The early bird problem is unsolvable in a one-dimensional cellular space with 4 states

By H. Kleine Büning

Legendi and Katona (1981) have shown that the early bird problem in a onedimensional space is solvable with 5 states. The proof is based on a sophisticated concept of waves introduced by Vollmar. We will show that 5 states is a sharp bound for solvability.

1. Early bird problem

Vollmar (1977) defined the problem for a one-dimensional cellular space allowing more than one cell to be excited at a given time step. Only quiescent cells may be excited. Before the first time step at least one cell should be excited. After a certain period the first birds should be in a distinguished state while all the others in a different state.

2. Unsolvability with 4 states

Theorem. The early bird problem is unsolvable in a one-dimensional cellular space with 4 states.

Proof. Assume: There exists a four-state solution, say with a set of states $\{0, B, 2,3\}$, where
$\mathrm{O}=$ initial state
$B=$ bird state (arises only from state 0 , spontaneously). Then there is a set of transitions - called A - solving the problem. After a certain period the first bird(s) should be in a distinguished state. The initial state 0 cannot be the distinguished state, because the space is unbounded and after a finite number of steps we obtain a finite configuration.

Case a: B is the distinguished state. There are no transitions $0 B 0 \rightarrow i, 0 B B \rightarrow i$, $B B 0 \rightarrow i, B B B \rightarrow i(i=0,2,3)$ in A, since a bird B cannot be generated by transitions. The set of transitions A must contain a transition $B 0 B \rightarrow 2$ or $B 0 B \rightarrow 3$, otherwise the initial configurations

$$
\begin{aligned}
& K_{1}=\ldots 0 B B B B \underset{\sim}{B B B B} 0 \ldots \text { and } \\
& K_{1}^{\prime}=\ldots 0 B B B B B B B B B 0 \ldots, \text { where for } K_{1}
\end{aligned}
$$

a later bird (second step) occurs at the cell marked by \sim would imply the same configuration sequence (after 3 steps). Without loss of generality we assume $B 0 B \rightarrow 2$ belongs to A. Then A contains no transition of the below defined set of transitions D, because a first bird would be killed.

$$
D:=\{B B 2 \rightarrow i, 2 B B \rightarrow i, 2 B 2 \rightarrow i, B B 0 \rightarrow i, 0 B B \rightarrow i, 0 B 0 \rightarrow i, B B B \rightarrow i \quad(i=0,2,3)\} .
$$

Now it is investigated a case distinction. Let

$$
\begin{aligned}
& L_{2}:=B 00 \rightarrow 2, \quad R_{2}:=00 B \rightarrow 2 \\
& L_{3}:=B 00 \rightarrow 3, \quad R_{3}:=00 B \rightarrow 3 \\
& \text { Case } 1: L_{2}, R_{2} \in A
\end{aligned}
$$

Let $K_{1}=\ldots 0 B 000 B 0 \ldots$ be an initial configuration. Then we obtain after one step $K_{2}=\ldots 02 B 202 B 20 \ldots$. In case of birth of a bird we have $K_{2}^{*}=\ldots 02 B 2 B 2 B 20 \ldots$. Furthermore let $K_{1}^{\prime}=\ldots 00 B 0 B 0 B 0 \ldots$ be another initial configuration, then we obtain after one step $K_{2}^{\prime}=\ldots 02 B 2 B 2 B 20 \ldots$. We see that $K_{2}^{\prime}=K_{2}^{*}$. This shows that a later bird survives. This is a contradiction.

Case 2: $L_{3}, R_{2} \in A$
Let the initial configuration $K_{1}=\ldots 0 B 0 B 00 B B 0 \ldots$ be given. Then we get after one step $K_{2}=\ldots 02 B 2 B 32 B B 30 \ldots$. Thus we see that A does not contain the transitions

$$
\begin{aligned}
& 2 B 2 \rightarrow i \\
& 2 B 3 \rightarrow i \\
& B B 3 \rightarrow i
\end{aligned} \quad(i=0,2,3) \text { (otherwise a first bird is killed). }
$$

Now let (later birth of birds)

$$
K_{2}^{\prime}=\ldots 0 B 0 B 00 B 00 \ldots 02 B 2 B 32 B B 30 \ldots
$$

then we obtain

$$
K_{3}^{\prime}=\ldots 02 B 2 B 32 B B 30 \ldots i_{1} \ldots i_{12} 0 \ldots
$$

for some $i_{j} \in\{0, B, 2,3\}$. Eliminating these later birds is only possible from the right side. Since $B B 3 \rightarrow i, B B 2 \rightarrow i, B B 0 \rightarrow i(i=0,2,3)$ do not belong to A (see above and set D), the later birds cannot be killed. This is a contradiction.

