Decomposition results concerning K-visit attributed tree transducers

By Z. FÜLÖP

The concept of attributed tree transducer was introduced in [1], [4] and [6]. On the other hand, the 1 -visit, pure K-visit and simple K-visit classes of attributed grammars were defined in [3] and [5]. In this paper, we formulate these properties for deterministic attributed tree transducers defined in [6] and prove some decomposition results. Namely, we show that each tree transformation induced by a pure K-visit attributed tree transducer can be induced by a bottom-up tree transducer followed by an 1 -visit attributed tree transducer. Here, the bottom-up tree transducer can be substituted by a top-down one. Moreover, each tree transformation induced by a simple K-visit attributed tree transducer can be induced by a deterministic bottom-up tree transducer followed by an 1-visit attributed tree transducer.

1. Notions and notations

By a type we mean a finite set F of the form $F=\bigcup_{n<\omega} F_{n}$ where the sets F_{n} are pairwise disjoint and $F_{0} \neq \emptyset$.

For an arbitrary type F and set S the set of trees over S of type F is the smallest set $T_{F}(S)$ satisfying:
(i) $F_{0} \cup S \subseteq T_{F}(S)$,
(ii) $f\left(p_{1}, \ldots, p_{n}\right) \in T_{F}(S)$ whenever $f \in F_{n}, p_{1}, \ldots, p_{n} \in T_{F}(S)(n>0)$. If $S=\emptyset$ then $T_{F}(S)$ is written T_{F}.

The set of all positive integers is denoted by N. Let N^{*} denote the free monoid generated by N, with identity λ.

For a tree $p\left(\in T_{F}(S)\right)$ the depth $(\mathrm{dp}(p))$, root (root (p)), the set of subtrees (sub (p)) of p and paths (path (p)) of p as a subset of N^{*} are defined as follows:
(i) $\operatorname{dp}(p)=0, \operatorname{sub}(p)=\{p\}, \operatorname{root}(p)=p$, path $(p)=\{\lambda\}$ if $p \in F_{0} \cup S$,
(ii) $\mathrm{dp}(p)=1+\max \left\{\mathrm{dp}\left(p_{i}\right) \mid 1 \leqq i \leqq n\right\}, \operatorname{root}(p)=f, \operatorname{sub}(p)=\{p\} \cup\left(\cup\left(\operatorname{sub}\left(p_{i}\right) \mid\right.\right.$ $\mid 1 \leqq i \leqq n)$), path $(p)=\{\lambda\} \cup\left\{i v \mid 1 \leqq i \leqq n, v \in\right.$ path $\left.\left(p_{i}\right)\right\}$ if $p=f\left(p_{1}, \ldots, p_{n}\right)\left(n>0, f \in F_{n}\right)$. Subtrees of height 0 of a tree $p\left(\in T_{F}(S)\right)$ are called leaves of p.

For each $p\left(\in T_{F}(S)\right), w(\in$ path $(p))$ there is a corresponding label $\mathrm{lb}_{p}(w)$ $(\epsilon F \cup S)$ and a subtree $\operatorname{str}_{p}(w)(\epsilon \operatorname{sub}(p))$ in p which are defined by induction on the length of w :
(i) $\mathrm{lb}_{p}(w)=\operatorname{root}(p), \operatorname{str}_{p}(w)=p \quad$ if $\quad w=\lambda$,
(ii) $\mathrm{lb}_{p}(w)=\mathrm{lb}_{p_{i}}(v), \operatorname{str}_{p}(w)=\operatorname{str}_{p_{i}}(v)$ if $w=i v, p=f\left(p_{1}, \ldots, p_{n}\right), 1 \leqq i \leqq n$.

