The early bird problem is unsolvable
in a one-dimensional cellular space with 4 states

By H. KLEINE BUNING

Legendi and Katona (1981) have shown that the early bird problem in a one-
dimensional space is solvable with 5 states. The proof is based on a sophisticated
concept of waves introduced by Vollmar. We will show that 5 states is a sharp bound
for solvability.

1. Early bird problem

Vollmar (1977) defined the problem for a one-dimensional cellular space allow-
ing more than one cell to be excited at a given time step. Only quiescent cells may be
excited. Before the first time step at least one cell should be excited. After a certain
period the first birds should be in a distinguished state while all the others in a dif-
ferent state.

2. Unsolvability with 4 states

Theorem. The early bird problem is unsolvable in a one-dimensional cellular
space with 4 states.

Proof. Assume: There exists a four-state solution, say with a set of states
{0, B, 2, 3}, where

O=initial state .

B=bird state (arises only from state 0, spontaneously). Then there is a set of
transitions — called 4 — solving the problem. After a certain period the first
bird(s) should be in a distinguished state. The initial state 0 cannot be the distin-
guished state, because the space is unbounded and after a finite number of steps we
obtain a finite configuration.

Case a: Bisthe distinguished state. There are no transitions 0B0—i, OBB—i,
BB0O—i, BBB—~i (i=0, 2, 3) in A, since a bird B cannot be generated by transitions.
The set of transitions 4 must contain a transition B0B—2 or BOB—3, otherwise
the initial configurations

K,=...0BBBBOBBBBO... and
K{=...0BBBBBBBBBO..., where for K,
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a later bird (second step) occurs at the cell marked by ~ would imply the same con-
figuration sequence (after 3 steps). Without loss of generality we assume BOB—2
belongs to A. Then A contains no transition of the below defined set of transitions D,
because a first bird would be killed.

D := {BB2—i, 2BB—~i, 2B2—~i, BB0O—~i, 0BB—i, 0B0O—i, BBB—~i (i=0, 2, 3)}.
Now it is investigated a case distinction. Let
L, := B00—~2, R,:=00B-2,
Ly := B00—~3, R,:= 00B-3.

Case 1: L,, R,cA

Let K,=...0B000BO... be an initial configuration. Then we obtain after one
step K,=...02B202B20.... In case of birth of a bird we have Kj}=...02B2B2B20....
Furthermore let K =...00B0B0BO0... be another initial configuration, then we obtain
after one step K,=...02B2B2B20.... We see that K;=K;". This shows that a later
bird survives. This is a contradiction.

Case 2: Lj, R,cA . _

Let the initial configuration K;=...0BOBO0BBO... be given. Then we get after
one step K,=...02B2B32BB30.... Thus we see that 4 does not contain the transi-
tions

2B2 i
2B3—~i (i=0,2, 3) (otherwise a first bird is killed). ,
BB3 i

Now let (later birth of birds)
K;=...0B0B00B00...02B2B32BB30...

then we obtain )
K;=...02B2B32BB30...7...i;,0...

for some i;¢{0, B, 2, 3}. Eliminating these later birds is only possible from the right
side. Since BB3—i, BB2—~i, BBO—+i (i=0, 2, 3) do not belong to 4 (see above and
set D), the later birds cannot be killed. This is a contradiction.

Case 3: L,, R;cA (analogue to case 2, symmetry)

Case 4: L;, R;cA4

Let K;=...0BBOOBOB0O00BO... be an initial configuration, then we get (after
one step) K,=...03BB3382B303B30.... Thus we see that 4 does not contain the
transitions '

3BB—i
BB3—i
3B2—i (i=0,2,3) (otherwise a first bird is killed). '
2B3—i
3B3—i
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Since BBO~«i, BB2—i (i=0, 2, 3)¢ A (see set D) and above we have seen BB3 ~i¢ A
two later birds — left from the first birds — survive. This is a contradiction.

Case 5: Ly€A, Ry, Ry¢ A
Let the initial configuration be given

K, = ...0B00BO..., then we obtain (after one step)
K, = ...00820B20.... Now let (birth of bird)

K; = ...0B2BB20... and

K= ...0BOBBO... another initial configuration.