Case 3: $L_{2}, R_{3} \in A$ (analogue to case 2, symmetry)
Case 4: $L_{3}, R_{3} \in A$
Let $K_{1}=\ldots 0 B B 00 B 0 B 000 B 0 \ldots$ be an initial configuration, then we get (after one step) $K_{2}=\ldots 03 B B 33 B 2 B 303 B 30 \ldots$ Thus we see that A does not contain the transitions

$$
3 B B \rightarrow i
$$

$B B 3 \rightarrow i$
$3 B 2 \rightarrow i \quad(i=0,2,3) \quad$ (otherwise a first bird is killed).
$2 B 3 \rightarrow i$
$3 B 3 \rightarrow i$

Since $B B 0 \leftarrow i, B B 2 \rightarrow i(i=0,2,3) \notin A$ (see set D) and above we have seen $B B 3 \rightarrow i \notin A$ two later birds - left from the first birds - survive. This is a contradiction.

Case 5: $L_{2} \in A, R_{2}, R_{3} \notin A$
Let the initial configuration be given
$K_{1}=\ldots 0 B 00 B 0 \ldots$, then we obtain (after one step)
$K_{2}=\ldots 00 B 20 B 20 \ldots$ Now let (birth of bird)
$K_{2}^{\prime}=\ldots 0 B 2 B B 20 \ldots$ and
$K_{1}^{*}=\ldots 0 B 0 B B 0 \ldots$ another initial configuration.
Then we get after one step $K_{2}^{*}=\ldots 0 B 2 B B 20 \ldots$. Since $K_{2}^{*}=K_{2}^{\prime}$ the later bird survives. This is a contradiction.

Case 6: $R_{2} \in A, L_{2}, L_{3} \notin A$ (analogue to case 5 , symmetry)
Case 7: $L_{3} \in A, R_{2}, R_{3} \notin A$
Let the initial configuration $K_{1}=\ldots 0 B B B 0 \ldots$ be given, then after one step we get $K_{2}=\ldots 0 B B B 30$. Thus we see that $B B 3 \rightarrow i \notin A(i=0,2,3)$. Since $B B 2 \rightarrow i$, $B B 0 \rightarrow i \in D$ and therefore not in A, later birds far enough left from the first birds survive. This is a contradiction.

For example:
$K_{2}^{\prime}:=0 \ldots 0 \underset{\sim}{B B} B 0 \ldots 0 \ldots 0 B B B 30 \ldots$ (~birth of birds)
then we get
$K_{3}^{\prime}:=0 \ldots 0 B B B 30 \ldots 0 i_{1} \ldots i_{10} 0 \ldots$ for some $i_{j} \in\{0, B, 2,3\}$
Case 8: $R_{3} \in A, L_{2}, L_{3} \notin A$ (analogue to 7, symmetry)
Case 9: $L_{2}, L_{3}, R_{3}, R_{3} \nsubseteq A$
Let $K_{1}=\ldots 0 B 00 \ldots$ be an initial configuration, then no transition is applicable to K_{1}. In case of birth of a bird $K_{1}^{\prime}=\ldots 0 B 000 B 00$, again we cannot apply a transition to K_{1}^{\prime}. This is a contradiction, because K_{1} and K_{1}^{\prime} have the same configuration sequence. Altogether we have shown that the early bird problem is unsolvable with 4 states, where B is the distinguished state..

Next we will consider the distinguished states 2 or 3 . Without loss of generality we assume

Case $\mathrm{b}: 2$ is the distinguished state.
Before starting with a case distinction we will prove
Proposition 1. If the set of transitions A solves the problem, then
a) $\exists i_{1}, i_{2} \in\{0,3\}:\left(220 \rightarrow i_{1} \in A, 022 \rightarrow i_{2} \in A\right)$ and $\forall i=0,2:(322 \rightarrow i \notin A, 223 \rightarrow i \notin A) \quad$ or
b) $\exists i_{1}, i_{2} \in\{0,3\}:\left(223 \rightarrow i_{1} \in A, 322 \rightarrow i_{2} \in A\right)$ and $\forall i=0,3:(022 \rightarrow i \notin A, 220 \rightarrow i \notin A)$.

