
Decomposition results concerning X-visit attributed 
tree transducers 

B y Z . F U L O P 

The concept of attributed tree transducer was introduced in [1], [4] and [6]. 
On the other hand, the 1-visit, pure if-visit and simple K-visit classes of attributed 
grammars were defined in [3] and [5]. In this paper, we formulate these properties 
for deterministic attributed tree transducers defined in [6] and prove some de-
composition results. Namely, we show that each tree transformation induced by a 
pure A"-visit attributed tree transducer can be induced by a bottom-up tree transdu-
cer followed by an 1-visit attributed tree transducer. Here, the bottom-up tree trans-
ducer can be substituted by a top-down one. Moreover, each tree transforma-
tion induced by a simple A"-visit attributed tree transducer can be induced by a 
deterministic bottom-up tree transducer followed by an 1-visit attributed tree trans-
ducer. 

1. Notions and notations 

By a type we mean a finite set F of the form F= IJ F„ where the sets F„ 
11 - (;> 

are pairwise disjoint and 
For an arbitrary type F and set S the set of trees over S of type F is the 

smallest set TF(S) satisfying: 
(i) F0U SQTF(S), 

(n)f(Pi, -,Pn)6TF(S) whenever f£Fn,Pl, ...,PneTF(S) (n>0). If 5 = 0 
then TF(S) is written TF. 

The set of all positive integers is denoted by N. Let N* denote the free monoid 
generated by N, with identity A. 

For a tree p(£TF(S)) the depth (dp (p)), root (root (/?)), the set of subtrees 
(sub (p)) of p and paths (path (p)) of p as a subset of N* are defined as follows: 

(i) dp (p)=0, sub (p) = {p}, root ( p ) = p , path (p) = {A} if p € F 0 U S , 
(ii) dp (p) = 1 +max {dp (/Oil Si^n}, root (p)=f, sub (p) = {/>}U(U(sub (p ;)| 

11 ^ z = ")). Path (p) = {A} U {w 11S / S n, i; € path (/?;)} if P=f(Pl, ...,p„) (n>0,fzF„). 
Subtrees of height Oof a tree p(€TF(S)) are called leaves of p. 
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For each p(£TF(S)), w(£pa th (p ) ) there is a corresponding label lbp(w) 
(6 .FUS) and a subtree strp (w) (6 sub (p)) in p which are defined by induction 
on the length of w: 

(i) lbp(w)=root(/0, strp(w)=/> if w=X, 
(ii) lbp(vv)=lbp,(o), strp(vv)=strpi(i>) if w=iv, p=ftpi, ...,p„), 1 
In the rest of this paper, F, G and H always mean types, moreover, the set of 

auxiliary variables Z = {z0,z1, ...} and its subsets Z„ = (z1, ..., zn} (n=0,1,...) 
are kept fixed. Observe that Z o = 0 . Let n s O and p£TF(Z„). Substituting the 
elements sl3 ..., s„ of a set S for z1 ; ...,z„ in p, respectively, we have another 
tree, which is in TF(S) and denoted by p(sl} ..., sn). There is a distinguished 
subset tf(Z„) of 7>(Z„) defined as follows: p£fF(Zn) if and only if each zf 
( l ^ / S n ) appears in p exactly once. 

We now turn to the definition of tree transducers. The terminology used here 
follows [2]. 

Subsets of TFXTG are called tree transformations. The domain of a tree trans-
formation r(<=TFx TG) is denoted by dom r and defined by dom T = {p £ TF\(p, q)£ t 
for some Q£TC}. The composition t^ota of the tree transformations tx( QTFX TG) 
and T2(QTgXTH) is defined by T 1 O T 2 = { ( / > , q)\(p, R ) € T X , (r, q)£?2 for some r). 
If and are classes of tree transformations then their composition ^ o ^ 
is the class {T1o?i\Ti€.'81, T2e<^2}. 

