The early bird problem is unsolvable in a one-dimensional cellular space with 4 states

By H. KLEINE BÜNING

Legendi and Katona (1981) have shown that the early bird problem in a onedimensional space is solvable with 5 states. The proof is based on a sophisticated concept of waves introduced by Vollmar. We will show that 5 states is a sharp bound for solvability.

1. Early bird problem

Vollmar (1977) defined the problem for a one-dimensional cellular space allowing more than one cell to be excited at a given time step. Only quiescent cells may be excited. Before the first time step at least one cell should be excited. After a certain period the first birds should be in a distinguished state while all the others in a different state.

2. Unsolvability with 4 states

Theorem. The early bird problem is unsolvable in a one-dimensional cellular space with 4 states.

Proof. Assume: There exists a four-state solution, say with a set of states $\{0, B, 2, 3\}$, where

O = initial state

B= bird state (arises only from state 0, spontaneously). Then there is a set of transitions — called A — solving the problem. After a certain period the first bird(s) should be in a distinguished state. The initial state 0 cannot be the distinguished state, because the space is unbounded and after a finite number of steps we obtain a finite configuration.

Case a: B is the distinguished state. There are no transitions $0B0 \rightarrow i$, $0BB \rightarrow i$, $BB0 \rightarrow i$, $BBB \rightarrow i$ (i=0, 2, 3) in A, since a bird B cannot be generated by transitions. The set of transitions A must contain a transition $B0B \rightarrow 2$ or $B0B \rightarrow 3$, otherwise the initial configurations

 $K_1 = \dots 0BBBB0BBBB0\dots$ and

 $K_1' = \dots 0BBBBBBBBBBB0\dots$, where for K_1

a later bird (second step) occurs at the cell marked by \sim would imply the same configuration sequence (after 3 steps). Without loss of generality we assume $B0B \rightarrow 2$ belongs to A. Then A contains no transition of the below defined set of transitions D, because a first bird would be killed.

 $D := \{BB2 \rightarrow i, 2BB \rightarrow i, 2B2 \rightarrow i, BB0 \rightarrow i, 0BB \rightarrow i, 0B0 \rightarrow i, BBB \rightarrow i \quad (i=0, 2, 3)\}.$

Now it is investigated a case distinction. Let

 $L_2 := B00 \rightarrow 2, \quad R_2 := 00B \rightarrow 2,$

 $L_3 := B00 \rightarrow 3, \quad R_3 := 00B \rightarrow 3.$

Case 1: $L_2, R_2 \in A$

Let $K_1 = ...0B000B0...$ be an initial configuration. Then we obtain after one step $K_2 = ...02B202B20...$ In case of birth of a bird we have $K_2^* = ...02B2B2B2B20...$. Furthermore let $K_1' = ...00B0B0B0...$ be another initial configuration, then we obtain after one step $K_2' = ...02B2B2B2B20...$. We see that $K_2' = K_2^*$. This shows that a later bird survives. This is a contradiction.

Case 2: $L_3, R_2 \in A$

Let the initial configuration $K_1 = ... 0B0B00BB0...$ be given. Then we get after one step $K_2 = ... 02B2B32BB30...$ Thus we see that A does not contain the transitions

 $2B2 \rightarrow i$ $2B3 \rightarrow i$ (i=0, 2, 3) (otherwise a first bird is killed). $BB3 \rightarrow i$

Now let (later birth of birds)

 $K'_2 = \dots 0B0B00B00\dots 02B2B32BB30\dots$

then we obtain

 $K'_{3} = \dots 02B2B32BB30\dots i_{1}\dots i_{12}0\dots$

for some $i_j \in \{0, B, 2, 3\}$. Eliminating these later birds is only possible from the right side. Since $BB3 \rightarrow i$, $BB2 \rightarrow i$, $BB0 \rightarrow i$ (i=0, 2, 3) do not belong to A (see above and set D), the later birds cannot be killed. This is a contradiction.