Proof. Let us begin with an initial conflguration $K_{1}=\ldots 0 B B O B B O B B 0 \ldots$ without later birds. After a finite number of steps we obtain a configuration.

$$
K_{n}=\ldots i_{2} i_{1} 22 l 22 m 22 j_{1} j_{2} \ldots \text { for some } i_{t}, j_{t}, l, m \in\{0,3\}
$$

and state 2 remains in the next steps in these cells (no birth of birds).
Thus we see that $l 22 \rightarrow i, 22 l \rightarrow i \notin A(i=0,3)$, otherwise the distinguished state 2 is changed.

IF $l=0$, then $022 \rightarrow i, 220 \rightarrow i \notin A$.
IF $322 \rightarrow i$ resp. $223 \rightarrow i \notin A$ for $i=0,3$, then it holds

$$
\begin{array}{ll}
322 \rightarrow i & \text { resp. } \\
2223 \rightarrow i \\
222 \rightarrow i & 222 \rightarrow i \\
022 \rightarrow i & 220 \rightarrow i .
\end{array}
$$

Thus we see that two later birds for enough right resp. left from the first birds survive. Therefore $322 \rightarrow i_{1}$ and $223 \rightarrow i_{2} \in A$ for some $i_{1}, i_{2} \in\{0,3\}$. If $l=3$ the proof is similar.

Now we write $X Y Z \rightarrow$ instead of $\exists i \in\{0, B, 2,3\}-\{Y\}: X Y Z \rightarrow i$ and $X Y Z \rightarrow \in A$ means $\exists i \in\{0, B, 2,3\}-\{Y\}: X Y Z \rightarrow i \in A$.

Let

$$
\begin{array}{ll}
E_{1}:=323 \rightarrow & E_{3}:=023 \rightarrow \\
E_{2}:=320 \rightarrow & E_{4}:=020 \rightarrow .
\end{array}
$$

Next we will consider a case distinction.
Case 1: $E_{1} \in A ; E_{2}, E_{3}, E_{4} \notin A$
Case la: $\{223 \rightarrow, 322 \rightarrow\} \subset A, 220 \rightarrow, 022 \rightarrow \notin A$ (see Prop. 1)
Let $K_{1}=\ldots 0 B B 000 \ldots$ be the initial configuration, then we obtain after a finite number of steps

$$
K_{n}=\ldots i_{1} 22 i_{2} \ldots \text { for some } i_{1}, i_{2} \in\{0,3\}
$$

and from hence cells with state 2 remain in state 2 . Then $i_{2}=i_{1}=0$, because $223 \rightarrow$, $322 \rightarrow \epsilon A$. Since $E_{3}=023 \rightarrow, E_{4}=020 \rightarrow, 022 \rightarrow \Varangle A$ two later birds far enough left from the early birds reach state 2 and remain in this state.

Case $1 \mathrm{~b}:\{220 \rightarrow, 022 \rightarrow\} \subset A, 223 \rightarrow, 322 \rightarrow \notin A$
If $K_{1}=\ldots 0 B B O B O B B O$ is an initial configuration, we obtain for some $n, K_{n}=$ $=\ldots i_{1} 22 i_{3} 2 i_{4} 22 i_{5} \ldots$ where state 2 remains (no birth of birds) in these cells. Then $i_{1}=i_{3}=i_{4}=i_{5}=3$, because $220 \rightarrow, 022 \rightarrow \in A$. This is a contradiction to $323 \rightarrow \epsilon A$. The cell marked by \sim changes its state 2 .

If K_{1} is an initial configuration (with birds) and there are no later birds, then K_{n+1} denotes the configuration after n steps. If the bird-cells are in the distinguished state 2 and there is no change of states in these bird-cells in the following (without birth of birds) then the configuration is called K_{n+1}^{*}.

Case 2: $E_{2} \in A ; E_{3}, E_{1}, E_{4} \notin A$
ad a: $\{220 \rightarrow, 022 \rightarrow\} \subset A, 223 \rightarrow, 322 \rightarrow 母 A$

