
Locally synchronous cellular automata 

By I. WACHSMUTH 

1. Cellular automaton and the synchronization problem* 

The concept of cellular automaton was evolved by John von Neumann when he 
dealt with questions concerning the capabilities of machines, in particular the feasi-
bility of a mechanical self-reproduction [6], see also [2]. A cellular automaton is a 
"macro automaton" or "polyautomaton" composed in a uniform manner out of a 
not a priori bounded number of "micro automata" called cells. These are practically 
thought of as being arranged at the integer lattice points of the Euclidian plane (or 
in general the Euclidian «-space). The cells are interconnected in a uniform local 
scheme called the neighbourhood connection, and the cells directly connected to a given 
cell are called its neighbours. Each of the cells can be in one of a finite number of states 
which can be changed at certain times. The next state of a cell depends on its actual 
state and those of its neighbours. This dependency is described by a finite set of local 
transition rules which is assumed to be the same for each individual cell. 

A cellular automaton is thus characterized by a tupel Z = ( Z 2 , N, Q, I ) where 
Z2 is the universe, N is the neighbourhood set given by a finite number of vectors, Q 
is the finite set of cell states having at least two elements, and I is the finite set of 
local rules. The basic idea is that in the simultaneous interplay "the whole is more 
than the sum of the parts", as was shown, for example, in universal computation, 
self-reproduction (of patterns figured by cell states), pattern recognition and -trans-
formation. An essential topic which seems to be considered still in its first steps is 
parallel computing, particularly with regard to so-called myopic algorithms, the 
elementary operations of which take reference only to bounded, well-defined subsets 
of data, for example cellular algorithms as introduced by LEGENDI [4]. 

Such formal computation procedures can be conceived as deductions in a special 
type of a "more-dimensional" substitution calculus which in the following shall be 
called cellular calculus: The alphabet consists of the cells' states symbols, the dimen-
sion being given by the underlying space which can be thought of as a frame set of 

* To avoid confusion it should be mentioned that quite a different type of "synchronization 
problems" is known in the literature such as the "firing squad synchronization problem" intro-
duced by John Myhill. 
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symbol fields, and the basic substitution rules are given by the local transition rules. 
In the von Neumann two-dimensional cellular automaton and related cases with 
neighbourhood set {(0, 0), (1, 0), (0, - 1 ) , ( - 1 , 0), (0, 1)} these rules are of the follow-
ing normed shape ( a , b , c , d , e , a f denote state symbols): 

e 
d a b 

c 

The cellular calculus operates on two-dimensional words over the state symbol 
alphabet which are called patterns. To determine the manner of rule application 
designating a deduction step in the calculus, the specification of a meta rule is needed: 
Here in the von Neumann concept, in each single step, the simultaneous substitution 
of the whole set of rule-shaped subwords is considered, according to the basic sub-
stitution rules. Wherever at adjacent symbol fields the rule premises are overlapping 
they must refer mutually to the state symbols given before application of a substitu-
tion rule, i.e., 

e h 
d a b f comes up to a' b' 

c g 
by the rules 

e 
d a b 

c 

Cellular calculus and cellular automaton can be regarded as being in the rela-
tionship "rules of a game" versus "game"; and to perform an adequate execution 
(according to the meta and basic rules — throughout this paper the term "adequate" 
shall be fixed for this notation) of the "game" by the automaton, it is a usual assump-
tion that a global clock gives rise to a synchronous switching of state transitions of all 
automata cells. From this synchronity assumption an organization problem arises 
which is here referred to as the synchronization problem: synchronizing a not a priori 
bounded number of cells, for a cellular automaton has to be considered as an un-
bounded, potentially infinite automaton (for detail see [9]). 

Physically motivated objections against such a synchronity assumption led to 
the development of so-called asynchronous cellular automata introduced by NAKA-
MURA [5], PRIESE [7] and GOLZE [3], where besides other things, put briefly, the meta 
rule of the underlying calculus is changed: The simultaneous application of the basic 
rules (and thereby the "grade of parallelism") is more or less restricted. A synchro-
nization problem as in the case of a "simultaneous cellular calculus" does not appear 
in these cases, see [8]. 

The approach we take in this paper is shown in the following questions. 
— Cannot the original concept of simultaneous cellular calculus as a model for 

highly parallel information processing be kept, and the execution of such a calculus 
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by a cellular automaton be organized in such a manner that, for building a synchro-
nization scheme, no reference to the whole number of cells is required? 

— Can a cellular calculus in the sense of John von Neumann be executed in an 
adequate manner only by a synchronous automaton? 

In other words: 
— Is the sufficient condition of synchronity also necessary ? 
In the following paragraphs firstly a weaker assumption of "local synchronity" 

will be introduced and discussed and, secondly, a scheme will be designed which 
could lead to a "locally synchronous performance" of a cellular automaton by which 
a simultaneous cellular calculus can be adequately executed. 

2. Synchronous and locally synchronous working 

The main difference between regarding a calculus as an ideal system, and an 
automaton executing that calculus, seen as a physical device, is that the latter does 
while the former does not submit to certain physical restrictions; so that in the auto-
maton case we have to consider physical limitations such as bounded signal velocity, 
delay, and bounded exactness of properties of materials — from this point the dis-
cussion of asynchronous automata has arisen. 

Let us assume that clock signals are used each to initiate one deduction step in 
a simultaneous cellular calculus being executed by an appropriate cellular automaton. 
If accepted that signal transmission cannot instantaneously reach cells in a certain 
spatial distance from the signal outspring there arises at once the problem, of time: 

— At what time will a state transition of a given cell be initiated? 
— Are all cells reached by the signal in a time interval small enough to perform 

an adequate execution of one deduction step as indicated above? 
— At what delay after initiating the execution of one deduction step could the 

execution of another step be initiated? 
All these problems are ignored when considering a discrete time scale t by 

saying, as is usual, that time passes by in discrete steps i j — ; each time a 
time step has elapsed each cell must have executed one state transition. From this it 
is possible to consider the configuration (whole or global state) c of a cellular automa-
ton which is simply defined by the infinite cartesian product of all cell states and can 
be formally denoted by a mapping c: Z2-»j2, where Q is the set of state symbols. 

Furthermore, a global transformation Z — corresponding to a deduction step 
in the calculus given by the simultaneous application of the local rules in I to all 
neighbourhood-shaped patterns — can be considered which leads from a given con-
figuration c to one out of a finite set of possible successor configurations, c'. If the 
rule set I is deterministic which means that no two rules with identical premises lead-
ing to different conclusions exist, I can be thought of as a global transition function. 

Having the concept of "configuration", and supposing that a synchronous state 
transition switching of all cells of a cellular automaton is given, it is possible to say 
that each time a time step has elapsed the cellular automaton has changed its global 
state (configuration) once; and a "run" of a cellular automaton is seen as a sequence 
of configurations, starting from an initial configuration. 