Case 3: L_2 , $R_3 \in A$ (analogue to case 2, symmetry)

Case 4: $L_3, R_3 \in A$

Let $K_1 = ...0BB00B00B000B0...$ be an initial configuration, then we get (after one step) $K_2 = ...03BB33B2B303B30...$ Thus we see that A does not contain the transitions

 $3BB \rightarrow i$ $BB3 \rightarrow i$ $3B2 \rightarrow i$ (i=0, 2, 3) (otherwise a first bird is killed). $2B3 \rightarrow i$ $3B3 \rightarrow i$

24

Since $BB0 \leftarrow i$, $BB2 \rightarrow i$ (i=0, 2, 3) $\notin A$ (see set D) and above we have seen $BB3 \rightarrow i \notin A$ two later birds — left from the first birds — survive. This is a contradiction.

Case 5: $L_2 \in A$, R_2 , $R_3 \notin A$ Let the initial configuration be given $K_1 = \dots 0B00B0\dots$, then we obtain (after one step) $K_2 = \dots 00B20B20\dots$ Now let (birth of bird) $K'_2 = \dots 0B2BB20\dots$ and $K'_1 = \dots 0B0BB0\dots$ another initial configuration.

Then we get after one step $K_2^* = \dots 0B2BB20\dots$. Since $K_2^* = K_2'$ the later bird survives. This is a contradiction.

Case 6: $R_2 \in A$, L_2 , $L_3 \notin A$ (analogue to case 5, symmetry)

Case 7: $L_3 \in A$, R_2 , $R_3 \notin A$

Let the initial configuration $K_1 = ...0BBB0...$ be given, then after one step we get $K_2 = ...0BBB30$. Thus we see that $BB3 \rightarrow i \notin A$ (i=0, 2, 3). Since $BB2 \rightarrow i$, $BB0 \rightarrow i \in D$ and therefore not in A, later birds far enough left from the first birds survive. This is a contradiction.

For example:

 $K'_2 := 0...0BBB0...0...0BBB30...$ (~birth of birds)

then we get

 $K'_3 := 0...0BBB30...0i_1...i_{10}0...$ for some $i_i \in \{0, B, 2, 3\}$

Case 8: $R_3 \in A$, L_2 , $L_3 \notin A$ (analogue to 7, symmetry)

Case 9: $L_2, L_3, R_3, R_3 \notin A$

Let $K_1 = ...0B00...$ be an initial configuration, then no transition is applicable to K_1 . In case of birth of a bird $K'_1 = ...0B000B00$, again we cannot apply a transition to K'_1 . This is a contradiction, because K_1 and K'_1 have the same configuration sequence. Altogether we have shown that the early bird problem is unsolvable with 4 states, where B is the distinguished state..

Next we will consider the distinguished states 2 or 3. Without loss of generality we assume

Case b: 2 is the distinguished state.

Before starting with a case distinction we will prove

Proposition 1. If the set of transitions A solves the problem, then

a)
$$\exists i_1, i_2 \in \{0, 3\}$$
: $(220 \rightarrow i_1 \in A, 022 \rightarrow i_2 \in A)$ and
 $\forall i=0,2: (322 \rightarrow i \notin A, 223 \rightarrow i \notin A)$ or

b)
$$\exists i_1, i_2 \in \{0, 3\}$$
: $(223 \rightarrow i_1 \in A, 322 \rightarrow i_2 \in A)$ and
 $\forall i=0,3$: $(022 \rightarrow i \notin A, 220 \rightarrow i \notin A)$.

Proof. Let us begin with an initial configuration $K_1 = ...0BB0BB0BB0...$ without later birds. After a finite number of steps we obtain a configuration.

 $K_n = \dots i_2 i_1 22 l 22 m 22 j_1 j_2 \dots$ for some $i_t, j_t, l, m \in \{0, 3\}$

and state 2 remains in the next steps in these cells (no birth of birds).