If $K_{1}=\ldots 0 B 0 B B 0 B 0 \ldots$ ，then $\exists n$ ：
$K_{n}^{*}=\ldots i_{1} 2 i_{2} 22 i_{3} 2 i_{4}$ for some $i_{1}, i_{2}, i_{3}, i_{4} \in\{0,3\}$ ．
Since $022 \rightarrow, 220 \rightarrow \in A$ ，we see $i_{2}=i_{3}=3$ and $i_{4}=3$ ，because $E_{2}=320 \rightarrow \in A$ ． Since $E_{1}=323 \rightarrow, E_{3}=023 \rightarrow, 223 \rightarrow \notin A$ ，later birds（ $0 B 0 B B 0 B 0$ ）far enough right from the first birds reach state， 2 and remain in this state．
ad b：$\{223 \rightarrow, 322 \rightarrow\} \subset A, 220 \rightarrow, 022 \rightarrow 屯 A$
If $K_{1}=\ldots 0 B B 0 B 0 \ldots$ ，then $\exists n$ ：
$K_{n}^{*}=\ldots i_{1} 22 i_{2} 2 i_{3}$ for some $i_{1}, i_{2}, i_{3} \in\{0,3\}$.
Since $223 \rightarrow, 322 \rightarrow \in A$ ，it holds $i_{1}=i_{2}=0$ ．Since $E_{4}=020 \rightarrow, E_{3}=023 \rightarrow, 022 \rightarrow 母 A$ later birds（ $0 B B 0 B$ ）far enough left from the first one reach state 2 and remain in this state．

Case 3：$E_{3} \in A ; E_{1}, E_{2}, E_{4} \notin A$（analogue to case 2）
Case 4：$E_{4} \in A ; E_{1}, E_{2}, E_{3} \ddagger A$
ad a：$\{223 \rightarrow, 322 \rightarrow\} \subset A, 220 \rightarrow, 022 \rightarrow \notin A$
If $K_{1}=\ldots 0 B B O B 0 B B 0 . \therefore$ then $\exists n$ ：
$K_{n}^{*}=\ldots i_{1} 22 i_{2} 2 i_{3} 22 i_{4} \ldots$ for some $i_{1}, \ldots, i_{4} \in\{0,3\}$ ．
Since $223 \rightarrow 322 \rightarrow \in A$ ，it holds $i_{1}=i_{2}=i_{3}=i_{4}=0$ ，but $E_{4}=020 \rightarrow \epsilon A$ changes in the next step state 2 ．This is a contradiction to K_{n}^{*} ．
ad b：$\{220 \rightarrow, 022 \rightarrow\} \subset A, 223 \rightarrow, 322 \rightarrow \notin A$
If $K_{1}=\ldots 0 B 0 B B 0 B B 0 \ldots$ then $\exists n$ ：
$K_{n}^{*}=\ldots i_{0} 2 i_{1} 22 i_{2} 22 i_{3} \ldots$ for some $i_{0}, \ldots, i_{4} \in\{0,3\} .<$
Since $220 \rightarrow, 022 \rightarrow \in A$ ，it holds $i_{1}=i_{2}=i_{3}=3$ ．Since $E_{1}=323 \rightarrow, E_{3}=023 \rightarrow$ ， $223 \rightarrow 母 A$ later birds（ $0 B 0 B B 0 B B 0$ ）far enough right from the first one reach state 2 and remain in this state．

Case 5：$E_{3}, E_{1} \in A ; E_{1}, E_{2} \notin A$
If $K_{1}=\ldots 0 B 0 B B 0 B 0 \ldots$ then $\exists n$ ：
$K_{n}^{*}=\ldots i_{1} 2 i_{2} 22 i_{3} 2 i_{4} \ldots$ for some $i_{1}, \ldots, i_{4} \in\{0,3\}$ ．
ad a：$\{220 \rightarrow, 022 \rightarrow\} \subset A ; 223 \rightarrow, 322 \rightarrow \notin A$ ．Then it holds $i_{2}=i_{3}=3$ and because of $023 \rightarrow \in A, i_{1}=3$ holds．Since $E_{1}=323 \rightarrow, E_{2}=320 \rightarrow, 322 \rightarrow \notin A$ later birds far enough left from the first one reach state 2 and state 2 cannot be changed．
ad $\mathrm{b}:\{223 \rightarrow, 322 \rightarrow\} \subset A ; 220 \rightarrow, 022 \rightarrow \notin A$ ．Then it holds $i_{2}=0=i_{3}$ ，but $E_{3}=023 \rightarrow, E_{4}=020 \rightarrow \epsilon A$ ．Thus for one bird－cell（left from i_{4} ）state 2 is changed in the next step．

Case 6：$E_{2}, E_{4} \in A ; E_{1}, E_{3} \notin A$（analogue to case 5）
Case 7：$E_{2}, E_{3} \in A ; E_{1}, E_{4} \notin A$
ad a：$\{223 \rightarrow, 322 \rightarrow\} \subset A ; 220 \rightarrow, 022 \rightarrow 屯 A$
If $K_{1}=\ldots 0 B 0 B B 00 B B 0 B 0 B 0 B B 0 B 0 \ldots$ then $\exists n$ ：

$$
K_{n}=\ldots i_{1} 2 i_{2} 22 i_{3} i_{4} 22 i_{5} 2 i_{6} 2 i_{7} 22 i_{8} 2 i_{9} \ldots \text { for some } i_{1}, \ldots, i_{8} \in\{0,3\}
$$