Then we get after one step K;=...0B2BB20.... Since K=K the later bird sur-
vives. This is a contradiction.

Case 6: RycAd, L,, Ly¢ A (analogue to case 5, symmetry)

Case 7: LycA, Ry, Ry¢ A .

Let the initial configuration K,=...0BBBO0... be given, then after one step we
get K,=...0BBB30. Thus we see that BB3—i¢ A (i=0,2,3). Since BB2-i,
BBO—~icD and therefore not in A, later birds far enough Teft from the first birds
survive. This is a contradiction.

For example:

K; := 0...0BBB0...0...0BBB30... (~birth of birds)
then we get .

K3 = 0...0BBB30...0i...1340... for some i;€{0, B, 2, 3}

Case 8: R3€A,VL2,AL3€A (analogue to 7, symmetry)

Case 9: L,, Ly, Ry, Ry A

Let K,;=...0B00... be an initial configuration, then no transition is applicable
to K;. In case of birth of a bird K{=...0B000B00, again we cannot apply a transition
to K. This is a contradiction, because K; and K, have the same configuration se-
quence. Altogether we have shown that the early bird problem is unsolvable with 4
states, where B is the distinguished state..

Next we will consider the distinguished states 2 or 3. Without loss of generality
. We assume ‘

Case b: 2 is the distinguished state.
Before starting with a case distinction we will prove

Proposition 1. If the set of transitions A solves the. problem, then
a) iy, i,€{0, 3}: (220+i,€4, 022+i,c4) and

Vi=0,2: (322—+i¢ A, 223~i¢ A) or
b) 3iy, i€{0, 3}: (223 —+i,€4, 322—+i,cA4) and

Vi=0,3: (022—i¢ 4, 220—~i¢ A).
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Proof. Let us begin with an initial conflguration K, =...0BBOBBOBBO... without
later birds. After a finite number of steps we obtain a configuration.

K, = ..5i22122m22j,j,... for some i, j, I, me{0, 3}

‘and state 2 remains in the next steps in these cells (no birth of birds).

Thus we see that [22-i, 22]-i¢ A (i=0, 3), otherwise the distinguished
state 2 is changed.

IF /=0, then 022—i, 220—i¢ A.

IF 322 =iresp. 223—+i¢ A for i=0,3, then it holds

322 i resp. 223 i

222§ 222—+i not in A.

022—+j 220 i,

Thus we see that two later birds for enough right resp. left from the first birds
survive. Therefore 322—+i; and 223—+i,€A4 for some i, i,€{0, 3}. If /=3 the proof
is similar. )

Now we write XYZ— instead of 3i€{0,B,2,3}-{Y}: XYZ~i and
XYZ—~¢cA means 3ie{0, B,2,3}—{Y}: XYZ~icA.

Let

E, =323~ E; =023~ —
E,:=320—  E,:= 020—.

- Next we will consider a case distinction.
Case 1: E\€A; E,, F;,E 4 A

Case la: {223, 322+}CA4, 220, 022—+¢ A (see Prop. 1)

Let K,=...0BB000... be the initial configuration, then we obtain after a ﬁmte
number of steps

K, = ...i;22i,... for some i,i,€{0,3}
and from hence cells with state 2 remain in state 2. Then i,=i,=0, because 223,

322+¢€A. Since E;=023—~, E,;=020—+, 022—+¢ 4 two later birds far enough left
from the early birds reach state 2 and remain in this state.

Case 1b: {220~, 022—~}c4, 223, 322~+4¢ 4

If K,=...0BBOBOBBO is an initial configuration, we obtain for some »n, K,=

..iy 22 i3 2i, 22 i;... where state 2 remains (no birth of birds) in these cells. Then
11—13—14_15_3 because 220+, 022—+¢€A. This is a contradlctlon to 323—+¢€A4.
The cell marked by ~ changes its state 2.

If K, is an initial configuration (with birds) and there are no later birds, then
K, ., denotes the configuration after »n steps. If the bird-cells are in the distinguished
state 2 and there is no change of states in these bird-cells in the following (without
birth of birds) then the configuration is called K,

Case 2: E,cA; E;,E\,E4A
ad a: {220—,022—~}c4, 223, 322~¢ 4
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If K,=...0BOBB0BO..., then In:
K: = "'il 2i2 22i3 2i4 fOI‘ some il’ ig, ia, i4€{0, 3}.

