see that this example does not satisfy (iii). We now give another 
automaton which contents each Of the conditions (i)—(iii) of Theorem 1 and which 
is not cyclic. This automaton is the following A=({1, 2, 3, 4}, {x, y}, S), where 
S is defined by the table below: 

1 2 3 4 

X 1 2 3 2 

y 2 3 3 3 

Thus the converse of Theorem 1 is not true in general. However, in spite of 
the previous example, in case of strongly connected commutative automata, we 
have succeeded in proving a certain converse of Theorem 1. 

Theorem 2. An automaton A = ( A , X, 5) is strongly connected and commuta-
tive if and only if each of the following conditions is satisfied by A: 

(i) 5(A) is an Abelian group, 

(ii) 5 (A) - E{A), 

(iii) \A\ = |£(A)|, 

(iv) C(A) - C(S(A)). 

Proof. Necessity follows by Theorem 1. Conversely, the commutativity of A 
is immediate by (i). In order to prove that A is strongly connected first observe 
that since (ii) is also satisfied by A there is a natural isomorphism v of 5(A) onto 
E(A). This isomorphism is defined in the following manner: v(Ce(p)) is the mapping 
induced by the word p on the set of states of A. In other words, v(CQ(p)) is simply 
the polynomial induced by p in the automaton A being considered as a unoid. 

Assume to the contrary A is not strongly connected. As 5(A) is a group we 
can decompose A into the direct sum of its strongly connected subautomata A,= 
=(A,,X,5t) (i—1, ..., n, n > l ) . According to the previously established natural 
isomorphism v, the inclusion (p(A,)QA, ( f = l , . . . ,« ) is satisfied for any cp£E(A). 

n 
Consequently, |/4,|>1 (t=l,...,n) and J] E(At) Si E(A) under the mapping 

t= l n 

(P-^IVLAII •••) <P\AJ- Thus, by Theorem 1 and our assumption (iii), [J \A,\ = 

= n\mt)ME(A)\ = \A\=Z\At\. 
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It is not difficult to see by (t=1, •••, n) that .the above equality is 
possible only if n—2 and \A1\ = \A2\=2. In this case C(A) contains the chain 
induced by the compatible partitions 

C 0 = { { a n } , {«12}, {«21}» {«22}}, 

Q = {At, {a21}, {a22}}, 
C2 = {Ax, A2}, 
CS={A}, 

where At={an, at2} (t=1, 2). On the other hand 5(A) can contain only shorter 
chains. This is a simple consequence of the well-known fact that the congruence 
lattice of an Abelian group is isomorphic to the lattice of its subgroups. 

COROLLARY. The following conditions are equivalent for every strongly con-
nected commutative automaton A=(A, X, S): 

(i) A is subdirectly irreducible, 
(ii) A is directly irreducible, 

(iii) S(A) is a cyclic group of prime-power order, 
(iv) The cardinality of A is a prime-power and there is an input-sign x£X 

inducing a cyclic permutation of A. 

Proof. The equivalence of (i), (ii) and (iii) is a consequence of Theorem 2 and 
the Fundamental Theorem of Finite Abelian Groups. The implication (iv)=>-(iii) 
is trivial. It remains to prove that (iii)=>(iv). 

In the proof of Theorem 1 we have shown that A ^ A' therefore, \A\ is a prime-
power, say \A\=rn. Assume that none of the signs xdX induces a cyclic permuta-
tion of A. Then, for each x£X, the order of CQ(x) in S(A) is less than r". But this 
yields a contradiction since for arbitrary word p=x1...xk the order of Cg(p) can 
not exceed the maximum of the orders of the signs x1; ..., xk, which completes 
the proof of the Corollary. 

It is evident that the automata given in (iv) form a minimal isomorphically 
complete system of strongly connected commutative automata with respect to the 
direct product for any fixed set of input signs X. We proceed by stating a similar 
result with respect to the quasi-direct product. 

Let « ( > 1) be an arbitrary natural number and let M„=({0, ..., n—1}, 
{x0, . . . , x,,-!}, <5„) denote the automaton with transition §„(J, xs)=j+s (mod 11) 
(76 {0, .. . , n—1}, xs£ {x0, . . . , x„_i}). Let ft consist of all automata M„ where « > 1 
and n is a prime-power. 

Theorem 3. A system Z of automata is isomorphically complete for the class 
of all strongly connected commutative automata with respect to the quasi-direct 
product if and only if each can be embedded isomorphically into a quasi-
direct product of an automaton A£Z with a single factor. 

Proof. Sufficiency is obvious. In order to prove necessity let be arbitrary. 
M„ can be embedded isomorphically into a quasi-direct product of automata from 
Z, and hence it can be embedded isomorphically into a direct product whose each 
component is a quasi-direct product of an automaton from Z with a single factor. 
But, by Corollary to Theorem 2, M„ is subdirectly irreducible. Therefore M„ can 
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be embedded isomorphically into a quasi direct product of an automaton from 
I with a single factor. 

COROLLARY . There exists no system of automata which is isomorphically com-
plete for the class of all strongly connected commutative automata with respect to 
the quasi-direct product and minimal. 

Proof. It is easy to show that the class Я \ { М , « | / = 5 } constitutes a complete 
system for any fixed prime r and integer s. 
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