By a bottom-up tree transducer we mean a system A=(F, A, G, A', P) where 
A is a nonempty finite set, the set of states, A'(QA) is the set of final states, moreover, 
P is a finite set of rewriting rules of the form f{axzx, ..., akzk)-*aq where k^O, 

f£Fk, a, au ...', ak£A, qdTG(Zk). A is said to be deterministic if different rules in 
P have different left sides. P can be used to define a binary relation => on the 

* 

set TF(AXTG). The reflexive, transitive closure of => is denoted by => and 
A A 

called derivation. The exact definition can be found in [2]. The tree transformation 
induced by A is a relation x A C^T F xT G ) defined by 

= {(P> f o r s o m e a ( £ A % A 

A top-down tree transducer is again a system A = ( F , A, G, A', P) which 
differs from the bottom-up one only in the form of the rewriting rules. Here, 
P is a finite set of rules of the form af(zx, ..., zk)-^qfaz^,..., atzh) where k, 1^0, 
f£Fk, a, ax, ..., at€A, 1==^, ..., q£fG(Z,). Moreover, A' is called the set 
of initial states. The relation => can now be defined on the set TG(AxTF) and 

A 
* 

its reflexive, transitive closure is again denoted by => (c.f. [2]). The tree transforma-
A 

tion induced by A is a relation t A (QT F XT G ) defined by 

U = {(P> q)\aPTQ f o r s o m e 
A 

The following concept of attributed tree transducer was defined in [6]. We repeat 
this definition, .with a slightly different formalism, because this new one seems to be 
simpler. Moreover, we allow not only the completely defined but the partially 
defined case as well. : ; . 
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= C 

By a deterministic attributed tree transducer, or shortly DATT, we mean a 
system A=(F, A, G, a0, P, rt) defined as follows: 

(a) A is a finite set, the set of attributes, which is the union of the disjoint sets 
As and Ai where As is called the set of synthesized attributes, At is called the 
set of inherited attributes; 

(b) a0eAs; 
(c) rt is a partial mapping from At to TG; 
(d) P is a finite set of rewriting rules of the form 

a f ( z 1 , ... ,zk) - q(a1 Zjj, • ••, a t z j ) (1) 

where k,l^0,f£Fk, q£TG(Z,), a£As, OS.j l t ar£At if jr=0 and arf_As 
if ( r = \ , . . . , / ) as well as rules of the form 

«(zj,f)-q(a1zjl,...,alzs,) " (2) 

where f£Fk for some fc(3?l), 0, a£Ai} 1 tkjsk, q^fG(Zd, ..., j^k 
and ar is the same as above (V=l, ...,/)• Any two different rules of P are re-
quired to have different left sides. 

From now on, for the sake of convenience we shall use the following notation 
for each element x of the set N U {0} 

if x£N 
if x = 0. 

Let p£TF. We can define the relation <== on the set TG (A X path (p)) 
P, A 

in the following way. For q, r[£TG(AXTpa.th(p)) q <== r if r is obtained from 
q by substituting the tree q((aly Vj), ..., (ah v,)) for some leaf (a, Xpath (p)) 
of q if either the condition (a) or (b) holds: 

(a) (i) a£As, 
(ii) lb„(w)=f(eFk for some kss0), 
(iii) the rule (1) is in P, 
(iv) vr = wj, (r=\, ...,/); 

(b) (i) a e A h 
(ii) w=vj for some j(£N), 

(iii) ]bp(v)=f(eFk for some k^X), 
(iv) the rule (2) is in P, 
(v) vr = v]r (r— 1, ..., /). 

Observe that a leaf of q which is in AtX {A} can never be substituted because, 
for such a leaf, neither (a) nor (b) can hold. Therefore we define the relation 
"<== concerning r t" which contains -<== in the following manner: q <== r 

p, A p, A p, A 
concerning rt if either q <== r or r is obtained from q by substituting rt(a) 

P, A 
(if it exists) for a leaf (a, ?,)(£AiX{/-}) of q. Let the n-th power, transitive closure, 

n + * reflexive, transitive closure of <== be denoted by < = = , <== , •<==, respectively, 
p, A p, A p, A p, A 

and similarly for the relation <== concerning rt. We can now define the tree 
p, A 
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transformation rA(QTf X TG) induced by A in the following way 

Ta = {{p, q)\(a0, A) <== q concerning rt}. 
p, A 

* 

An example for a DATT can be found in [6]. The relation <== is called 
p, A 

* 
derivation. The length It (a) of a derivation a=q<==r is defined as the integer n 

P. A 
n 

for which q <== r. 
P , A 

In the rest of this paper, by a DATT we always mean a noncircular DATT 
(see [6]). ' 

Before going on, we make an observation which will often be used without 
reference. Let p£TF, wgpath (p), / s 0 , q£fc(Z,), a£As, al, . . . , a^A, and let 
strp(w) be denoted by P w . 