Thus we see that $122 \rightarrow i$, $22l \rightarrow i \notin A$ (i=0, 3), otherwise the distinguished state 2 is changed.

IF l=0, then $022 \rightarrow i$, $220 \rightarrow i \notin A$. IF $322 \rightarrow i$ resp. $223 \rightarrow i \notin A$ for i=0, 3, then it holds $322 \rightarrow i$ resp. $223 \rightarrow i$ $222 \rightarrow i$ 222 $\rightarrow i$ not in A. $022 \rightarrow i$ 220 $\rightarrow i$.

Thus we see that two later birds for enough right resp. left from the first birds survive. Therefore $322 \rightarrow i_1$ and $223 \rightarrow i_2 \in A$ for some $i_1, i_2 \in \{0, 3\}$. If l=3 the proof is similar.

Now we write $XYZ \rightarrow instead$ of $\exists i \in \{0, B, 2, 3\} - \{Y\}$: $XYZ \rightarrow i$ and $XYZ \rightarrow \in A$ means $\exists i \in \{0, B, 2, 3\} - \{Y\}$: $XYZ \rightarrow i \in A$.

Let

 $E_1 := 323 \rightarrow \qquad E_3 := 023 \rightarrow \qquad \qquad$

 $E_2 := 320 \rightarrow \qquad E_4 := 020 \rightarrow.$

Next we will consider a case distinction.

Case 1: $E_1 \in A$; $E_2, E_3, E_4 \notin A$

Case 1a: $\{223 \rightarrow, 322 \rightarrow\} \subset A, 220 \rightarrow, 022 \rightarrow \notin A$ (see Prop. 1)

Let $K_1 = ... 0BB000...$ be the initial configuration, then we obtain after a finite number of steps

 $K_n = \dots i_1 22 i_2 \dots$ for some $i_1, i_2 \in \{0, 3\}$

and from hence cells with state 2 remain in state 2. Then $i_2=i_1=0$, because 223 \rightarrow , 322 $\rightarrow \in A$. Since $E_3=023 \rightarrow$, $E_4=020 \rightarrow$, 022 $\rightarrow \notin A$ two later birds far enough left from the early birds reach state 2 and remain in this state.

Case 1b: $\{220 \rightarrow, 022 \rightarrow\} \subset A, 223 \rightarrow, 322 \rightarrow \notin A$

If $K_1 = ...0BB0B0B0B0$ is an initial configuration, we obtain for some n, $K_n = ...i_1 22 i_3 2i_4 22 i_5...$ where state 2 remains (no birth of birds) in these cells. Then $i_1 = i_3 = i_4 = i_5 = 3$, because $220 \rightarrow 0.022 \rightarrow$

If K_1 is an initial configuration (with birds) and there are no later birds, then K_{n+1} denotes the configuration after *n* steps. If the bird-cells are in the distinguished state 2 and there is no change of states in these bird-cells in the following (without birth of birds) then the configuration is called K_{n+1}^* .

Case 2: $E_2 \in A$; E_3 , E_1 , $E_4 \notin A$ ad a: $\{220 \rightarrow, 022 \rightarrow\} \subset A$, $223 \rightarrow$, $322 \rightarrow \notin A$ The early bird problem is unsolvable in a one-dimensional cellular space with 4 states 27

If $K_1 = \dots 0B0BB0B0\dots$, then $\exists n$:

 $K_n^* = \dots i_1 2i_2 22i_3 2i_4$ for some $i_1, i_2, i_3, i_4 \in \{0, 3\}$.

Since $022 \rightarrow$, $220 \rightarrow \in A$, we see $i_2=i_3=3$ and $i_4=3$, because $E_2=320 \rightarrow \in A$. Since $E_1=323 \rightarrow$, $E_3=023 \rightarrow$, $223 \rightarrow \notin A$, later birds (0B0BB0B0) far enough right from the first birds reach state, 2 and remain in this state.

ad b: $\{223 \rightarrow, 322 \rightarrow\} \subset A, 220 \rightarrow, 022 \rightarrow \notin A$

If $K_1 = \dots 0BB0B0.\dots$, then $\exists n$:

 $K_n^* = \dots i_1 22i_2 2i_3$ for some $i_1, i_2, i_3 \in \{0, 3\}$.