As seen from this, however, a concept of synchronity is needed when speaking 
of a configuration and a global transition of a cellular automaton. To discuss such 
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a concept in relation to the above restrictions, we now introduce a continuous time 
scale to be thought of as an observation time. This refinement of the point of view 
will be seen later as an intermediate step towards the tool of explaining a locally 
synchronous performance. 

Let us consider a totally ordered time scale / = ( R , s , ij), bounded from below 
and referring to the point of signal source, say the origin of Z2. We call instants the 
elements of / and durations the lengths of intervals out of / . We denote the lattice 
points by a, /?, y, ,.., thinking of them as being the cells. At certain instants t1, t2, t3, ... 
clock signals Tj, T2, T3, ... shall be propagated from the origin. 

We write (tk) to fix the time-spatial event that at cell a (a€Z 2 ) at time tk 
(tl £ / ) a unique clock pulse appears initiating a A-th state transition of a, assuming 
that, at this time, a is in a well-defined state q (qzQ). We shall refer to an event ( t f ) 
as the fc-th clock pulse at a. 

As indicated above, there may be objections when assuming that an unbounded 
number of cells could be synchronized while this would be certainly possible for any 
given fixed number of cells. Furthermore, an absolutely synchronous cell state switch-
ing would not be possible in a physical device and therefore a small amount of 
phase variations not leading to mishaps should be admissible. From that it is carried 
out the following definition. 

Definition 1. A finite set of clock-pulsed cells is said to be synchronously 
working, if for any given clock signal Tk, in the whole set of cells the pairwise dif-
ference in time of A-th clock pulses of cells is at most £ s.t. 

(i) the correct execution of local transitions is not affected, 
(ii) e is not exceeded after an arbitrary number of clock steps. 
Since it will take a nonzero but bounded duration s until the state transition of 

any given cell is executed, say 

0 < smin ^ s ^ smaI < °o (1) 

in all cases, the minimum signal distance in a synchronously working cellular auto-
maton, leading with certainty to a one-to-one execution of each global transition by 
reason of one signal, is given by 

(2) 

In opposition to this, synchronity of clock pulse events would usually be defined, as an 
equivalence relation, in the following way. 

Definition 2. Two events ( t f ) and {if), where tk, if € ¿, are said to be syn-
chronous iff t%=t? . To denote that these two events are in the synchronity relation we 
shall write ( t f ) syn ( t f ) . 

Surely, in a synchronously working set of cells, if (t£) syn ( t f ) then k=l. Con-
sider, for the moment, the case that all cells of an unbounded cellular automaton Z 
undergo synchronous state transitions by reason of clock pulses occurring synchro-
nously at each individual cell, without discussion whether or not this is possible. In 
this case, for a given k, and with 0 denoting the origin of Z2 , the set (a|(i£) syn (tl)} 
consists of the whole set of cells of Z and thus at time tl a well-defined configuration 
of Z, resp. the initiation of the fc-th global transition of Z, can be considered (k= 
= 1,2, 3, ...). 

J 
4 
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The relation between the continuous time scale / = ( R , fj) and a discrete 
time scale / is worked out in the following. Denote the times of input of clock signals 
7i, T2, ... at the origin 0 of a cellular automaton Z by t°, t\, ..., and the events aris-
ing from this by <i?>, ... . Regarding (2), let, for all k, 
Thus, if two clock pulse events are synchronous, they are in particular localized 
within the same time interval [/", /¡J+1) out of Let t1 = t'l. We can now define a 
discrete time scale by a totally ordered set of instants which is bounded from below: 

^ = ({^ieN, —»if)-

Now, when saying that time passes by in steps ij—tl—..., we can assume that each 
time a time step has elapsed Z has once changed its global state. Because of the syn-
chronity of tk, for all a, we could instead consider c N as set of instants, for any a; 
indeed, the simultaneous consideration of all tk, afZ2, given by the equivalence 
relation of synchronity, leads to a globally applicable discrete time concept. 

We now return to the questions formulated in the first paragraph and firstly 
look at the necessity of synchronity for adequate execution of a simultaneous cellular 
calculus. 

In a synchronous cellular automaton, at any individual global transition there 
takes place only a local information processing at each cell, namely, the state of a 
cell is requested by its finite number of neighbouring cells for their computation of a 
successor cell state, and vice versa. Only by way of a state changing, can inputs to 
the cell effect its output which will, however, be only requested by the neighbours at 
the next global transition. (We agree that cells are Moore-type automata; if consid-
ering non-deterministic rule sets I , this case can easily be generalized, see [8].) 

Hence, the eifect of the information processing of an individual cell during a global 
transition is restricted to the region of neighbourhood of the cell. Thus, for the cor-
rect execution of the state transitions of each cell, it is only necessary that every two 
neighbouring cells work synchronously. This leads us to the following definition. 

\ 

Definition 3. A set of clock-pulsed cells is said to be locally synchronously 
working, if for any given clock signal Tk, the pairwise difference in time of fc-th clock 
pulses of neighbouring cells is at most e s.t. 

(i) the correct execution of local transitions is not affected, 
(ii) e is not exceeded after an arbitrary number of clock steps. 
Obviously, synchronous working includes locally synchronous working, the 

opposite of which is not true since, for example, three adjacent cells working locally 
synchronously allow the clock pulses of the outer cells to differ in time by 2S. Thus 
locally synchronous working is a weaker concept than synchronous working of a set 
of cells, and note that a reference to a boundation of the number of cells is not re-
quired in this case. 

As it is easy to see, in a cellular automaton Z working locally synchronously 
the same successor cell states are (or, in case of an indeterministic rule set, could be) 
generated as when working synchronously. That means, if it is assumed that all cells 
have had one but not more clock pulses and have finished execution of the induced 
state transition, in each case the same result would (resp. could) be obtained, namely, 
the result of one deduction step in the basing cellular calculus. 
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To get an adequate execution of a simultaneous cellular calculus by way of a 
locally synchronous performance, it must be guaranteed that by each command to 
the automaton to execute one deduction step each cell will perform, at some time, 
one and only one corresponding state transition whereby neighbouring cells do this 
synchronously. Again, this gives rise to an organization problem: to achieve such a 
locally synchronous performance. It appears that two subproblems are to be solved: 

(PI) How to perform the adequate execution of one individual deduction step? 
(P2) If (PI) is solved, how to proceed on sequences of deduction steps? 

3. The concept of /-net 

For the solution of these problems we now introduce an organization scheme 
called T-net. A /-net is a device to be added to a cellular automaton to effect an 
appropriate distribution of clock signals such that a locally synchronous working can 
be performed. It consists of uniform type components which are thought to be in-
tegrated each to one automaton cell and hence allow the building-up of the automaton 
simply by the proper arranging of the cells and interconnecting them neighbour-to-
neighbour. Thus an automaton in realization can be extended, including the organi-
zation scheme, by simply subjoining the required number of cells. 