Suppose that 
(a, w) <== q((au w), ..., (a„ w)) (3) 

p, A 

and there is no step in (3), in which, a leaf in /);X{w} is substituted. Then 

(a, A) ^ = 9 ( ( f l l , ; . ) , . . . , ( f l | , A ) ) 
P W.A 

and the converse also holds. 
The classes of all tree transformations induced by top-down tree transducers, 

(deterministic) bottom-up tree transducers, deterministic attributed tree transducers 
are denoted by ST, respectively. 

2. K-visit attributed tree transducers 

Let A(=(F, A, G, a0, P, rt)) be a DATT and let -K(s l ) be an integer. 
By a partition of A we mean a sequence ((/1; S^), ..., (/,, 5,)) where Ij (S}) 

are pairwise disjoint subsets of At (As) whose union is At (AJ. Let <PK(A) 
denote the set of all partitions of A with / ^ K. 

Now let f£Fk (/c=0), e'£>PK(A) with e<=((/{, S{), ..., (/, ' , 5,',)) ( / = 0 , 1, ..., k). 
The oriented graph Df(e°, e1, ..., ek) is defined as follows. Its nodes are the symbols 
I f , Sj (J — l, ..., A,) and the symbols I j , Sj (/ = 1, ..., k, j = ..., /,). Edges are 
oriented for each 

( i ) 7 ( = l , ...,/0) from I j to Sj; 
( i i ) ; ( = l , . . . , / 0 - l ) from Sj to 7/+1; 

(iii) /(= 1, ..., k), j(= 1, ..., /,) from Ij to Sy, 
(iv) i ( = l , ..., k),j(=i, . . . , / ; - 1 ) from S) to 7j+ 1 ; 
(v) j(= 1, . . . J o ) , a(eSj) from x]> to Sj if there is a rule af(zu ..., 

~-q{axzh, ...,ctizh) in P for which as£\'*> under some s(= 1, . . . , / ) , r ( = l , . . . , / , ), 

(vi) /(=1, ..., k), J(=i, ..., /¡), a(€/ j ) from AVS to / j if there is a rule 
a(zi, f)<-q(a1zil, ..., atZ;) in P with as£X}' under some s,r, X defined as in (v). 
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The graph Df(e°, e1, ..., ek) corresponds to the concept of partition graph for 
a production of an attribute grammar, which concept was introduced in [5]. 

Let p(=f(pi, •••,pk))dTF (k>Q,f£Fk) and consider a mapping n: path (p) — 
*4>K(A). The mappings 7i': path (p,)-*-^k(-4) are defined by n'(w) = Ti(iw) 
(/ = 1, ..., k, wepathOi)). 

Now, let again p^TF and n: path (p)^<PK(A). The oriented graph Dp(n) 
is defined by induction on dp (p): 

(i) if p = / ( € F 0 ) with n(X) = e then Dp(n) = Df(e)-
(ii) i f p = f ( p 1 , ...,pk) (k>0, fdFk) w i t h jt(A) = e, 7i(i)=e' (i = 1, . . . , k) t h e n 

Dp(n) = Df(e, e1, ..., efc)U(U(ZJ^C71'")11 = ' =£)) where D'Jiz') is obtained from D^n') 
by "multiplying its nodes by /"', that is, the nodes of D'p.(n'), are the symbols Xj.w 

where X™ are nodes of Dp.(n'), moreover, there is an edge from Xiw to Y's" 
in D'pi(nl) iff there is an edge from X? to Ys

v in Dp.(n'). Nodes and edges of 
graphs are combined as sets. 

Definition 1. We say that A is pure AT-visit, if for each dom t a ) there 
exists a 7t: path (p) — <PK(A) with acyclic Dp(n). 

To support this definition, the following observation can be made. If Dp(n) 
is acyclic then a computation sequence (see in [5] for attribute grammars) can be 
constructed, which induces a AT-visit tree-walking attribute evaluation strategy on p. 