Since $223 \rightarrow$, $322 \rightarrow \epsilon A$, it holds $i_1 = i_2 = 0$. Since $E_4 = 020 \rightarrow$, $E_3 = 023 \rightarrow$, $022 \rightarrow \epsilon A$ later birds (0BB0B) far enough left from the first one reach state 2 and remain in this state.

Case 3: $E_3 \in A$; E_1 , E_2 , $E_4 \notin A$ (analogue to case 2) Case 4: $E_4 \in A$; E_1 , E_2 , $E_3 \notin A$ ad a: $\{223 \rightarrow, 322 \rightarrow\} \subset A, 220 \rightarrow, 022 \rightarrow \notin A$ If $K_1 = ...0BB0B0BB0...$ then $\exists n$: $K_n^* = ...i_1 22i_2 2i_3 22i_4...$ for some $i_1, ..., i_4 \in \{0, 3\}$.

Since $223 \rightarrow$, $322 \rightarrow \in A$, it holds $i_1 = i_2 = i_3 = i_4 = 0$, but $E_4 = 020 \rightarrow \in A$ changes in the next step state 2. This is a contradiction to K_n^* .

ad b: $\{220 \rightarrow, 022 \rightarrow\} \subset A, 223 \rightarrow, 322 \rightarrow \notin A$

If $K_1 = \dots 0B0BB0BB0\dots$ then $\exists n$:

 $K_n^* = \dots i_0 2i_1 22i_2 22i_3 \dots$ for some $i_0, \dots, i_4 \in \{0, 3\}$.

Since $220 \rightarrow$, $022 \rightarrow \in A$, it holds $i_1 = i_2 = i_3 = 3$. Since $E_1 = 323 \rightarrow$, $E_3 = 023 \rightarrow$, $223 \rightarrow \notin A$ later birds (0B0BB0BB0) far enough right from the first one reach state 2 and remain in this state.

Case 5: $E_3, E_4 \in A$; $E_1, E_2 \notin A$ If $K_1 = \dots 0B0BB0B0\dots$ then $\exists n$:

 $K_n^* = \dots i_1 2i_2 22i_3 2i_4 \dots$ for some $i_1, \dots, i_4 \in \{0, 3\}$.

ad a: $\{220 \rightarrow, 022 \rightarrow\} \subset A$; $223 \rightarrow, 322 \rightarrow \notin A$. Then it holds $i_2 = i_3 = 3$ and because of $023 \rightarrow \in A$, $i_1 = 3$ holds. Since $E_1 = 323 \rightarrow$, $E_2 = 320 \rightarrow$, $322 \rightarrow \notin A$ later birds far enough left from the first one reach state 2 and state 2 cannot be changed.

ad b: $\{223 \rightarrow, 322 \rightarrow\} \subset A$; $220 \rightarrow, 022 \rightarrow \notin A$. Then it holds $i_2=0=i_3$, but $E_3=023 \rightarrow, E_4=020 \rightarrow \notin A$. Thus for one bird-cell (left from i_4) state 2 is changed in the next step.

Case 6: $E_2, E_4 \in A$; $E_1, E_3 \notin A$ (analogue to case 5)

Case 7: $E_2, E_3 \in A; E_1, E_4 \notin A$

ad a: $\{223 \rightarrow, 322 \rightarrow\} \subset A; 220 \rightarrow, 022 \rightarrow \notin A$

If $K_1 = ... 0B0BB00BB0B0B0B0B0B0...$ then $\exists n$:

 $K_n = \dots i_1 2i_2 22i_3 i_4 22i_5 2i_6 2i_7 22i_8 2i_9 \dots$ for some $i_1, \dots, i_8 \in \{0, 3\}$.