Since $223 \rightarrow, 322 \rightarrow \in A$ and $E_{3}=023 \rightarrow, E_{2}=320 \rightarrow \in A$ it holds $i_{j}=0(1 \leqq j \leqq 9)$ and $200 \rightarrow, 002 \rightarrow, 202 \rightarrow 母 A$ ．Birds must send out signals to the right or to the left． So we can assume that a cell in state 3 is left or right from the cell with state i_{1} or i_{9} — say left－．Since $002 \rightarrow, 202 \rightarrow \Psi A$ it holds $302 \rightarrow \in A$ ，otherwise later birds $(0 B 0 B B)$ far enough right from the first birds survive（in state 2）．Now let $K_{n}^{*}=$ $=\ldots 3 \underbrace{0 \ldots 0202200220202022020}_{m}$ be and $m=1$ ．This leads to a contradiction．If $302 \rightarrow 3 \in A$ ，then $E_{3}=320 \rightarrow \in A$ eliminates state 2．If $302 \rightarrow 2 \in A$ ，then a new state 2 occurs．Now let $m>1$ ．Because $200 \rightarrow \uplus A$ and later birds（double the configura－ tion K_{1} ）far enough right from the first ones must be eliminated，the set A contains the transition $300 \rightarrow$ ．This leads to a contradiction，because in case of $300 \rightarrow 3$ we reach case $m=1$ and in case of $300 \rightarrow 2$ a new distinguised state 2 occurs．

$$
\begin{aligned}
& \text { ad b: }\{220 \rightarrow, 022 \rightarrow\} \subset A ; 223 \rightarrow, 322 \rightarrow \notin A \\
& \text { If } K_{1}=\ldots 0 B 0 B B 00 B B 0 \text { then } \exists n: \\
& K_{n}^{*}=\ldots i_{1} 2 i_{2} 22 i_{3} i_{4} 22 i_{5} \ldots \text { for some } i_{1}, \ldots, i_{5} \in\{0,3\} .
\end{aligned}
$$

Then it holds $i_{1}=i_{2}=i_{3}=\ddot{i}_{4}=i_{5}=3$ ，because $220 \rightarrow, 022 \rightarrow, E_{3}=023 \rightarrow$ and $E_{2}=$ $=320 \rightarrow \epsilon$ A．

Furthermore we see that $232 \rightarrow, 332 \rightarrow, 233 \rightarrow 母 A$（otherwise a new state 2 arises or a state 2 is eliminated one or two steps later）．Since $232 \rightarrow 332 \rightarrow 母 A$ and later birds（ $0 B 0 B B 00 B B 0$ ）far enough right from the first birds must be killed，the transition $032 \rightarrow$ belongs to A ．

Now we consider $K_{1}^{\prime}=\ldots 0 B B 000 B B 0 \ldots$ then $\exists t$ ：
$K_{t}^{\prime *}=\ldots j_{1} 22 j_{2} j_{3} j_{4} 22 j_{5}$ for some $j_{i} \in\{0,3\}(1 \leqq i \leqq 5)$.
Then it holds $j_{i}=3(i \neq 3)(220 \rightarrow, 022 \rightarrow \in A)$ ．If $j_{3}=0$ then $032 \rightarrow \in A$ and $022 \rightarrow \in A$ lead to a contradiction（new state 2 or elimination）．Thus we see that $j_{3}=3$ and $333 \rightarrow \notin A$ ．

Going back to K_{1} it holds

$$
K_{n}^{*}=\ldots 0 \underbrace{3}_{m} 3232233223 \ldots
$$

If $m=1$ and if $032 \rightarrow 0 \in A$ ，then $E_{2}=023 \rightarrow \in A$ eliminates the distinguished state 2 and if $032 \rightarrow 2 \in A$ we reach a new state 2 ．Let $m>1$ ．It holds $033 \rightarrow \notin A$ ，otherwise we obtain after some steps the situation $m=1$ or a new state 2 ．Altogether we get $333 \rightarrow, 033 \rightarrow, 233 \rightarrow \ddagger A$ and therefore a later bird（state 2）（ $0 B 0 B B 0$ ）far enough from the first birds survive．