Definition 2. Suppose that to each f(£F) there corresponds an element 
ef of ^k (A ) and let TlK = {ef\f^F}. A is said to be simple K-visit concerning 
IIK if for each / > ( 6 d o m T a ) there exists a 7r: path (p)—77K for which the following 
two conditions hold: 

(i) if lbp(vv)= / then n(w) = e f (w£ path (p)), 
(ii) Dp(ji) is acyclic. 

A is simple A-visit, if it is simple Af-visit concerning some i IK . 
The classes of all tree transformations induced by pure, simple' K visit DATTs 

are denoted by 3>sdPK, respectively. Observe, that <P1(A) = {(Ai, As)} so, in 
the particular case K = 1, the two properties defined above are identical. There-
fore and they can be denoted by Q)siv 

Theorem 3. For each A"(sl), M p j c f o ® ^ . 

Proof. Let A(=(F, A, G,a0,P, rt)) be a pure A'-visit DATT. Consider the 
bottom-up tree transducer B(=(F, B, F, B', P )) where 

(a) B=B'=<PK(A); _ 
(b) for each TO(SO), Fm is defined as follows < / ; e, e1, ..., ek}£ Fm if and only if 
(i) f£Fk for some k(^0), 

(ii) e,e\...,ek€0K(A), 
(iii) m = /1 + ... +lk where is the number of components of e' (/ = 1, ..., k), 
(iv) Df(e, e1, ..., e*) is acyclic; 
(c) for each 0), < / ; e, e1, ..., ek> (£Fm) the rule 

times l k times 

/ ( e ^ j , ...,ekzk) - e < / ; e, e1 ek)(Zl, ...,Zl, ..., zk, ..., zk) 

is in P'. 
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Moreover, let the DATT C = ( F , C, G, c0, P", rt") be defined as follows 
(a) CS=AS, Ci = Ah c0 — a0, rt" = rt; 
(b) P " is constructed in the following way. Let тшО, < / ; e , e1, ..., e t>£Fm 

with е=(( / 1 э S J , . . . , ( / „ Sd) and ¿={(Jl, S{), ...,(//,, S{)) ( I s j ^ k ) . For 
each a(eC s) let the rule a < / ; e, e1, ..., e*> (z,, ..., z j - ^ z ^ , a sz i t) be in 
P" if the following conditions hold: 

(i) af(zl,...,zk)~-qKZj4, ..., asZj)eP, 

• _ p V ( = 0 ) if ar€A, (r = l,...,s) 

' ' ~ [k+.-. + l^-i + n if a£Sl* for some n ( = 1, . . . , lJr). 

Moreover, for each j ( = l , . . . , k ) , n(= 1, ..., /,•), a^OlU...KJIl) let the rule 
a(zh < / ; e, e1, ..., ^ » - i ^ z , - , . . . , asZt) be in P" if 

(0 a(zj, f ) - q{axzh,...,aszJt)£P, 

(ii) i = h+... + lj-г + п, 

ш = 0 ) if ar£A, (r = 1, . . . ,S) 
r _ I / i + .-. + ^ - i + M if for some и = (1, . . . , lJr). 

The 1-visit property of С can be shown in the following manner. In [3], it was 
proved that an attributed grammar is 1-visit iff each of its brother graphs is acyclic. 
We can formulate the concept of the brother graph for DATTs and can easily show 
that each brother graph of С is acyclic. 

The proof of the next lemma can be performed by a simple induction on dp (p) . 
* _ _ Lemma 4. Let p£TF,e£B. Then p=>eq for some TF) if and only 
В 

if there exists а л: path (р) — Фк(А) with 71(A)=e and acyclic Dp(n). 

Lemma5. Let p£TF, q£TF, qefG(Zs), ..., а.€Л„ e£B with e = ( ( / l 5 ... 
. . . ,( /[ , ¿¡)) and let a £ S j for some ; ' ( = 1 , . . . , / ) . Suppose that a n d 

(a, A) <=*= q((au A), ..., (as, A)). Then au . . . , a ^ A U . . . U/,-. 
p , A 

Proof. It follows from the previous lemma that there exists а л: path (p) — 
-*ФК(А) with я(А) = е and acyclic Dp(n). Suppose that, say, a ,£ l k where k>j. 
Then, by the definition of Dp(n), there is a path from Ik to Sj in Dp(n) due 
to the dependency edges of Dp{n). On the other hand, there is a path from Sj to 
Ik in Dp(n) because k>j, which contradicts the fact that Dp(n) is acyclic. 