In the rest of this paper, F, G and H always mean types, moreover, the set of auxiliary variables $Z=\left\{z_{0}, z_{1}, \ldots\right\}$ and its subsets $Z_{n}=\left\{z_{1}, \ldots, z_{n}\right\}(n=0,1, \ldots)$ are kept fixed. Observe that $Z_{0}=\emptyset$. Let $n \geqq 0$ and $p \in T_{F}\left(Z_{n}\right)$. Substituting the elements s_{1}, \ldots, s_{n} of a set S for z_{1}, \ldots, z_{n} in p, respectively, we have another tree, which is in $T_{F}(S)$ and denoted by $p\left(s_{1}, \ldots, s_{n}\right)$. There is a distinguished subset $\hat{T}_{F}\left(Z_{n}\right)$ of $T_{F}\left(Z_{n}\right)$ defined as follows: $p \in \hat{T}_{F}\left(Z_{n}\right)$ if and only if each z_{i} ($1 \leqq i \leqq n$) appears in p exactly once.

We now turn to the definition of tree transducers. The terminology used here follows [2].

Subsets of $T_{F} \times T_{G}$ are called tree transformations. The domain of a tree transformation $\tau\left(\subseteq T_{F} \times T_{G}\right)$ is denoted by dom τ and defined by dom $\tau=\left\{p \in T_{F} \mid(p, q) \in \tau\right.$ for some $\left.q \in T_{G}\right\}$. The composition $\tau_{1} \circ \tau_{2}$ of the tree transformations $\tau_{1}\left(\subseteq T_{F} \times T_{G}\right)$ and $\tau_{2}\left(\subseteq T_{G} \times T_{H}\right)$ is defined by $\tau_{1} \circ \tau_{2}=\left\{(p, q) \mid(p, r) \in \tau_{1},(r, q) \in \tau_{2}\right.$ for some $\left.r\right\}$. If \mathscr{C}_{1} and \mathscr{C}_{2} are classes of tree transformations then their composition $\mathscr{C}_{1} \circ \mathscr{C}_{2}$ is the class $\mathscr{C}_{1} \circ \mathscr{C}_{2}=\left\{\tau_{1} \circ \tau_{2} \mid \tau_{1} \in \mathscr{C}_{1}, \tau_{2} \in \mathscr{C}_{2}\right\}$.

By a bottom-up tree transducer we mean a system $\mathbf{A}=\left(F, A, G, A^{\prime}, P\right)$ where A is a nonempty finite set, the set of states, $A^{\prime}(\subseteq A)$ is the set of final states, moreover, P is a finite set of rewriting rules of the form $f\left(a_{1} z_{1}, \ldots, a_{k} z_{k}\right) \rightarrow a q$ where $k \geqq 0$, $f \in F_{k}, a, a_{1}, \therefore, a_{k} \in A, q \in T_{G}\left(Z_{k}\right) . \quad \mathbf{A}$ is said to be deterministic if different rules in P have different left sides. P can be used to define a binary relation $\underset{\mathbf{A}}{\Rightarrow}$ on the set $T_{F}\left(A \times T_{G}\right)$. The reflexive, transitive closure of $\underset{\vec{A}}{\Rightarrow}$ is denoted by $\underset{\mathbf{A}}{*}$ and called derivation. The exact definition can be found in [2]. The tree transformation induced by \mathbf{A} is a relation $\tau_{\mathrm{A}}\left(\cong T_{F} \times T_{G}\right)$ defined by

$$
\tau_{\mathrm{A}}=\left\{(p, \stackrel{\circ}{q}) \mid p \stackrel{*}{\mathrm{~A}} a q \text { for some } a\left(\in A^{\prime}\right)\right\}
$$