Case 8：$E_{1}, E_{4} \in A ; E_{2}, E_{3} \notin A$
If $K_{1}=\ldots 0 B B 0 B 0 B B 0 \ldots$ then $\exists n$ ：

$$
K_{n}^{*}=\ldots i_{1} 22 i_{2} 2 i_{3} 22 i_{4} \text { for some } i_{1}, \ldots, i_{4} \in\{0,3\}
$$

ad a：$\{220 \rightarrow, 022 \rightarrow\} \subset A ; 223 \rightarrow, 322 \rightarrow \notin A$ ，then it holds $i_{1}=i_{2}=i_{3}=i_{4}=3$ ， but $E_{1}=323 \rightarrow \in A$ contradicts K_{n}^{*} ．
ad $\mathrm{b}:\{223 \rightarrow, 322 \rightarrow\} \subset A ; 220 \rightarrow, 022 \rightarrow \notin A$ ，then it holds $i_{1}=i_{2}=i_{3}=i_{4}=0$ ， but $E_{4}=020 \rightarrow \in A$ contradicts K_{n}^{*} ．

Case 9：$E_{1}, E_{2} \in A ; E_{3}, E_{4} \notin A$

If $K_{1}=\ldots 0 B B 0 B 0 B B 0 B 0 \ldots$ then $\exists n$ ：
$K_{n}^{*}=\ldots i_{1} 22 i_{2} 2 i_{3} 22 i_{4} 2 i_{5} \ldots$ for some $i_{1}, \ldots, i_{5} \in\{0,3\}$ ．
ad a：$\{220 \rightarrow, 022 \rightarrow\} \subset A ; 223 \rightarrow, 322 \rightarrow \ddagger A$ ，then it holds $i_{1}=i_{2}=i_{3}=i_{4}=3$ ， but $E_{1}=323 \rightarrow \in A$ contradicts K_{n}^{*} ．
ad $\mathrm{b}:\{223 \rightarrow, 322 \rightarrow\} \subset A ; 220 \rightarrow, 022 \rightarrow 母 A$ ，then it holds $i_{1}=i_{2}=i_{3}=i_{4}=0$. Since $E_{4}=020 \rightarrow, E_{3}=023 \rightarrow, 022 \rightarrow \notin A$ later birds（ $0 B B 0 B 0 B B 0 B 0$ ）far enough left from the first one reach state 2 and remain in this state．

Case 10：$E_{1}, E_{3} \in A ; E_{2}, E_{4} \notin A$（analogue to case 9）
Case 11：$E_{1}, E_{2}, E_{4} \in A ; E_{3} \notin A$
If $K_{1}=\ldots 0 B 0 B 0 B 0 \ldots$ then $\exists n$
$K_{n}^{*}=\ldots i_{1} 2 i_{2} 2 i_{3} 2 i_{4} \ldots$ for some $i_{1}, \ldots, i_{4} \in\{0,3\}$ ．
If $i_{2}=3$ ，then $i_{3}=0$ or 3 ，but $E_{1}=323 \rightarrow, E_{2}=320 \rightarrow \in A$ contradicts K_{n}^{*} ．If $i_{2}=0$ ， then $i_{3}=3$ and then $i_{4}=0$ or 3 ，but $E_{1}=323 \rightarrow, E_{2}=320 \rightarrow \in A$ contradicts K_{n}^{*} ．

Case 12：$E_{1}, E_{3}, E_{4} \in A ; E_{2} \notin A$（analogue to case 11）
Case 13：$E_{1}, E_{2}, E_{3} \in A ; E_{4} \notin A$
ad a：$\{220 \rightarrow, 022 \rightarrow\} \subset A ; 223 \rightarrow, 322 \rightarrow 母 A$
If $K_{1}=\ldots 0 B B 0 B 0 B B 0 \ldots$ then $\exists n$ ：
$K_{n}^{*}=\ldots i_{1} 22 i_{2} 2 i_{3} 22 i_{4}$ for some $i_{1}, \ldots, i_{4} \in\{0,3\}$.
Since $220 \rightarrow, 022 \rightarrow \epsilon A$ ，it holds $i_{1}=i_{2}=i_{3}=i_{4}=3$ ．But $E_{1}=323 \rightarrow \epsilon A$ contradicts $K_{n}^{*}\left(i_{2} 2 i_{3}\right)$ ．
ad $\mathrm{b}:\{223 \rightarrow, 322 \rightarrow\} \subset A ; 220 \rightarrow, 022 \rightarrow \notin A$
If $K_{1}=\ldots 0 B 0 B B 00 B B 0 B 0 \ldots$ then $\exists n$ ：
$K_{n}^{*}=\ldots i_{1} 2 i_{2} 22 i_{3} i_{4} 22 i_{5} 2 i_{6} \ldots$ for some $i_{1}, \ldots, i_{6} \in\{0,3\}$ ．
Since $223 \rightarrow, 322 \rightarrow \in A$ ，it holds $i_{2}=i_{3}=i_{4}=i_{5} \rightarrow 0$ and because of $E_{3}=023 \rightarrow$ ， $E_{2}=320 \rightarrow \epsilon A$ it holds $i_{1}=i_{6}=0$ ．Furthermore $i_{1}=\ldots=i_{6}=0$ implies $202 \rightarrow$ ， $200 \rightarrow, 002 \rightarrow 母 A$ ，otherwise a state 2 is changed．Birds must send out signals to the right or to the left．Therefore we have a transition $300 \rightarrow 3$ or $003 \rightarrow 3$ in A ．