Signal transmission in a T-net will intentionally be considered as a propagation 
in a plane lattice such that each lattice point will receive exactly one signal offspring. 
Since in a physical device a loss of energy has to be supposed it is assumed that a 
signal regeneration occurs in the' T-net components. The delay arising between the 
appearance of the signal (as a clock pulse) at a given cell and its neighbours is consid-
ered as being small enough to allow proper working of the cells, according to defi-
nition 3. 

A T-net component is an automata network able to handle a number of clock 
pulses running in parallel. For the description of this, first a special type of automa-
ton is needed. 

An asynchronous parallel automaton (APA) A is a system A=(SA, IA, OA, RA) 
of pairwise disjoint finite sets SA,IA, and 0A, and a subset RA of (SAX/i(IA))X 
X (SAX/I(0A)) where / i ( M ) denotes the set of all subsets of a given set M. The ele-
ments of SA,IA, and Oa are called states, inputs resp. outputs of A. RA is called the 
transition relation of A. 

This concept was introduced by PRIESE [7]. It allows the description of the be-
haviour of automata under the simultaneous occurrence of several inputs or outputs, 
indeterminacy, and, in addition, the feasibility of state transitions independent of 
inputs or outputs. Concerning the sets IA and 0A, note that, instead of considering 
distinct input and output signals on one channel, it is here assumed that one type of 
signals appears at distinct channels. Thus we shall call the elements of IA and 0A 
input resp. output places or likewise entrances resp. exits. Since the sets are disjoint 
no confusion will arise. An APA can hence be named a directed automaton. 

An APA network, shortly net, is simply the result of any junction of several APA 
in such a way that in no case is one output place connected to more than one input 
place, and vice versa. Input and output places remaining inconnected in such a 
process will be called input resp. output places of the net. Again, the junction of nets 
in the indicated way gives a net. We will imagine in the sequel that signals are very 
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short pulses distinct from a quiescent state which are "running along wires through 
the net". 

A T-net component is figured out of four types of APA called K, A, P, J. The 
elements of their relations are given by transitions 

0 , {¡i, ..., ij}) - 0 ' , {<Ti, ..., <T„}) 

to be read as follows: "in state s under input at places z'1; ..., ij go over to state s' 
under output at ..., ok". 

The module K gets the symbol 
2 .JU, 

and is defined by 
K := ({0}, {1, 2}, {3}, RK) 

Rk := {(0, {1}) - (0, {3}), (0, {2}) - (0, {3}), (0, {1, 2}) - (0, {3})} 

which means that signal inputs appearing at place 1 or 2 will come out at place 3; 
if two inputs synchronously Jappear at 1 and 2 a "united" output signal will appear 
at place 3. 

The module A gets the symbol 

» - I 
and is defined by 

A := ({0,} {1}, 0, {(0, {1}) - (0, 0)}). 

It describes the total absorbing of signals. 
The module P gets the symbol 

*• 2 
• 3 
-4 
- 5 
* 6 

and is defined by 

P := ({0}, {1}, {2, 3, 4, 5, 6}, {(0, {1}) - (0, {2, 3, 4, 5, 6})}). 

A signal input at 1 generates five parallel outputs. 
The behaviour of the following "pulse injecting" module / depends on its inter-

nal state. I gets the symbol 
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and is defined by 

I := ({/, h, t, l}, {1, 2}, {3, 4}, R,) 

Ri := {(i, {1}) - 0 , {4}), (t, {1}) - (t, {4}), (t, 0) - (h, {3}), 

(t, {1}) - (h, {3, 4}), (h, {1}) - (h, {4}), (h, {2}) - (J, {4}), 0, 0) - (/, 0)} 
/ h a s two stable states, / and h, and two unstable states, t and J. At the moment 

when I reaches state h ("high") a newly created signal is put out at 3; causal for a 
switching from / to h, and hence for this output, is an input signal reaching the module 
in state /. For the duration of this switching a "transition state", denoted by t (resp. 
J for the switching from h to /), is considered1; in the relational description it is 
expressed that h can be reached, not influenced by an occurence of further inputs at 1. 
State-input combinations not listed above will not appear in the nets considered in 
the sequel. 

The indeterministic description of the /-module contains the stated behaviour 
only in principle in the first instance. To make sure that it will actually happen within 
a given time period we fix in addition layers for the duration of switching, denoted by 
the delay that will occur between the initiation by a matching input and the moment 
of the occupation of the new state: 

(i) from / to h: v <~) 
(ii) from h to I: v (0-^umin3it3^0maI<°°). 
In the case under consideration (two-dimensional cellular space with von Neu-

mann neighbourhood) a T-net component is compounded from three AT-modules and 
always one module /, A, and P, which are interconnected to a net as indicated in 
Fig. 1. Such a net has five input places and five output places: always four external 
places for the reception and emission of clock signals and one internal input resp. 
output place for the junction of always one T-net component and one cell. The sig-
nal transmission channels will be called wires for short. A heuristic description of the 
functioning of a /-net component follows now. 

Consider a /-net component with no signals running on any wire, in the starting 
position, and with the /-module being in state 1. Signals appearing at the external 
input places of the net pass the K-gates and reach place 1 of the /-module as a se-
quence of signals, the number of which may have diminished by the possible case of 
synchronous checking into the two input places of a A'-module. The signals leave the 
/-module at 4 and become absorbed at the ,4-module. Only the first signal of the 
sequence initiates a switching of / from the stable state / to the stable state h whereby, 
after the delay v, a (newly created) signal occurs at place 3. This reaches the /'-module 
whereby five signals run in parallel: 

(i) to all external output places of the / -net component 
(ii) to the internal output place CLOCK 

and leave the net. Incoming signals are thus separated by the /-module: When I is 
in state / only the first signal of a sequence is able to influence the net. Only when a 

1 When assuming a duration is going along with a switching process it is possible, as in the 
considered case of an APA, that during a switching further signal inputs occur. It is thus neces-
sary, for a complete description, to take account of such an unstable transition state. 
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Fig. 1 

transition of / back to state I is initiated and fullfilled, by way of a signal incoming at 
the internal READY entrance, will a signal reaching place 1 of the /-module cause a 
new signal output at 3. 

In respect of the internal exit CLOCK that means: Signals coming from outside 
into a T-net component can effect a signal output at CLOCK only once in a certain 
time period. This period contains in particular the duration of the event lying between 
a signal output to CLOCK and a signal input from READY. 