Since 022, 220—-¢A4, we see i,=i3=3 and i,=3, because E,=320-¢A.
Since E,=323—, E;=023—, 223-+¢ A, later birds (0BOBBO0BO) far enough right
from the first birds reach state,2 and remain in this state.

ad b: {223, 322-+}cA4, 220, 022~ QA

If K;=...0BB0OBO0..., then dn:

Kn* = "‘ll 22iz 2i3 fOI' Some il’ iz, i3€ {0, 3}-

Since 223—, 322—+¢A, itholds i;=i,=0. Since E,=020—, E;=023—, 0224 4
later birds (OBBOB) far enough left from the first one reach state 2 and remain in
this state.

Case 3: E;cA; E, E,, E,¢ A (analogue to case 2)

Case 4: Ecd; Ey, E;, E;4 A

ad a: {223» 322~} 4, 220, 022~¢ A4
If K,=..0BBOBOBBO... then in:

K} = ...i; 22iy 2iy 22i,... for some i, ...,i,€{0, 3}.

Since 223, 322--¢cA, it holds i,=i,=i,=i,=0, but E,=020—~¢A changes in
the next step state 2. This is a contradiction to K.

ad b: {220, 022~} 4, 223, 3224 A4

If K,=...0BOBBOBBO0... then 3n:

KX = ...1,2i,22i,22i,... for some iy, ..., iy €{0, 3}..

Since 220—, 022—~¢A, it holds i,=i,=i;=3. Since E;=323-, E;=023—,
223~ ¢ A later birds (0BOBBOBBO) far enough right from the first one reach state 2
and remain in this state.

Case 5: E,,EcA4; E,, E. ¢4
If K;=...0BOBB0B(... then In:
K: = "'il 2i2 22i3 2i4... fOI' some il) ceny i4€{0, 3}.

ad a: {220, 022~}c 4; 223, 322—~¢ 4. Then it holds i,=i;=3 and
because of 023—+¢Ad, ;=3 holds. Since E,=323-, E,=320—, 322~¢ A4 later
birds far enough left from the first one reach state 2 and state 2 cannot be changed.

ad b: {223, 322~} 4; 220, 022~¢ A. Then it holds #,=0=i;, but
E,=023—+, E,=020-+¢4. Thus for one bird-cell (left from i,) state 2 is changed in
the next step.

Case 6: E,, E,cA; E,, E;4 A (analogue to case 5)

Case 7: E,, E;cA; E,, E,4¢ A
ad a: {223—, 322+}c4; 220+, 022~¢ 4
If K,=...0BOBBOOBBOBOBOBBOBO(... then 3In:

K, = ...iy 2iy 22iy iy 220y 2ig 2, 22ig 2y ... for some i, ..., is€ {0, 3}.
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Since 223—, 322~¢€A4 and E,;=023—, E,=320~¢d it holds i;=0 (1=j=9)
and 200~, 002, 202~ ¢ 4. Birds must send out signals to the right or to the left.
So we can assume that a cell in state 3 is left or right from the cell with state i, or
iy — say left —. Since 002—, 202-~¢ A it holds 302—¢A, otherwise later birds
(0BOBB) far enough right from the first birds survive (in state 2). Now let K=
= ...3u)2022m220202022020 be and m=1. This leads to a contradiction. If

302—~3¢4, then E,=320-+¢€¢A eliminates state 2. If 302—2¢ 4, then a new state
2 occurs. Now let m=>1. Because 200— ¢ A and later birds (double the configura-
tion Kj;) far enough right from the first ones must be eliminated, the set A contains
the transition 300—. This leads to a contradiction, because in case of 300—+3 we
reach case m=1 and in case of 3002 a new distinguised state 2 occurs.

ad b: {220, 022—~}c4; 223, 322+-¢ A

If K,=...0BOBBO0BB0 then 3n:

Kr=..4 2iy22i,i, 22i; ... for some iy, ..., i;€{0, 3}.

Then it holds i,=i,=iy=i,=i;=3, because 220—, 022+, E,=023—+ and E,=
=320—-¢A.