Since $223 \rightarrow$, $322 \rightarrow \in A$ and $E_3 = 023 \rightarrow$, $E_2 = 320 \rightarrow \in A$ it holds $i_j = 0$ $(1 \le j \le 9)$ and $200 \rightarrow$, $002 \rightarrow$, $202 \rightarrow \notin A$. Birds must send out signals to the right or to the left. So we can assume that a cell in state 3 is left or right from the cell with state i_1 or $i_9 \rightarrow$ say left —. Since $002 \rightarrow$, $202 \rightarrow \notin A$ it holds $302 \rightarrow \in A$, otherwise later birds (0B0BB) far enough right from the first birds survive (in state 2). Now let $K_n^* =$ = ...30...02022002202020202020200 be and m=1. This leads to a contradiction. If

 $302 \rightarrow 3 \in A$, then $E_3 = 320 \rightarrow \in A$ eliminates state 2. If $302 \rightarrow 2 \in A$, then a new state 2 occurs. Now let m > 1. Because $200 \rightarrow \notin A$ and later birds (double the configuration K_1) far enough right from the first ones must be eliminated, the set A contains the transition $300 \rightarrow$. This leads to a contradiction, because in case of $300 \rightarrow 3$ we reach case m=1 and in case of $300 \rightarrow 2$ a new distinguised state 2 occurs.

ad b: $\{220 \rightarrow, 022 \rightarrow\} \subset A; 223 \rightarrow, 322 \rightarrow \notin A$

If $K_1 = \dots 0B0BB00BB0$ then $\exists n$:

 $K_n^* = \dots i_1 2i_2 22i_3 i_4 22i_5 \dots$ for some $i_1, \dots, i_5 \in \{0, 3\}$.

Then it holds $i_1=i_2=i_3=i_4=i_5=3$, because $220 \rightarrow$, $022 \rightarrow$, $E_3=023 \rightarrow$ and $E_2==320 \rightarrow \in A$.

Furthermore we see that $232 \rightarrow$, $332 \rightarrow$, $233 \rightarrow \notin A$ (otherwise a new state 2 arises or a state 2 is eliminated one or two steps later). Since $232 \rightarrow$, $332 \rightarrow \notin A$ and later birds (0B0BB00BB0) far enough right from the first birds must be killed, the transition $032 \rightarrow belongs$ to A.

Now we consider $K_1' = \dots 0BB000BB0\dots$ then $\exists t$:

 $K_t^{\prime *} = \dots j_1 \, 22 j_2 \, j_3 \, j_4 \, 22 j_5$ for some $j_i \in \{0, 3\}$ $(1 \le i \le 5)$.

Then it holds $j_i=3$ $(i \neq 3)$ $(220 \rightarrow, 022 \rightarrow \in A)$. If $j_3=0$ then $032 \rightarrow \in A$ and $022 \rightarrow \in A$ lead to a contradiction (new state 2 or elimination). Thus we see that $j_3=3$ and $333 \rightarrow \notin A$.

Going back to K_1 it holds

$$K_n^* = \dots 03 \dots 3232233223 \dots$$

If m=1 and if $032 \rightarrow 0 \in A$, then $E_2=023 \rightarrow \in A$ eliminates the distinguished state 2 and if $032 \rightarrow 2 \in A$ we reach a new state 2. Let m>1. It holds $033 \rightarrow \notin A$, otherwise we obtain after some steps the situation m=1 or a new state 2. Altogether we get $333 \rightarrow$, $033 \rightarrow$, $233 \rightarrow \notin A$ and therefore a later bird (state 2) (0B0BB0) far enough from the first birds survive.