Concerning the total time period taken by a process in a T-net component the 
delay v will be significant which appears between the earliest input of a signal, cau-
sally for an output at place 3 of the /-module, and the resulting output of five parallel 
signals at the exits of the T-net component ( v~=v). Considering a number of T-net 
components, as is done in the following, it is assumed that the following condition 
holds: 

0 i? • ^ v — v < 0 = C3i w "mm — u — vmax 

However, concerning repetitions of the described process, we focus attention 
throughout this paper on the case that 

component delays do not vary in time (4) 



64 I. Wachsmuth 

It will be subject of a future paper [9] to examine the implications given be the assump-
tion of time-variant component delays. 

We call T-net an APA net originating when a set of copies of the described T-net 
component is compounded at neighbouring integer lattice points of the Euclidian 
plane and interconnected, in a canonical way, by identifying corresponding output 
and input places. With respect to its connection scheme and its components a T-net 
is thus homogeneously compounded and can, assuming that it consists of a finite 
number of components, be boundlessly extended by repetition of the same process: 
attaching another T-net component at a free lattice point adjacent to the border of 
the hitherto existing net; admitted are rotations by k • 90°, ki{ 1,2, 3}, in the plane. 
A section of a T-net is shown in Fig. 2. 
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This completes the description of the construction of a T-net. As pointed out, 
the concept of APA net here is extended by a time concept to be applied locally as 
will be worked out later. This gives the possibility of referring to the durations of 
subprocesses in the T-net. To integrate, for the moment, the starting and ending 
points of such processes in a T-net component into the time scale t (to be thought of 
as an observation time), we introduce the following'notations. For cells a. which con-
tain a T-net component we say that: 

at time t, a is in T-state s iff the /-module of a is in state s at that time, 
i € { / , t , M ; 

at time t, a has a T-output iff at one or several of the external exits of the T-net 
component a signal is appearing at that time; 

at time t, a has a T-input iff at one or several of the external entrances of the T-
net component a signal is appearing at that time; 

at time t, a. has a causal T-input iff a has a T-input at that time and the earliest 
signal subsequently appearing at place 1 of the /-module happens to reach the /-mod-
ule being in state /. 

A causal T-input will thus give rise to the switching from I to h whereby, in 
particular, at a time t' (jt'>t) a signal will appear at the CLOCK exit; as stated 
above, the delay occuring between t and i ' is u. 

In the following, the interplay between the T-net components and the cells of 
a cellular automaton will be considered. A clock pulse signal, leaving a certain T-net 
component by the CLOCK exit, will initiate a state transition of the cell which, after 
the delay s (see (1)), will terminate with a "ready"-signal entering the T-net compo-
nent by the READY entrance whereby the /-module is re-enabled, i.e. switched into 
state /. To distinguish some characteristic steps in such a process we mark by indices 
the corresponding instants. For cell a, denote by 

H the instant of the k-th causal T-input at a 
tl the instant of the subsequent A>th CLOCK output at a 
r£ the instant of the A;-th READY input at a 

the instant of the subsequent fc-th re-enabling of the /-module of a. 

The events (|J), (tl), (?%), and (rf) occurring at those instants are ordered in 
time in the manner shown; each is represented by the appearance of a signal at a 
certain section place in the net, except for the last event in such a chain, ( i f ) , which is 
represented by the transition from T-state \ to T-state /. Note that a causal T-input 
could be represented by several signals entering the T-net component at different 
times (and places) but resulting in one signal appearing at place 1 of the /-module. 
Thus we fix, in addition, (/£) to be represented by the earliest signal in question. 

Together with the CLOCK signal, appearing with an event four signals 
appear, in parallel, at the external output places of the T-net component, possibly 
but not necessarily at the same time, say at the instants if>fc, ?|>fc, l%ik, ij>fc. Since 
the construction of the T-net is done by identifying corresponding external input/ 
output places of neighbouring T-net components, each of the associated events 
m,k)> ••• represents a T-input for a neighbour cell of a. It is then possible that such a 
T-output, say (ti,k), is a causal T-input for some neighbour cell /? of a: ( t f ) . This 
identity of such two events is denoted by (if)=(if i J t), i.e. in particular i f = & . 

5 Acta Cybernetica VI/1 
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Is is assumed in the sequel that, in each case, the appearance of a CLOCK signal is 
the event latest in that parallelism, i.e. 

5 = max {/J, If.»,...,?;,»} (5) 
and, in addition, 

m a x l l - f o l ^ » « ! . (6) 

If no confusion arises the fc-index will be suppressed in the following. To distinguish 
the notations for a cellular calculus and the corresponding device we write Z in the 
first case and in the second case 2 . 

4. The structure (2, T) 

By use of the concept of T-net we want to show how to perform adequate exe-
cution of deduction steps in simultaneous cellular calculi. 

Assume a cellular automaton 2=(Z2, N, Q, Z) with von Neumann neighbour-
hood is given, executing such a calculus in case all cells undergo synchronous state 
transitions. A state transition of a cell a will be initiated by a clock pulse signal ( f ) , 
and a "ready"-signal shall appear at the moment of its termination. Following 
ARBIB [1, p. 375] we will assume here that a state transition of cell a is completed in 
three phases (see Fig. 3): 

r^ -I r * r^-1 r L ^ I ?1 I I ?2 ' I ?3 1 1 ?4 ' 
R > R R R V F 

¡¿I 

Mo 

J 

Fig. 3 
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(i) 'POOL': The relevant neighbourhood information given at time t": 
9i> #2, <73, #4. is pooled in suitable registers; 

(ii) 'EXECUTE': Based on these and its own state q an applicable rule is exe-
cuted, by a logic L s \ 

(iii) 'MOVE': The resulting successor state symbol q' is moved to a memory 
register, MQ, whereat the predecessing state symbol q is deleted. 

From this it follows that the "old" state symbol of the cell is displayed to its 
neighbours, by an output logic L} , till the end of phase (ii), i.e., always from the end 
of phase (iii) of a state transition to the end of phase (ii) of the next transition, a cell 
is in a well-defined state. 

Consider now identical copies of a cell of this type and the /-net component, 
as introduced above, being one-to-one compounded by identification of the internal 
places CLOCK and READY, and then, as usual, being arranged at the lattice points 
of the plane. While denoting the cellular automaton, bare of the /-net components, 
by 2, the new structure originating from this process is named (2, / ) . It is of homo-
geneous compound, as sketched in Fig. 4 (dotted lines indicate the junctions of /-net 
componr 's). 

i * I. .«Li-*-!, . J-Lti, ' ̂  I. ' ~ I 

— > 

TT 
; i 

jJCJL 

A I I I I 1 

> e — 

i i 
±JL± 

i — 
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The interplay of a T-net component and the associated cell is now explained. 
From a causal /-input ( f ) at a cell a being in /-state I a clock pulse signal output 
( f ) will result which, by way of the CLOCK junction, effects the initiation and exe-
cution of a state transition of a, whereby the /-net component is in /-state h. On the 
termination of the state transition, by way of the READY junction, a READY in-
put (r*) effects the removing to the /-state /, occurring as event (ra), whereat the cell 
is enabled for a new causal /-input. 