Furthermore we see that 232—, 332—, 2334 4 (otherwise a new state 2
arises or a state 2 is eliminated one or two steps later). Since 232, 332~ ¢ 4 and
later birds (0BOBBO0BBO) far enough right from the first birds must be killed, the
transition 032— belongs to A.

Now we consider K;=...0BB000BBO... then 3¢:

K/* = ..j122j,j,)4 22j; for some j;€{0,3} (I=i=5).
Then it holds j;=3 (i#3) (220~, 022 ¢ A4). If j,=0 then 032—>¢A4 and 022—~¢cA
lead to a contradiction (new state 2 or elimination). Thus we see that j;=3 and
3334 A.

Going back to K; it holds

K} = ...03...3232233223...
]

If m=1 and if 032—+-0¢A4, then E,=023—~¢A eliminates the distinguished state 2
and if 032—+2¢A4 we reach a new state 2. Let m=>1. It holds -033—~ ¢ 4, otherwise
we obtain after some steps the situation m=1 or a new state 2. Altogether we get
333+, 033—, 233+¢ A and therefore a later bird (state 2) (OBOBBO) far enough
from the first birds survive.

Case 8: E,,E,€A4; E;, E;¢ A
If K,=...0BBOBOBB(... then 3In:

K} = ...i, 22i, 2i3 22i, for some i, ..., 7,€{0, 3}.

n

ad a: {220—~, 022~}cA4; 223, 322—~4¢ A4, then it holds 11-—12_13—14—3
but E,=323-¢4 contradicts K*.

ad b: {223, 322} A; 220~, 022§ 4, then it holds =iy iy =i, =0,
but E,=020—¢A contradicts K.

Case 9: E,,E,cA; E;,E.¢ A
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If K,=...0BBOBOBB0BO0... then dn:

K"* = .. 'il 22i2 2i3 221.4 2i5... fOI‘ some il’ ooy i5€ {0, 3}.

ad a: {220—~, 022~}c4; 223, 322—~4 4, then it holds i,=i,=iy=i,=3,
but E;=323—+¢4 contradicts K.

ad b: {223-, 322~} A; 220>, 022~ ¢ A, then it holds i =i,=i3=i,=0.
Since E,=020-, E,=023—, 022--¢ A later birds (0BBOBOBBOB0) far enough
left from the first one reach state 2 and remain in this state.

Case 10: E;, E;cA; E,, E;4 A (analogue to case 9) -

Case 11: E\, E;, E,c4; F;¢A4
If K,=...0B0B0BO... then 3n

KF = .0y 2iy 2i,2i, ... for some i, ..., i;€{0, 3}.

If i,=3, then ;=0 or 3, but E;=323—, E,=320—¢4 contradicts K. If {,=0,
then 7,=3 and then #,=0 or 3, but E;=323~, E,=320~¢A4 contradicts K.

Case 12: E,, E,,E,cA; E;§6 A4 (analogue to case 11)

Case 13: E\|, E;, E;eA; Ej¢ A
ad a: {220—, 022~>}c4d; 223, 322~¢ A4
If K,=...0BBOBOBBO... then 3n:

K* - "'il 22i2 2i3 22i4 fOI‘ some il’ evy i4€{0, 3}.

Since 220—, 022—-¢A, it holds ij=i,=i,=i,=3. But E,=323-+¢cA contradicts
KX (iy 2iy). . 4
ad b: {223, 322-}cAd; 220, 022~¢ A4
If K;=...0BOBBOOBBOB0... then 3In:

KX = ...i 2iy 22iy i, 22i; 2i5 ... for some iy, ..., i5€{0, 3}.

n

Since 223—, 322—+¢A4, it holds i,=i;=i;=i;—~0 and because of FE;=023-,
E,=320—~¢A it holds i;=i,=0. Furthermore i;=...=i;=0 implies 202,
200, 002~ ¢ A, otherwise a state 2 is changed. Birds must send out signals to the
right or to the left. Therefore we have a transition 300—3 or 003-3 in A.

Suppose: 300-3,003-~3¢A.
Case bl: Left from the cell with state 7, in K state 3 occurs.

KF =...30...020220022020....
S

m

.