Case 8:
$$E_1, E_4 \in A; E_2, E_3 \notin A$$

If $K_1 = ... 0BB0B0BB0...$ then $\exists n$:

 $K_n^* = \dots i_1 22i_2 2i_3 22i_4$ for some $i_1, \dots, i_4 \in \{0, 3\}$.

ad a: $\{220 \rightarrow, 022 \rightarrow\} \subset A$; $223 \rightarrow, 322 \rightarrow \notin A$, then it holds $i_1 = i_2 = i_3 = i_4 = 3$, but $E_1 = 323 \rightarrow \notin A$ contradicts K_n^* .

ad b: $\{223 \rightarrow, 322 \rightarrow\} \subset A$; $220 \rightarrow, 022 \rightarrow \notin A$, then it holds $i_1 = i_2 = i_3 = i_4 = 0$, but $E_4 = 020 \rightarrow \notin A$ contradicts K_n^* .

Case 9: $E_1, E_2 \in A; E_3, E_4 \notin A$

If $K_1 = \dots 0BB0B0B0B0...$ then $\exists n$:

 $K_n^* = \dots i_1 22i_2 2i_3 22i_4 2i_5 \dots$ for some $i_1, \dots, i_5 \in \{0, 3\}$.

ad a: $\{220 \rightarrow, 022 \rightarrow\} \subset A$; $223 \rightarrow, 322 \rightarrow \notin A$, then it holds $i_1 = i_2 = i_3 = i_4 = 3$, but $E_1 = 323 \rightarrow \notin A$ contradicts K_n^* .

ad b: $\{223 \rightarrow, 322 \rightarrow\} \subset A$; $220 \rightarrow, 022 \rightarrow \notin A$, then it holds $i_1 = i_2 = i_3 = i_4 = 0$. Since $E_4 = 020 \rightarrow, E_3 = 023 \rightarrow, 022 \rightarrow \notin A$ later birds (0BB0B0B0B0) far enough left from the first one reach state 2 and remain in this state.

Case 10: $E_1, E_3 \in A$; $E_2, E_4 \notin A$ (analogue to case 9)

Case 11: $E_1, E_2, E_4 \in A; E_3 \notin A$

If $K_1 = \dots 0B0B0B0\dots$ then $\exists n$

 $K_n^* = \dots i_1 2i_2 2i_3 2i_4 \dots$ for some $i_1, \dots, i_4 \in \{0, 3\}$.

If $i_2=3$, then $i_3=0$ or 3, but $E_1=323 \rightarrow$, $E_2=320 \rightarrow \in A$ contradicts K_n^* . If $i_2=0$, then $i_3=3$ and then $i_4=0$ or 3, but $E_1=323 \rightarrow$, $E_2=320 \rightarrow \in A$ contradicts K_n^* .

Case 12: $E_1, E_3, E_4 \in A$; $E_2 \notin A$ (analogue to case 11)

Case 13: $E_1, E_2, E_3 \in A; E_4 \notin A$ ad a: $\{220 \rightarrow, 022 \rightarrow\} \subset A; 223 \rightarrow, 322 \rightarrow \notin A$ If $K_1 = \dots 0BB0B0BB0\dots$ then $\exists n$:

 $K_n^* = \dots i_1 22i_2 2i_3 22i_4$ for some $i_1, \dots, i_4 \in \{0, 3\}$.

Since $220 \rightarrow$, $022 \rightarrow \in A$, it holds $i_1 = i_2 = i_3 = i_4 = 3$. But $E_1 = 323 \rightarrow \in A$ contradicts K_n^* $(i_2 2i_3)$.

ad b: $\{223 \rightarrow, 322 \rightarrow\} \subset A; 220 \rightarrow, 022 \rightarrow \notin A$

If $K_1 = \dots 0B0BB00BB0B0\dots$ then $\exists n$:

 $K_n^* = \dots i_1 2i_2 22i_3 i_4 22i_5 2i_6 \dots$ for some $i_1, \dots, i_6 \in \{0, 3\}$.