A top-down tree transducer is again a system $\mathbf{A}=\left(F, A, G, A^{\prime}, P\right)$ which differs from the bottom-up one only in the form of the rewriting rules. Here, P is a finite set of rules of the form $a f\left(z_{1}, \ldots, z_{k}\right) \rightarrow q\left(a_{1} z_{i_{1}}, \ldots, a_{l} z_{i_{1}}\right)$ where $k, l \geqq 0$, $f \in F_{k}, a, a_{1}, \ldots, a_{l} \in A, 1 \leqq i_{1}, \ldots, i_{l} \leqq k, q \in \hat{T}_{G}\left(Z_{l}\right)$. Moreover, A^{\prime} is called the set of initial states. The relation $\underset{\mathbf{A}}{\Rightarrow}$ can now be defined on the set $T_{G}\left(A \times T_{F}\right)$ and its reflexive, transitive closure is again denoted by $\underset{A}{*}$ (c.f. [2]). The tree transformation induced by \mathbf{A} is a relation $\tau_{\mathrm{A}}\left(\subseteq T_{F} \times T_{G}\right)$ defined by

$$
\tau_{\mathrm{A}}=\left\{(p, q) \mid a p \stackrel{*}{\Rightarrow} q \quad \text { for some } a\left(\in A^{\prime}\right)\right\}
$$

The following concept of attributed tree transducer was defined in [6]. We repeat this definition, with a slightly different formalism, because this new one seems to be simpler. Moreover, we allow not only the completely defined but the partially defined case as well.

By a deterministic attributed tree transducer, or shortly DATT, we mean a system $\mathbf{A}=\left(F, A, G, a_{0}, P, \mathrm{rt}\right)$ defined as follows:
(a) A is a finite set, the set of attributes, which is the union of the disjoint sets A_{s} and A_{i} where A_{s} is called the set of synthesized attributes, A_{i} is called the set of inherited attributes;
(b) $a_{0} \in A_{s}$;
(c) rt is a partial mapping from A_{i} to T_{G};
(d) P is a finite set of rewriting rules of the form

$$
\begin{equation*}
a f\left(z_{1}, \ldots, z_{k}\right) \leftarrow \bar{q}\left(a_{1} z_{j_{1}}, \ldots, a_{l} z_{j_{l}}\right) \tag{1}
\end{equation*}
$$

where $k, l \geqq 0, f \in F_{k}, \bar{q} \in \hat{T}_{G}\left(Z_{l}\right), a \in A_{s}, 0 \leqq j_{1}, \ldots, j_{l} \leqq k, a_{r} \in A_{i}$ if $j_{r}=0$ and $a_{r} \in A_{s}$ if $1 \leqq j_{r} \leqq k \quad(r=1, \ldots, l)$ as well as rules of the form

$$
\begin{equation*}
a\left(z_{j}, f\right) \leftarrow \bar{q}\left(a_{1} z_{j_{1}}, \ldots, a_{l} z_{j_{l}}\right) \tag{2}
\end{equation*}
$$

where $f \in F_{k}$ for some $k(\geqq 1), l \geqq 0, a \in A_{i}, \quad 1 \leqq j \leqq k, \bar{q} \in \hat{T}_{G}\left(Z_{l}\right), 0 \leqq j_{1}, \ldots, j_{l} \leqq k$ and a_{r} is the same as above $(r=1, \ldots, l)$. Any two different rules of P are required to have different left sides.

From now on, for the sake of convenience we shall use the following notation for each element x of the set $N \cup\{0\}$

$$
\bar{x}=\left\{\begin{array}{lll}
x & \text { if } & x \in N \\
\lambda & \text { if } & x=0 .
\end{array}\right.
$$

Let $p \in T_{F}$. We can define the relation $\underset{p, \mathbf{A}}{=}$ on the set $T_{G}(A \times \operatorname{path}(p))$ in the following way. For $q, r\left(\in T_{G}(A \times \operatorname{path}(p)) \stackrel{p, \mathbf{A}}{q \underset{p, \mathbf{A}}{\Leftarrow} r}\right.$ if r is obtained from q by substituting the tree $\bar{q}\left(\left(a_{1}, v_{1}\right), \ldots,\left(a_{l}, v_{l}\right)\right)$ for some leaf $(a, w)(\in A \times \operatorname{path}(p))$ of q if either the condition (a) or (b) holds:
(a) (i) $a \in A_{s}$,
(ii) $\mathrm{lb}_{p}(w)=f\left(\in F_{k}\right.$ for some $\left.k \geqq 0\right)$,
(iii) the rule (1) is in P,
(iv) $v_{r}=w \bar{j}_{r} \quad(r=1, \ldots, l)$;
(b) (i) $a \in A_{i}$,
(ii) $w=v j$ for some $j(\in N)$,
(iii) $\mathrm{lb}_{p}(v)=f\left(\in F_{k}\right.$ for some $\left.k \supseteqq 1\right)$,
(iv) the rule (2) is in P,
(v) $v_{r}=v \bar{j}_{r}(r=1, \ldots, l)$.