Let m=1: 302—3 or 2¢A contradicts K}, because of E;=320-~¢A resp. a
new state 2 occurs. Thus 302—~¢ A and because 202—, 002—+~¢ A4 a later bird
marked by ~ (0BOBBO) far enough right from the first remains in state 2.

If m=1, we reach after m—1 steps case m=1, because 300—3¢A.

Case b2: Right from the cell with state i, in K;® state 3 occurs. This leads to a
contradiction similar to case bl.
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Thus we see that 300 -3¢ 4 or 003—~3¢ A. Without loss of generality we assume
300+3¢A4 and 003—~34¢ 4. Then there is no cell left from the cell with state i} in K*
which has state 3 (apply case b, again). Therefore a cell right from the cell i; must
have state 3.

...020220022020...03
3

If m=1 for all further steps, then 203~—~3¢ 4, because E£;=023-¢A4 and
203—+2¢ A, because a distinguished state 2 arises. Altogether we obtain 203—,
200+, 202— ¢ A. This shows that later birds (0BB0BO0) far enough left from the
first reach state 2 and remain in this state.

If m=1, then 003—~2¢A, otherwise there is no feedback from a meeting with
birds far enough right from the origin, but 003—2 generates new distinguished
states in case of no birth of birds. This is a contradiction. :

Case 14: E,, E;, E4€A; E1¢A4 ‘
ad a: {223—, 322—-}c4; 220, 0224 A4 !
If K;=...0BBOBOBB0... then In:

K} =i, 22i32i322iy ... for some i, ...,1;€ {0, 3}.

Because 223, 322—~¢€4 it holds i =i,=i;=i,=0, but E,=020—¢4 contra-
dicts K.
ad b: {220, 022—~}cA4; 223, 322+¢ A
If K,=...0B0BB00BBOBOBBOB0... then 3In:
/

K, = iy 21y 22iy iy 22i5 2ig 22i, 2iy for some iy, ..., i€ {0, 3}

Because 220, 022—~¢A4 it holds i;=3 (1=j=8). This implies 232, 332,
233+ ¢ A.
If K;{=...0BBO00BBO... then 3In:

K = j1 22j, j3 js 22j5 ... for some jy, ..., j5€{0, 3}.

Because of 220—, 022—+~¢A4 it holds 032—~¢A4, otherwise a later bird (0.B0BB0)

far enough right from the first bird (starting with K,) reaches state 2 and remains in
this state. This implies j;=3, because 022—+¢A4 and E;=023 - ¢A. Furthermore it
follows from j,=j,=j,=3 that 333—~¢ 4. Now we consider K; and K again.

=...03...3 24, 22i5 iy 2215 215 22i; 2y ...

m=1 implies a contradiction, because 023 ~0¢A4 (then 023 ¢4 eliminates state 2)
-or 032—+2¢A (then a new distinguished state arises). Let m=1. Since 333—~¢ 4
and 233—+~¢ A and later birds (0B0BBO) far enough from the first birds must be

killed (state 2 changed) the transition 033— belongs to A.
This transition leads to a configuration K;* (from K)

...032322332232322323...

and in the next step we obtain a new state 2 (032—2) or a state 0 (032—0) in the cell
marked by ~ and then we eliminate state 2, because of E3—023—> ¢A. This shows
that case 14 is impossible.
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‘Case 15: By, E,, Ey, E;cA
If K,=...0B0..., then 3n: Kf=...i;2i,... for some i;,7,¢{0;3}, but
E;c4 (1=i=4) contradicts K; .

Case 16: EidA (1=i=49)
If K;=...0BOBBOBO... then 3In:

K} = ...iy 2iy 22iy 2i, ... for some i, ..., i,€{0, 3}.

ad a: {220, 022>} 4; 223, 322~ ¢ A4, then it holds #,=i;=3. Since
E;=320~, E, =323, 322—~¢ A later birds 0BOBB0BO far enough left from the
first birds reach state 2 and remain in this state.

ad b: {223, 322~}cd; 220, 022—~¢ A, then it holds i,=i3=0. Since
E,=020~, F,=023—~, 022+4¢ A later birds (0BOBBOBO) far enough left from the
first birds reach state 2 and remain in this state.

Altogether we have proved that the one-dimensional early bird problem is
unsolvable with set of states {0, B, 2, 3} and with distinguished state 2. O

.
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