In a schematic way, taking into account the durations 5, v, and v of subprocesses, 
as introduced earlier, the mode of operation of a cell in the (2, Z)-structure is out-
lined below in Fig. 5. 
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On considering the ¿-structure, we see that the operation mode of a cell is char-
acterized by two time values: 

a) the bounded switching duration2 s 
b) e, the maximum amount admissible for clock pulses to differ in time, accord-

ing to definition 3. 
For illustration of this, Fig. 6 is given where a and /? are neighbouring cells; 

in phase (i) cell fl sees a in a well-defined state, and vice versa. 

POOL ! EXECUTEI 

POOL '¡EXECUTE!MOVE 

-r— 
t» 

Fig. 6 

On considering the T-net structure, we note that the values characterizing a T-net 
component are 

c) the bounded delay v occurring between a causal J-input and the clock pulse 
(i.e. the CLOCK output) effected by this; 

d) the bounded delay v which occurs with the re-enabling of the T-net compo-
nent, i.e. the switching from T-state h to /. 

These four time values s, e, v, and v have to be considered as a whole in the 
(2, ^-structure. For the following, it is required that 

"max = £ (J) 

which means that the maximum delay occurring in a J-net component does not 
exceed the admissable difference of the clock pulse instants of neighbouring cells, 
and 

'»max - Vin + Smin (8) 

which is in particular satisfied by (7). 
We now investigate the distribution of clock signals in a given polyautomaton 

(¿, T) underlying the assumptions stated above, with a given initial configuration 
of ¿ , i.e. all cells are in an initial state which is stored in MQ. It is assumed that the 
T-net is clear of signals, and that all cells are in J-state /. 

At first, (¿, T) will be considered under input of a single clock signal. If an ade-
quate execution of the corresponding simultaneous calculus Z is expected, it must be 
shown that, from this single signal, one deduction step in the calculus is put into 
execution (PI). 

At time tx=0 (referring to the origin) a solitary T-input shall be given to the 
origin cell, from an external clock. This T-input is causal for a clock pulse occurring 
after a delay v by which a state transition of the origin cell is initiated, while all 

2 In the non-deterministic case it is assumed that an applicable rule is executed within that 
duration. 
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neighbours (being in the T-state /) have previously had a T-input, which, at each cell,' 
again gives rise to a clock pulse etc. This process can be interpreted as the propaga-
tion of a clock signal, introduced into the T-net at the origin, by signal offsprings 
which appear as an individual clock pulse for each cell a, at a certain time f . Wheth-
er a cell at which has already occurred a clock pulse event can have a repeated 
causal T-input, is to be elucidated. 

By way of the T-net components an original signal is thus propagated in all 
directions of the plane, whereby in the cells passed, state transitions are initiated. 
At individual cells different delay, lying between^ i>m!n and umax, can thereby appear 
(3). The actual course of a signal frontage (of first occurrence of a clock pulse) at 
a given time t is located within bounds determined by umin, i>max, and t, as follows. 
If defining the distance between two cells a and /? with coordinates (a^, a2) resp. 
( h , ¿2) by 

d(cc,P)=\a1-b1\ + \a2-b2\ 

then the maximum distance from the origin 0 of cells a which had a clock pulse (tx) 
until time t ( t x ^ t ) lies between 

¿L*(a,0) = U - | - l ( i ^ m i n ) 

¿ I n i n f o O ^ P - l - l (t^lw) 
l »max-* 

where [ ] denotes the greatest integer z: 1° the following example an actual 

signal distribution possible under the above assumptions will be demonstrated. 
Consider the T-net of a (¿ , restructure for which it is assumed that umin = 1 

and umai = 3. A causal T-input ( f ) for a cell a is given by the earliest T-output 
( i j) of a neighbour /? of a. We assume here, for simplicity, that, for all /?, tfi=i[ = ... 
... = if . Thus we have, in the above case, i$ = tp = f . In Fig. 7 a section of the 
cellular plane is shown where the numbers in a field for a cell a represent the following 
values: 

instant of a causal T-input at a delay occuring 

betveen f and tx instant of the clock pulse at a 

From a T-input at time 0 at the origin, and by occurrence of the specified de-
lays, the process displayed in Fig. 7 will arise. The sequence of the appearances 
of signal offsprings, represented by clock pulses at the individual cells, can be read 
along the clock pulse instants. 

We denote by Ft the set of all cells that have a clock pulse up to time t; F,= 
= {a|3i I(<° t^i&(/a»}. From the way of signal distribution it is clear that, for 
any t, F, — conceived as a subset of the cellular plane — is connected and that, 
for t2ii, t±<t2 implies FhQ Fti. From the above-stated example, secondly, it 
follows immediately that Ft can be of a "genus" greater than zero (consider F1 in 
the example). 
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5. Locally synchronous performance 

We now proceed to state the main result of this paper. 

Theorem. For a given simultaneous cellular calculus Z = ( Z 2 , N, Q, I ) with 
von Neumann neighbourhood, let (2, T) be the corresponding polyautomaton, and 
let all cells of (Z, T) be in /-state I. At time 0 of the observation time / = ( R , ^ , 0 ) 
a clock signal is introduced as /-input into the origin cell. Then it follows that: 

(a) For each cell of (2, / ) there exists an instant t where it has a clock pulse. 
(b) The earliest clock pulses (within ¿) of every two neighbouring cells of (2, / ) 

differ in time at most by vmax. 
(c) No cell of (2, / ) has more than one clock pulse. 

Proof, (a) From the foregoing discussion it follows that a cell a with coordinates 
(x, y) has a clock pulse at the latest at time f = (|x| +1>'| +1) • vmax, where 0 < y m a x < 

(b) Sketch: Of any two neighbouring cells, each of which still has not had a 
clock pulse, the one which has a clock pulse first gives a /- input to the other which 
will be causal (and thus will lead, within the delay vmax, to a clock pulse of the second 
cell), unless this one had an earlier causal /-input from elsewhere (which would then 
lead to an earlier occurring clock pulse). The clock pulses differ in time then at most 
by « W 

Let now a and /? be any two neighbouring cells in /-state /, none of which has 
already had a clock pulse. From (a) there exists, for each cell, a clock pulse instant. 

1st case, a and /? have clock pulses at the same time. Then the difference is 

2nd case. Without loss of generality, let a have a clock pulse first, at time t 
Thus, by (5), at the latest at the same time as (/") a / -output of a will appear which is 
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a /"-input for p. In the sequel, we denote such a /-output of a for ft by 
According to (6), \f-fHP)\^vmiB. 