Lemma 6. Let a£As, p£TF, q£TF, ?еГ с (Л ; х{А}) , eg5 . Suppose that 
* * _ * 

(a, A) <== q and p=> eq. Then (a, A) <== q. 
p , А В q, С 

Proof. The proof can be performed by induction on dp (p). 
(a) Let dp (/>)=() i.e. p=f(£F0). Then by supposition, af~-q'(a1z0, ...,aszc)£P 

(s^0,_q'£tG(Zs), au ..., as£A;), q=q'{(a1, A), ..., (a„ A)), moreover, f - e ( f ; e)£P' 
and q = (J\ e>. Therefore, by the definition of С, а < / ; e> — q X ^ z 0 , ..., asz0)£P". 
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* 
(b) Now let dp ( p ) > 0 that is p=f(p1, ...,/?*) (k>0,f£Fk). Here, p=> eq 

B 
can be written in the form 

P=f(Pi, •••> Pk) ̂ /^ft, --,ekqk) => 
IS 15 

/, times lk times 

e < / ; e, e1, . . . , e*>(ft, ft, . . . , qk, ...,qk) = eq 
with 

eJ' = (№', W j , SQ) ( j = 1, . . . , 7 c ) . 

First we can prove the following 
STATEMENT. Let 1 ^ j ^ k , 1 ^ n ^ / , • , b 61{U. . . U Pn, t£ TG{A¡X {!}) and suppose * * 

that the relation P=(b, j ) -<== t holds. Then (b, /) <== t where i=lx + ...+l,_1+n. 
p, A G, C 

The proof of this statement can be done by an induction on It (/?). When 
ltQ?) = l then b(zj,f)~-t'(b1z0,...,bsz,)iP ( i ^O, t'£Ta{Zs), blt ..., b.£A,) and 
t=t'((b1,X),...,(bs,X)) so, by the definition of C, b(zi,f)~-t'(blzn, ..., bsz0)£P". 

When It (/i) > 1 then /? can be written in the following form 

(b,j) <== A), •••, (¿v, D ) <== t'(h, 0 = t p, A p , A 

where 

i^o, i'^foCZ,),^, ...,b.£A, ix, . . . i ^ r e ^ i X W ) ^ ^ , / ) - « ' ^ - •••,bsZj)eP 

Then, by the definition of C, b{zt, < / ; e, e1, ..., e*» — ? ' ^ ! ^ , •••» bszis)£P" where 

j r ( = 0) if br£At (r = 1, . . . , s ) 

Zj-I-...+ / J r_ 1 + t; if br£Sjr for some t>(= 1, . . . , /jV). 

Now let r ( = l , ...,s) be such an index for which br£S'j and so 1 ^ j r ~ k . Then 
* * 

the relation (br, ]r) <== tr can be written in the form (b r , j r ) <== f / u c j , jr), ... 
p, A p,A 

(c„,7r)) <=*= tr'Oi, ~Q = tr for some « 0 0 ) , i r '(e fG(Z„)), c1 ; ..., c u ( € ^ i ) J i , ••• p, A 

..., i„(G (^i X {/}) and we can suppose that the derivation (br,jr) <== t'r ((cx, jr), ... 
p,A 

..., (cu,jr)) has no such a step, in which, a leaf in AiX{j r} substituted. Then 
(br, / ) <== i / f tc j , A), ..., (cu, A)) so, by the induction hypothesis concerning dp (p), PJR,A 

we have (br, X) <== i/((c1; 2), ..., (c„, A)) which means that (br, ir) <== / r '((cj, ;'r), ... 
8JR.C 4, C 

..., (cu, /r)) because lb5(/ r)=q j V . On the other hand, by Lemma 5, c1( ..., Cu^Z/'U ... 
* 

...U/¡/ r, moreover, the length of each of the derivations -<== r l5 ... 
p, A 

(c„,7r) <== fu is less than It (/?) so we have ( q , zr) <=== ..., (c„, /',) <== 7„, PI A 9, C q, C 

that is (br, ir) <== ..., tu) = tr. q, C 
If r is such an index for which and so 7 r = 0 then tr=(br, X), therefore 