Suppose： $300 \rightarrow 3,003 \rightarrow 3 \in A$ ．
Case bl：Left from the cell with state i_{1} in K_{n}^{*} state 3 occurs．
$K_{n}^{*}=\ldots 3 \underbrace{\ldots \ldots 020220022020 \ldots}_{m}$
Let $m=1: 302 \rightarrow 3$ or $2 \in A$ contradicts K_{n}^{*} ，because of $E_{2}=320 \rightarrow \epsilon A$ resp．a new state 2 occurs．Thus $302 \rightarrow \Varangle A$ and because $202 \rightarrow, 002 \rightarrow £ A$ a later bird marked by $\sim(0 B 0 B B 0)$ far enough right from the first remains in state 2.

If $m>1$ ，we reach after $m-1$ steps case $m=1$ ，because $300 \rightarrow 3 \in A$ ．
Case b2：Right from the cell with state i_{6} in K_{n}^{*} state 3 occurs．This leads to a contradiction similar to case bl．

Thus we see that $300 \rightarrow 3 \notin A$ or $003 \rightarrow 3 \notin A$. Without loss of generality we assume $300 \rightarrow 3 \in A$ and $003 \rightarrow 3 € A$. Then there is no cell left from the cell with state i_{1} in K_{n}^{*} which has state 3 (apply case b_{1} again). Therefore a cell right from the cell i_{6} must have state 3.
$\ldots 02022002202 \underbrace{\ldots . .03}_{m}$
If $m=1$ for all further steps, then $203 \rightarrow 3 \notin A$, because $E_{3}=023 \rightarrow \epsilon A$ and $203 \rightarrow 2 \ddagger A$, because a distinguished state 2 arises. Altogether we obtain $203 \rightarrow$, $200 \rightarrow 202 \rightarrow \bigoplus A$. This shows that later birds ($0 B B 0 B 0$) far enough left from the first reach state 2 and remain in this state.

If $m>1$, then $003 \rightarrow 2 \in A$, otherwise there is no feedback from a meeting with birds far enough right from the origin, but $003 \rightarrow 2$ generates new distinguished states in case of no birth of birds. This is a contradiction.

Case 14: $E_{2}, E_{3}, E_{4} \in A ; E_{1} \notin A$
ad a: $\{223 \rightarrow, 322 \rightarrow\} \subset A ; 220 \rightarrow, 022 \rightarrow \Varangle A$
If $K_{1}=\ldots 0 B B 0 B 0 B B 0 \ldots$ then $\exists n$:
$\dot{K}_{n}^{*}=i_{1} 22 i_{2} 2 i_{3} 22 i_{4} \ldots$ for some $i_{1}, \ldots, i_{4} \in\{0,3\}$.
Because $223 \rightarrow 322 \rightarrow \in A$ it holds $i_{1}=i_{2}=i_{3}=i_{4}=0$, but $E_{4}=020 \rightarrow \in A$ contradicts K_{n}^{*}.
ad $\mathrm{b}:\{220 \rightarrow, 022 \rightarrow\} \subset A ; 223 \rightarrow, 322 \rightarrow 屯 A$
If $K_{1}=\ldots 0 B 0 B B 00 B B 0 B 0 B B O B O \ldots$ then $\exists n$:
$K_{n}=i_{1} 2 i_{2} 22 i_{3} i_{4} 22 i_{5} 2 i_{6} 22 i_{7} 2 i_{8}$ for some $i_{1}, \ldots, i_{8} \in\{0,3\}$.
Because $220 \rightarrow, 022 \rightarrow \in A$ it holds $i_{j}=3(1 \leqq j \leqq 8)$. This implies $232 \rightarrow, 332 \rightarrow$, $233 \rightarrow \notin A$.