Hence, ¡3 has a clock pulse, at a time t° tp), for which either (i) the /-output 
linked with the event (ta), is causal, i.e. (l*1)—(*?(«)> or (ii) a /-output of 

another neighbour cell of /?, having occurred earlier than or (iii) several syn-
chronous /-outputs of neighbours of [1 other than a having occurred earlier than 
(t"jm), or (iv) (tx

j{p)) and one ore more /-outputs of neighbours of ¡3 appearing at 
the same time as (tx

j03)); see the representation of an event ( t f ) as pointed out earlier. 
The clock pulse of ¡1 will occur at the latest after the delay vmax following a causal 

/-input, thus tfi^t/+vmax. 

Cases (i) and (iv) apply to: f = 
then f+vmax s§ t"+vmax, 
and thus t" = f+vmax, 
equivalent to i** —f* S vmax. 
Hence, by f ^ t ' , \ t * - f \ ^ v m a x . 

Cases (ii) and (iii) apply to: i" < 
Here we have f + vmax -< t"+vmax 
and it follows analogously: \tp — f\ < vmax. 

Hence, in each case the earliest clock pulse instants of every two neighbouring 
cells differ at most by vmax, what had to be shown for (b). 

Before proving (c) we formulate with the results obtained up to now the rules 
for the distribution of clock signals by a T-net: 

(TO) 3i°(0 + ymin S I ' S 0 + umax & (i°)) 

(Tl) For 

3t>{t> </>> & 0 < \f-t>\ s t w & <Zf(a)> = < f » ) 

(T2) </«> => V)5(j86iV(a)\{a} => 3j(P)UW{U 4} & 

(1*01)) is / - input for P & 0? in /-state / at l"J(P) => 

3 H f < f & ( f ) & 0 < S ymax)))) 

(T3) Only by (TO), (Tl), and (T2) can there occur clock pulse events. 
(TO) means that the origin cell 0 has, at time t°, a clock pulse event (by hypoth-

esis of the theorem that there is given an external /-input to the origin at time 0, 
to be interpreted as the input of a clock signal). 

(Tl) concerns the cause of the appearance of a clock signal at a given cell a and 
means that, for the occurrence of a clock pulse event at a (with exception of a=0) , 
a foregoing (at most by t>max) clock pulse event of a neighbour cell different from a is 
necessary which is linked with a causal /-input for a. 

(T2) concerns the propagation of a clock signal which has appeared at a, and 
means that, succeeding a clock pulse event (t*) there occurs, at the latest by time 
vmax, a clock pulse event (tp) at all cells /? being in the /-state / at time (whereby 
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not necessarily (f;«i))=(*'), see (ii) in the second case above, it being allowed that 

By way of the construction of T-net and the assumptions made, only in accord-
ance with (TO), (Tl), and (T2) can there occur clock pulses. The rules are therefore 
completed by (T3). 

We now proceed to prove (c). For the occurrence of a clock pulse at a cell a 
a foregoing causal T-input is necessary which, by (Tl), appears as T-output of a dis-
tinct neighbour cell of a (except for (f0)). It will be shown for (c) that no cell having 
had a first clock pulse can receive a new causal T-input. 

Consider, for arbitrary / e / , the set G, of cells which have exactly one clock 
pulse until time t: 

First we show: 

Lemma 1. No cell /? having a first clock pulse at time tf can thereby yield a 
causal T-input for a cell aiG,n. 

For proving this we distinguish three cases, for any /?gZ2 with the first clock 
pulse at tfi. 

1st case, ag Gtt> & N(fi) 
No T-input for a is linked with (t"), see (T2), (T3). 

2nd case. a^Gtn & a = /? 
The case that ft yields a T-input for itself is excluded, see (T2), (T3), particularly in 
case /? = a = 0 . 

3rd case. <xiG,e & <xaN(fi)\{P} 
By (T2) at the latest with (tp) a T-input for a has appeared, as / -output of /?: (tp

jW). 
As aeG<0, there exists exactly one f \ f ^ t & (tx). We show that (t?(a)) is nei-
ther causal (i) for ( f ) nor (ii) for clock pulse events possibly occurring later. 

and thus ^ ( f ) , i-e. <^(a)> is not causal for ( f ) . 

R e m a r k . A clock pulse (f") cannot therefore be causal for a clock pulse (ta) 
occurring either at the same or an earlier time. If conversely holds, 
it follows that f — 0. This fact, ensured by (6), is already considered in the above 
formulation or rules (Tl), (T2). 

For (ii) we show that <if(ct)) is not causal for a ( t f ) , /*< i f . As assumed, (tx) 
and (tp) are the earliest clock pulses of the neighbouring cells a and p. From 
it follows by (b): 

o ^ s tw 
and upon (8) 0 S < smia+vmin 

G, = {«13^0* ^ t & <tx) & -i 3?î(iï S t & t t ^ f S c </?»)}• 

from (6) it follows 
and from (3) 
Hence 

(i) By f m t " : 

i.e. min 

However, a is not in the /"-state / up to the re-enabling of its /-module, at the 
least until time umin and, hence, at time te (see Fig. 5); i.e. the T-input 
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for a: (ij(a)) occurring at the latest with ( t f ) is not causal for a new clock pulse event 
at a. This ends the proof of Lemma 1. 

In Lemma 1, it is referred to sets G(o. Certainly, for all t, G,QF,. However, 
for certain t, G,czF, could be, i.e. nothing can be said about whether the Lemma 
regards, in every case, all cells which had a clock pulse up to time te generally. It is 
thus to be shown that no cell of F, can have more than one causal /-input. By hypoth-
esis of the theorem, only one external /- input is given to the origin cell; i.e. for 
any cell a only such possibly causal /-inputs need to be considered which appear in 
the neighbourhood of a as /-outputs, linked with clock pulse events, see (TO), (Tl). 
In the following, we denote by N(S) the extended neighbourhood set of a finite subset 
S of Z2: N(S)= IJ TV (a), where N(ol) is the set of neighbours of a single cell a 

a £ S 

as given above (no confusion will arise by using the same symbol for both). 

Lemma 2. For every t: F,—G, 

Proof. We define, within special instants tx, t2, t3, ... as follows. 

h = 
tn+1 = min {f\tn < f & 3a<*">} 

Each instant t„ is thus a clock pulse instant of one or several cells in Z2, and, 
for all n, F,nQFti<+l. The above minimum always exists arising from the following 
fact: In each case, only a finite number of cells a comes into question for the next 
clock pulse (within i) caused by the cells ft of F,n, namely, the cells a: a£N(Fti). 
Thereby F,n and thus N(F,J arerfinite sets, at each instant, because from each clock 
pulse of any cell only clock pulse events of its finite number of neighbour cells 
can be caused, see (T2). So (?„)„,N is well-ordered within and 
(/<„)„eN is well-ordered concerning ' g ' ; and the following statement holds: 

. ^ = {0}; U K = z2-
n 

We now claim 
Mn:Ftn = Gtn (n€ N). 