I 
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* 
(bT, lr) <== tr again. All that means that 

q, C 

(b, i) /'((¿i. y,..., (bs, isj) <=*== ..., ts) = t 

. proving our statement. 
* 

Now we return to the induction step of the lemma. The relation (a, A) <== q 
P, A 

can be written in the form 

{a, A) <== q,((a1,]1), ..., (a„]s)) <== q\ql5 ..., qs) = q 
p, A P. A 

where jSO , q'^fG(Zs), au ...,as£A, qu ..., {A}) and af(zlt ...,zk)^ 
*-q'(a1zjl, ..., asZj) is in P. Then, by the definition of C, the rule a < / ; e , e1, ..., e ' ) 
(zi, zj^-qfaz'^, ..., oszis) is in P" where w = /1 + ...+/ )£ and 

17r(= 0) if a £ A i ( r = 1, . . . , s ) 
' r ~ { / ! + . . . + / J r_1 + n if for some n(= 1, ..., lu) . 

Let r ( = l , ..., J) be an index for which ar£SJ
n

r for some n ( = l , . . . , / J r) and 
* 

so 1 Then the relation (ar, j,) <== qr can be written in the form 
P, A 

+ * y. 

(ar, jr) <== q',((.b1, 7r), ..., (Z>„, 7,)) < = = q'Mi, •••, for some mSO, q'r£TG(Zu), 
P. A p,A 

¿1, •••,bu£Ai,q1, ...,qu£TG(AiX{l}). We can again suppose, that there is no step 
in the derivation (a r , j r ) <== q'r{{b1Jr), ..., (buJr)), in which, a leaf in P. A 

is substituted. Therefore {ar, A) <== q'jUbi,, A.), ..., (bu, A)) from which, by Lemma 5, 
Pjr, A 

• ••> ¿ u €/ i r U. . . U/i r and, by the induction hypothesis on dp (p), we get 
(a„ A) <== q'r{(by, A), ..., (ba, A)) that is (ar, ir) <== ^ ' ( ( f t , i,), ..., (¿>u, /,)). On the qj , C fl, C 

* — * _ other hand, by the statement, we have (bl9 ir) /r) <== qu which 
C 

means that (a,, /,) <== q'r(qu ...,qu)=qr. q,C 

If r (=1 , ..., j) is such an index for which ar£Ai and so jr=0 then it is clear 
that qr—(ar, A), therefore (ar, lr) <== qr again. The two cases of r and 9. c 

a < / ; e, e1, ..., efc> (z1( ..., ..., cfszfs)6P" together prove that 

(a, A) q'fai, h), (a„ U) <=== tf'fai, -,qs)=q-q, t- C-This ends the proof of Lemma 6. 
The proof of the next lemma is essentially the converse of the previous one. 
Lemma 7. Let a£As, p£TF, qdTF, q£T0(AiX {A}), e£B. Suppose that p =>• eq 

B 
* * and (a, A) «== q. Then (a, A) <== q. 

q,C p, A 
Now we are ready to prove our theorem. Suppose that (p,q)€rA that is 

* . . . _ 
(fl0, A) -<== q concerning rt. Because A is A-visit, by Lemma 4, there exist q£TF 
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* _ * and e£B with p=>eq, therefore, by Lemma 6, (a09 A) <== q concerning rt", hence 
B q, C 

* 

(p,q)€TBOTc. Conversely, by (p, < 7 ) € T B O T c we have a q£TF for which p=>eq 
i B 

* under some e(€fi) and (a0, X) <== q concerning rt". Then, by Lemma 7, we have 
q, c 

* 
(cr0, A) <== q concerning rt. The fact, that the inclusion is strict follows from the 

P , A 

proof of Theorem 4.1 of [6]. This ends the proof of Theorem 3. 
After studying the proof of the previous theorem two observation can be made. 

On the one hand, instead of the bottom-up tree transducer B we can have a top-
down one which can be constructed by reversing the rewriting rules of B. Although 
this top-down one does not induce the same tree transformation as B, the following 
will be valid. 

Corollary 8. S i « c 9~o9)stx. 

On the other hand it also seems that if A is simple AT-visit then a deterministic 
bottom-up tree transducer can be constructed, so we have 

Corollary 9. c SiSSoQisf^ 
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