Observe that a leaf of q which is in $A_{i} \times\{\lambda\}$ can never be substituted because, for such a leaf, neither (a) nor (b) can hold. Therefore we define the relation " $\underset{p, \mathrm{~A}}{=}=$ concerning rt " which contains $\underset{p, \mathrm{~A}}{\leftarrow}$ in the following manner: $q \underset{p, \mathrm{~A}}{\underset{=}{=}} r$ concerning rt if either $q \underset{p, \mathbf{A}}{=} r$ or r is obtained from q by substituting $\operatorname{rt}(a)$ (if it exists) for a leaf $(a, \lambda)\left(\in A_{i} \times\{\lambda\}\right)$ of q. Let the n-th power, transitive closure, reflexive, transitive closure of $\underset{p, \mathbf{A}}{\leftarrow}$ be denoted by $\underset{p, \mathbf{A}}{\stackrel{n}{=}}, \underset{p, \mathbf{A}}{+}, \underset{p, \mathbf{A}}{*}$, respectively, and similarly for the relation $\underset{p, A}{\stackrel{(}{A}}$ concerning rt . We can now define the tree
transformation $\tau_{\mathrm{A}}\left(\subseteq T_{F} \times T_{G}\right)$ induced by \mathbf{A} in the following way

$$
\tau_{\mathrm{A}}=\left\{(p, q) \mid\left(a_{0}, \lambda\right) \underset{p, \mathrm{~A}}{\stackrel{*}{=}} q \text { concerning } \mathrm{rt}\right\} .
$$

An example for a DATT can be found in [6]. The relation $\underset{p, A}{*}$ is called derivation. The length It (α) of a derivation $\alpha=q \underset{E, \mathrm{~A}}{\stackrel{*}{=}} r$ is defined as the integer n for which $q \underset{p, \mathrm{~A}}{\stackrel{n}{=}} r$.

In the rest of this paper, by a DATT we always mean a noncircular DATT (see [6]).

Before going on, we make an observation which will often be used without reference. Let $p \in T_{F}, w \in \operatorname{path}(p), l \geqq 0, q \in \hat{T}_{G}\left(Z_{l}\right), a \in A_{s}, a_{1}, \ldots, a_{l} \in A_{i}$ and let $\operatorname{str}_{p}(w)$ be denoted by p_{w}.

Suppose that

$$
\begin{equation*}
(a, w) \underset{p, \mathrm{~A}}{{ }_{p}^{n}} q\left(\left(a_{1}, w\right), \ldots,\left(a_{l}, w\right)\right) \tag{3}
\end{equation*}
$$

and there is no step in (3), in which, a leaf in $A_{i} \times\{w\}$ is substituted. Then

$$
(a, \lambda) \underset{p_{w}, \mathrm{~A}}{\stackrel{n}{=}} q\left(\left(a_{1}, \lambda\right), \ldots,\left(a_{l}, \lambda\right)\right)
$$

and the converse also holds.
The classes of all tree transformations induced by top-down tree transducers, (deterministic) bottom-up tree transducers, deterministic attributed tree transducers are denoted by $\mathscr{T}(\mathscr{D}) \mathscr{B}, \mathscr{D} \mathscr{A}$, respectively.