Since $223 \rightarrow$, $322 \rightarrow \in A$, it holds $i_2 = i_3 = i_4 = i_5 \rightarrow 0$ and because of $E_3 = 023 \rightarrow$, $E_2 = 320 \rightarrow \in A$ it holds $i_1 = i_6 = 0$. Furthermore $i_1 = \ldots = i_6 = 0$ implies $202 \rightarrow$, $200 \rightarrow$, $002 \rightarrow \notin A$, otherwise a state 2 is changed. Birds must send out signals to the right or to the left. Therefore we have a transition $300 \rightarrow 3$ or $003 \rightarrow 3$ in A.

Suppose: $300 \rightarrow 3, 003 \rightarrow 3 \in A$.

Case b1: Left from the cell with state i_1 in K_n^* state 3 occurs.

$$K_n^* = \dots \underbrace{30\dots0}_{m} 20220022020\dots$$

Let $m=1: 302 \rightarrow 3$ or $2 \in A$ contradicts K_n^* , because of $E_2=320 \rightarrow \in A$ resp. a new state 2 occurs. Thus $302 \rightarrow \notin A$ and because $202 \rightarrow$, $002 \rightarrow \notin A$ a later bird marked by $\sim (0B0BB0)$ far enough right from the first remains in state 2.

If m>1, we reach after m-1 steps case m=1, because $300 \rightarrow 3 \in A$.

Case b2: Right from the cell with state i_6 in K_n^* state 3 occurs. This leads to a contradiction similar to case b1.

Thus we see that $300 \rightarrow 3 \notin A$ or $003 \rightarrow 3 \notin A$. Without loss of generality we assume $300 \rightarrow 3 \in A$ and $003 \rightarrow 3 \notin A$. Then there is no cell left from the cell with state i_1 in K_n^* which has state 3 (apply case b_1 again). Therefore a cell right from the cell i_6 must have state 3.

...020220022020...03

If m=1 for all further steps, then $203 \rightarrow 3 \notin A$, because $E_3=023 \rightarrow \epsilon A$ and $203 \rightarrow 2 \notin A$, because a distinguished state 2 arises. Altogether we obtain $203 \rightarrow$, $200 \rightarrow$, $202 \rightarrow \notin A$. This shows that later birds (0BB0B0) far enough left from the first reach state 2 and remain in this state.

If m>1, then $003 \rightarrow 2 \in A$, otherwise there is no feedback from a meeting with birds far enough right from the origin, but $003 \rightarrow 2$ generates new distinguished states in case of no birth of birds. This is a contradiction.

Case 14: $E_2, E_3, E_4 \in A$; $E_1 \notin A$ ad a: $\{223 \rightarrow, 322 \rightarrow\} \subset A$; $220 \rightarrow, 022 \rightarrow \notin A$ If $K_1 = ... 0BB0B0BB0...$ then $\exists n$: $K_n^* = i_1 22i_2 2i_3 22i_4 ...$ for some $i_1, ..., i_4 \in \{0, 3\}$.

Because 223 \rightarrow , 322 $\rightarrow \in A$ it holds $i_1 = i_2 = i_3 = i_4 = 0$, but $E_4 = 020 \rightarrow \in A$ contradicts K_n^* .

ad b: $\{220 \rightarrow, 022 \rightarrow\} \subset A$; $223 \rightarrow, 322 \rightarrow \notin A$ If $K_1 = \dots 0B0BB00BB0B0B0B0...$ then $\exists n$:

 $K_n = i_1 2i_2 22i_3 i_4 22i_5 2i_6 22i_7 2i_8$ for some $i_1, \dots, i_8 \in \{0, 3\}$.

Because $220 \rightarrow$, $022 \rightarrow \in A$ it holds $i_j = 3$ $(1 \le j \le 8)$. This implies $232 \rightarrow$, $332 \rightarrow$, $233 \rightarrow \notin A$.

If $K'_1 = \dots 0BB000BB0\dots$ then $\exists n$:

$$K_n^* = j_1 22 j_2 j_3 j_4 22 j_5 \dots$$
 for some $j_1, \dots, j_5 \in \{0, 3\}$.