If $K_{1}^{\prime}=\ldots 0 B B 000 B B 0 \ldots$ then $\exists n$:

$$
K_{n}^{*}=j_{1} 22 j_{2} j_{3} j_{4} 22 j_{5} \ldots \text { for some } j_{1}, \ldots, j_{5} \in\{0,3\} .
$$

Because of $220 \rightarrow, 022 \rightarrow \in A$ it holds $032 \rightarrow \in A$, otherwise a later bird ($0 B 0 B B 0$) far enough right from the first bird (starting with K_{1}) reaches state 2 and remains in this state. This implies $j_{3}=3$, because $022 \rightarrow \in A$ and $E_{3}=023 \rightarrow \in A$. Furthermore it follows from $j_{2}=j_{3}=j_{4}=3$ that $333 \rightarrow ₫ A$. Now we consider K_{1} and K_{n}^{*}, again.

$$
K_{n}^{*}=\ldots 0 \underbrace{3 \ldots}_{m} 2 i_{2} 22 i_{3} i_{4} 22 i_{5} 2 i_{6} 22 i_{7} 2 i_{8} \ldots
$$

$m=1$ implies a contradiction, because $023 \rightarrow 0 \in A$ (then $023 \rightarrow \in A$ eliminates state 2) or $032 \rightarrow 2 \in A$ (then a new distinguished state arises). Let $m>1$. Since $333 \rightarrow \Varangle A$ and $233 \rightarrow \notin A$ and later birds ($0 B 0 B B 0$) far enough from the first birds must be killed (state 2 changed) the transition $033 \rightarrow$ belongs to A.

This transition leads to a configuration K_{t}^{*} (from K_{n}^{*})
...032322332232322323...
and in the next step we obtain a new state $2(032 \rightarrow 2)$ or a state $0(032 \rightarrow 0)$ in the cell marked by \sim and then we eliminate state 2 , because of $E_{3}=023 \rightarrow \epsilon A$. This shows that case 14 is impossible.

Case 15: $E_{1}, E_{2}, E_{3}, E_{4} \in A$
If $K_{1}=\ldots 0 B 0 \ldots$, then $\exists n: K_{n}^{*}=\ldots i_{1} 2 i_{2} \ldots$ for some $i_{1}, i_{2} \in\{0,3\}$, but $E_{i} \in A(1 \leqq i \leqq 4)$ contradicts K_{n}^{*}.

Case 16: $E_{i} \ddagger A(1 \leqq i \leqq 4)$
If $K_{1}=\ldots 0 B 0 B B O B 0 \ldots$ then $\exists n$:
$K_{n}^{*}=\ldots i_{1} 2 i_{2} 22 i_{3} 2 i_{4} \ldots$ for some $i_{1}, \ldots, i_{4} \in\{0,3\}$.
ad a: $\{220 \rightarrow, 022 \rightarrow\} \subset A ; 223 \rightarrow, 322 \rightarrow 母 A$, then it holds $i_{2}=i_{3}=3$. Since $E_{2}=320 \rightarrow$, $E_{1}=323 \rightarrow, 322 \rightarrow 母 A$ later birds $0 B 0 B B 0 B 0$ far enough left from the first birds reach state 2 and remain in this state.
ad $\mathrm{b}:\{223 \rightarrow, 322 \rightarrow\} \subset A ; 220 \rightarrow, 022 \rightarrow \notin A$, then it holds $i_{2}=i_{3}=0$. Since $E_{4}=020 \rightarrow, E_{3}=023 \rightarrow, 022 \rightarrow \notin A$ later birds ($0 B 0 B B 0 B 0$) far enough left from the first birds reach state 2 and remain in this state.

Altogether we have proved that the one-dimensional early bird problem is unsolvable with set of states $\{0, B, 2,3\}$ and with distinguished state 2 .

INSTITUT FÜR MATHEMATISCHE LOGIK
UND GRUNDLAGENFORSCHUNG
D- 4400 MÚNSTER, GERMANY

References

[1] Legendi, T., E. Katona, A 5-state solution of the early bird problem in a one-dimensional cellular space, Acta Cybernet., v. 5, 1981, pp. 173-179.
[2] Rosenstiehl, P., J. R. Fiksel, A. Hollinger, Intelligent graphs: Network of finite automata capable of solving graph problems, Ev. Red, R. C., Graph Theory and Computing, Academic Press, New York, 1972, pp. 219-265.
[2]. Vollmar, R., On two modified problems of synchronization in cellular automata, Acta Cybernet., v. 3, 1978, pp. 293-300.