Proof by induction on n. Obviously, Ftl=Gh={0} (base of induction). 
Induction hypothesis: Let F,n=G,n. 
Induction step. As G,n+lQF,ntl, it remains to be shown that 

Supposing there exists a: a6/ r , „ + l \G, n + 1 , then a has exactly one clock pulse 
(t") up to time /„, for it is F,nQF,n+l and, by induction hypothesis, F,n=Gtn, 
i.e. a eG,n; and a has a second clock pulse ( t f ) at time tn+1, for by construction of 
(/„) a clock pulse cannot exist between t„ and tn+1. Hence, by (Tl), 

iV(«)\{«} & 3/"«/"> & t* ^ tn < q & 

Thus a must have received a causal /-input before i„+i(in + 1=ii) , linked with a 
clock pulse of a neighbour cell p. 
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1st case, (i?) is not the first clock pulse of P(tf^tn). 
That would mean: which is a contradiction of the induction hypothesis. 

2nd case. (tp) is the first clock pulse of 
(i) /"=/„. From Lemma 1 it follows that no cell of Gte, G,t = G,n, can get 

a causal /-input by (i^). But from the above assumption it follows that (f^ (a)) = 
= (t_f) & aeG,n which is impossible by Lemma 1 and hence results in a contradic-
tion. 

(ii) t p <t„ . Then aiGtn which is shown as follows. Between two clock pulses 
of a, ( f ) and (t\), there are located the events (ra), (ra), and ( t f ) , as was pointed out 
in the third section. Thus, it is valid for the distance in time of the two clock pulses: 

l^-'il > smin + vmin + vmin 

for it must be r a < i J ; furthermore: 

l ^ - f l ^ vmax 

and by /'<=<;: 

resp. . - v m * l > - t l 

Thus, by r ^ f . smin + vmin+vmia^f1-lx 

Addition of the last two inequalities yields 

®min "I" m̂in "f" »min "max ^ ^ 
and by (8): 0 

thus f < t p whence aiG tn. From Lemma 1 then again a contradiction results. 
Hence, F,n+1=G,n+1. From this, the above assertion is proved: For all n, F,n=G,n 
is valid. 

The proof of Lemma 2 is now completed as follows. By construction of (7„): 

Vn \ft(tm p t -= tn+1 =>F, = Ftn &G, = GJ 

It holds that: (J [/„, tn+1) = {i | t i t & S i} . But there is no clock pulse before 
n 

i r i t i s Ft=G, = 9 for f€[0, ij). Thus, for all F, = G,. This ends the proof of 
Lemma 2. 

Altogether we have now: 

U G, = U Gtn = U = Z2 
tit n £ N n £ N 

i.e. every cell aeZ 2 has exactly one clock pulse, which concludes the proof of the 
theorem. 

From this, the above stated organization problem (PI) is solved, and it is now 
to be examined how to proceed on sequences of deduction steps to perform an ade-
quate execution of a simultaneous cellular calculus by a (2, res t ructure (P2). Thus, 
(2, T) will now be considered under input of a sequence of clock signals. 

As was assumed here (4), the delays appearing in the /-net components do not 
vary in time (but of course it is allowed that the individual delays of different com-
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ponents vary within [umin, umax]). In this case the distribution of any subsequent clock 
signal will occur in exactly the same manner as in case of the first signal, provided 
that each cell that receives a signal offspring, generated by a signal Tk+1 following 
Tk, has already re-entered Г-state I. This is, however, obviously satisfied under the 
above assumption, if only the input of a successor signal Tk+1, given as a Г-input 
(tk+i) to the origin cell, takes place after the A>th re-enabling of the origin cell by the 
event (rk). To get from the event to (rk) will take the minimum duration 

:„ ^max+imax+Cmax (see Fig. 5), so that the above conditions are satisfied if 

fk+1 s fk+Dmin (lc= 1 , 2 , 3 , . . . ) (9) 

In this case, by each clock signal Tk the A-th deduction step in the calculus is put into 
execution which can be seen from the following facts. 

Upon occurrence of a clock pulse (if), in correspondence with a second clock 
signal T2, all neighbours of a cell a will have executed their first state transition, 
including re-entry of T-state /, and be in a welldefined state, keeping ready for a new 
causal Г-input. That means, even though not every cell of (2, T) has executed a 
state transition at the time of input of T2, this actually has happened locally (within 
one neighbourhood) wherever a clock pulse event caused by T2 occurs. 

The proof of the theorem relied exclusively on local arguments (in each case 
only neighbouring cells have been considered), so that the hypotheses of the theorem 
have only to be valid locally, i.e. the statements proven in the theorem for a single 
clock signal input are implied in the same manner for a second signal input.etc. 
Therefore, f rom statement (b) of the theorem, for any к the clock pulse events of 
neighbouring cells differ in time at most by vmax (k=\, 2, 3, ...). Under these assump-
tions, hence, the conditions of definition 3 are satisfied, and we get the 

Corollary. Provided that the component delays appearing in the Г-net are 
time-invariant, it follows that, for given 2, the set of all cells in structure (2, T) works 
locally synchronous. 

But that means: With each clock signal, (2, T) puts into execution one deduc-
tion step in the corresponding simultaneous calculus, in a locally synchronous per-
formance. Thereby, it is no obstacle that, as was shown above, at certain times the 
region in Z2 being reached by clock signal offsprings can possibly be of "genus" 
greater than zero: As far as at time t clock pulse events, generated by Tk but not 
Tk+\, have occurred, and state transitions initiated by this are executed, there is 
present the partial result of the A>th deduction step in the simultaneous calculus that 
arises from an initial pattern. 

Thus it is proved: The (sufficient) condition of synchronity is not necessary; 
an adequate execution of cellular calculi in the sense of John von Neumann is pos-
sible by way of locally synchronous cellular automata. 

6. T-synchronity 

The execution of a simultaneous cellular calculus in a structure (2, T) is by no 
means attained through synchronity of the local substitutions, referring to a global 
or discrete time scale as introduced in the second section. This seems to make impos-
sible the view of a global state of a locally synchronous cellular automaton: Com-
pared with the global time i referring to the origin, (2 , T) does not perform the com-
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putatiori of a successor "configuration" at once — precisely: between two sub-
sequent instants of the discrete time scale / — but instead does this successively 
from the inner to the outer region of Z2. However, concurrently with the foregoing 
computation, the computation of another successor can be started after short delay 
D^Dmia as given by (9), before the first computation is completed. 

Thus at no time (of / ) a global state, as the total result of a deduction step, ap-
pears in a structure (Z, / ) . Note that the definition of a configuration, as well as of 
a global transformation, was based on a concept of synchronity, allowing the simul-
taneous consideration of all cells of a cellular automaton at "global" instants, more 
precisely, at simultaneously considered local instants; see the discussion of these 
matters in the second section. 