Because of $220 \rightarrow$, $022 \rightarrow \in A$ it holds $032 \rightarrow \in A$, otherwise a later bird (0B0BB0) far enough right from the first bird (starting with K_1) reaches state 2 and remains in this state. This implies $j_3=3$, because $022 \rightarrow \in A$ and $E_3=023 \rightarrow \in A$. Furthermore it follows from $j_2=j_3=j_4=3$ that $333 \rightarrow \notin A$. Now we consider K_1 and K_n^* again.

$$K_n^* = \dots \underbrace{03\dots3}_{m} 2i_2 22i_3 i_4 22i_5 2i_6 22i_7 2i_8 \dots$$

m=1 implies a contradiction, because $023 \rightarrow 0 \in A$ (then $023 \rightarrow \epsilon A$ eliminates state 2) or $032 \rightarrow 2 \in A$ (then a new distinguished state arises). Let m>1. Since $333 \rightarrow \epsilon A$ and $233 \rightarrow \epsilon A$ and later birds (0B0BB0) far enough from the first birds must be killed (state 2 changed) the transition $033 \rightarrow \epsilon A$.

This transition leads to a configuration K_t^* (from K_n^*)

...03232233223232323...

and in the next step we obtain a new state 2 (032-2) or a state 0 (032-0) in the cell marked by \sim and then we eliminate state 2, because of $E_3 = 023 \rightarrow \in A$. This shows that case 14 is impossible.

Case 15: $E_1, E_2, E_3, E_4 \in A$

If $K_1 = ... 0B0...$, then $\exists n: K_n^* = ... i_1 2i_2...$ for some $i_1, i_2 \in \{0, 3\}$, but $E_i \in A$ $(1 \le i \le 4)$ contradicts K_n^* .

Case 16: $E_i \notin A \ (1 \leq i \leq 4)$

If $K_1 = \dots 0B0BB0B0\dots$ then $\exists n$:

 $K_n^* = \dots i_1 2i_2 22i_3 2i_4 \dots$ for some $i_1, \dots, i_4 \in \{0, 3\}$.

ad a: $\{220 \rightarrow, 022 \rightarrow\} \subset A$; $223 \rightarrow, 322 \rightarrow \notin A$, then it holds $i_2 = i_3 = 3$. Since $E_2 = 320 \rightarrow, E_1 = 323 \rightarrow, 322 \rightarrow \notin A$ later birds 0B0BB0B0 far enough left from the first birds reach state 2 and remain in this state.

ad b: $\{223 \rightarrow, 322 \rightarrow\} \subset A$; $220 \rightarrow, 022 \rightarrow \notin A$, then it holds $i_2=i_3=0$. Since $E_4=020 \rightarrow, E_3=023 \rightarrow, 022 \rightarrow \notin A$ later birds (0B0BB0B0) far enough left from the first birds reach state 2 and remain in this state.

Altogether we have proved that the one-dimensional early bird problem is unsolvable with set of states $\{0, B, 2, 3\}$ and with distinguished state 2.

INSTITUT FÜR MATHEMATISCHE LOGIK UND GRUNDLAGENFORSCHUNG D-4400 MÜNSTER, GERMANY

References

- [1] LEGENDI, T., E. KATONA, A 5-state solution of the early bird problem in a one-dimensional cellular space, Acta Cybernet., v. 5, 1981, pp. 173-179.
- [2] ROSENSTIEHL, P., J. R. FIKSEL, A. HOLLINGER, Intelligent graphs: Network of finite automata capable of solving graph problems, ED. RED, R. C., Graph Theory and Computing, Academic Press, New York, 1972, pp. 219-265.
- [2] VOLLMAR, R., On two modified problems of synchronization in cellular automata, Acta Cybernet., v. 3, 1978, pp. 293-300.

(Received August 27, 1981)