But, as was shown by the main result, a simultaneous cellular calculus is actually 
put into execution in structure (2, / ) . Furthermore, under the above assumption 
of time-invariant component delays in the /-net , the execution of a next deduction 
step can, at any given case, be initialized after a delay nearly as small as in the case 
of an ideal synchronous cellular automaton which is seen from the following. 

Consider a cellular automaton 2 working synchronously, in a hypothetic in-
stance, by clock pulses occurring instantaneously at each cell whenever a clock sig-
nal is given to the automaton. (This could be visualized as a (2, res t ruc ture with 
/-inputs occurring synchronously at each cell.) In this case, the minimum signal 
distance would be £+s m a x , see (2). 

In a locally synchronous cellular automaton (2, T), the minimum time distance 
of clock signals given to the origin cell is Dmin, as seen from (9). As £)min = umax + 
+ *'inax+'smax> w e have, by e'umax+umax, a computation speed of the (2, T) 
automaton which relates to the above case of instantaneous signal transmission! 
(Of course, in a finite run of a cellular automaton, corresponding to a sequence of 
a certain number of deduction steps in the calculus, special considerations have to 
be made of the time by which the total result of such a computation can be brought 
out, referring to t. The discussion of this is deferred to [9]; at the moment we are 
considering infinite runs.) 

To attain a concept of a "configuration of a locally synchronous cellular auto-
maton", we now introduce a new concept of synchronity which is based on local 
observation times: Corresponding to each clock signal Tk, we consider local time 
scales ¿1 for each individual cell a in a locally synchronous cellular automaton: 
/ £ = ( R , i£), where ( k = 1,2, . . . ) . Thus for each cell a, with each causal 
/- input ( 0 a new observation time is beginning ("(|£> brings along the t ime"; 
compared with / , the starting points of the local scales of neighbouring cells differ, 
at any given time, at most by the maximum component delay, vmBJ. Then, for each k, 
each cell a is in a well-defined state at time t_l (see section 4), before the k-th clock sig-
nal, represented by the A>th clock pulse ( t f ) , fk<ta

k, appears at a. 
In definition 3, the synchronity of clock pulse events was defined by coincidence 

of the times of their occurrences, with respect to i . (This could as well be applied to 
define the synchronity of causal /-inputs.) Here, we define the "synchronity" of 
events of causal /- inputs occurring in a / -net by covering the starting points of the 
local time scales that correspond to the same clock signal: 

Definition 4. In a (2 , /^-structure, two events (fk) and (if) , where ¡1, if 
are said to be T-synchronous iff k=l. To denote this we shall write (tk) / -syn (if). 
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The concept of T-synchronity is well-defined in a locally synchronous cellular 
automaton since by each clock signal Tk there occurs exactly one clock pulse event 
at each cell a and, hence, exactly one T-input (tf) causal for this. T-synchronity gives 
an equivalence relation, in a canonical way, dividing the set of causal T-inputs into 
a countable number of classes, each containing all causal T-inputs generated by the 
same clock signal. We define special sets tk called (/c-th) time cuts, by "cutting through 
the local t imes": 

k ••= { a m T-syn </»» 

and order them by means of their natural sequence, i.e. along k. This concept makes 
possible a simultaneous consideration of the local time scales ¿k, for each k (refer to 
the remarks given on synchronity, in section 2): While in the above hypothetic case 
there were considered synchronous events of clock pulse inputs at all cells, we consider 
now, in structure (2, T), the case of T-synchronous T-inputs at all cells. A time cut tk 
contains exactly the instants of all events of fc-th causal T-inputs, namely, the starting 
points of the local times To set up the relation to the global observation time i , 
we can also express the tk by the following: 

tk= tél!2€*&3a<á>} 

An element of tk can, of course, be the starting point of several local time scales 
11> ¿L ••• (with fixed k), in case that several of these T-synchronous events occur 
synchronously, in the original sense. Each time cut thus contains at most as many 
instants as the number of cells under consideration because, in locally synchronous 
working, no cell can get more than one fc-th causal T-input (k—l, 2, ...). On the 
other hand, each causal T-input lies in exactly one time cut. 

By use of the concepts of T-synchronity and time cut we now proceed to ex-
plain the terms "configuration" and "global state transition of a locally synchronous 
cellular automaton". 

With reference to any given time cut tk, all cells of such an automaton are T-
synchronously in well-defined states, and thus it makes sense to speak of a global 
state, or a configuration, of the locally synchronous cellular automaton "at time cut 
tk". The relation between the continuous time scale i and a discrete time scale to 
take as a basis "for the consideration of global steps is now to be worked out. The 
times of input of clock signals 2 \ , T2, ... at the origin 0 were denoted by íj , ..., 
and from (9) it is, for all k, \tk + 1 — tk\=Dmin = s'-{-s^. So we could say: Locally, 
i.e. at each individual cell a, time passes by in discrete steps íí—íjj-*-...; each time 
a step It—ifc+i has elapsed (by occurrence of (tl+1)), a has once changed its state. 

For a locally synchronous cellular automaton, we now define a discrete time 
scale the "instants" of which are time cuts: 

t — ({ífc}*€N> S , tx ) 

In section 2, we introduced a continuous time scale to explain locally synchronous 
working; now we have returned to a discrete time concept, by means of the equiva-
lence relation of T-synchronity. While, in the synchronous case, saying that between 
each two subsequent instants /J, t% of t there takes place a global state transition of 
2 leading from a configuration c to a successor configuration c', we could say that, 
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in a locally synchronous cellular automaton, between each two subsequent time cuts 
tk, tk+1 of t there takes place a global state transition of (2, T) f rom c to a c'. 

We conclude this discussion by a remark added to clarify the above ideas. The 
concept of /-synchronity might seem to be a bit rough and only of technical value 
to re-open the view of a global state. But think of an imaginary observer gliding a-
cross the cellular plane, at the same bounded speed as is actually given by the compo-
nent delays appearing in the / -net , along his course. Then, at any region of the plane, 
he would get the impression of a static global state f rom the fact that, during his 
observation, all cells passed are /-synchronously in well-defined states, correspond-
ing to the so far obtained result of the execution of a deduction step in the simul-
taneous cellular calculus. 

Abstract 

It is shown that, for a cellular automaton in the sense of John von Neumann, the assumption 
of synchronous state transitions of all cells is not necessary but can be weakened to an assumption 
of locally synchronous working. An organization scheme is described which achieves locally 
synchronous performance in any cellular automaton of the von Neumann type. A special concept 
of synchronity is introduced which makes possible the consideration of configurations and global 
state transitions of locally synchronous cellular automata. 
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