2. K-visit attributed tree transducers

Let $\mathbf{A}\left(=\left(F, A, G, a_{0}, P, \mathrm{rt}\right)\right)$ be a DATT and let $K(\geqq 1)$ be an integer.
By a partition of A we mean a sequence $\left(\left(I_{1}, S_{1}\right), \ldots,\left(I_{i}, S_{i}\right)\right)$ where $I_{j}\left(S_{j}\right)$ are pairwise disjoint subsets of $A_{i}\left(A_{s}\right)$ whose union is $A_{i}\left(A_{s}\right)$. Let $\Phi_{K}(A)$ denote the set of all partitions of A with $l \leqq K$.

Now let $f \in F_{k}(k \geqq 0)$, $\mathbf{e}^{i} \in \Phi_{K}(A)$ with $\mathbf{e}^{i}=\left(\left(I_{1}^{i}, S_{1}^{i}\right), \ldots,\left(I_{i_{i}}^{i}, S_{i_{i}}^{i}\right)\right)(i=0,1, \ldots, k)$. The oriented graph $D_{f}\left(\mathbf{e}^{0}, \mathbf{e}^{1}, \ldots, \mathbf{e}^{k}\right)$ is defined as follows. Its nodes are the symbols $I_{j}^{\lambda}, S_{j}^{\lambda}\left(j=1, \ldots, l_{0}\right)$ and the symbols $I_{j}^{i}, S_{j}^{i}\left(i=1, \ldots, k, j=1, \ldots, l_{i}\right)$. Edges are oriented for each
(i) $j\left(=1, \ldots, l_{0}\right)$ from I_{j}^{2} to S_{j}^{λ};
(ii) $j\left(=1, \ldots, l_{0}-1\right)$ from S_{j}^{λ} to I_{j+1}^{λ};
(iii) $i(=1, \ldots, k), j\left(=1, \ldots, l_{i}\right)$ from I_{j}^{i} to S_{j}^{i};
(iv) $i(=1, \ldots, k), j\left(=1, \ldots, l_{i}-1\right)$ from S_{j}^{i} to I_{j+1}^{j};
(v) $j\left(=1, \ldots, l_{0}\right), a\left(\in S_{j}^{0}\right)$ from $X_{r}^{i_{s}}$ to S_{j}^{λ} if there is a rule $a f\left(z_{1}, \ldots, z_{k}\right)-$ $\leftarrow q\left(a_{1} z_{i_{1}}, \ldots, a_{l} z_{i_{l}}\right)$ in P for which $a_{s} \in X_{r}^{i_{s}}$ under some $s(=1, \ldots, l), r\left(=1, \ldots, l_{i_{s}}\right)$, $X \in\{I, S\}$;
(vi) $i(=1, \ldots, k), j\left(=1, \ldots, l_{i}\right), a\left(\in I_{j}^{i}\right)$ from $X_{r}^{i_{s}}$ to I_{j}^{i} if there is a rule $a\left(z_{i}, f\right) \leftarrow q\left(a_{1} z_{i_{1}}, \ldots, a_{l} z_{i}\right)$ in P with $a_{s} \in X_{r}^{i_{s}}$ under some s, r, X defined as in (v).

The graph $D_{f}\left(\mathbf{e}^{0}, \mathbf{e}^{\mathbf{1}}, \ldots, \mathbf{e}^{k}\right)$ corresponds to the concept of partition graph for a production of an attribute grammar, which concept was introduced in [5].

Let $p\left(=f\left(p_{1}, \ldots, p_{k}\right)\right) \in T_{F}\left(k>0, f \in F_{k}\right)$ and consider a mapping π : path $(p) \rightarrow$ $\rightarrow \Phi_{K}(A)$. The mappings $\pi^{i}:$ path $\left(p_{i}\right) \rightarrow \Phi_{K}(A)$ are defined by $\pi^{i}(w)=\pi(i w)$ $\left(i=1, \ldots, k, w \in \operatorname{path}\left(p_{i}\right)\right)$.

Now, let again $p \in T_{F}$ and π : path $(p) \rightarrow \Phi_{K}(A)$. The oriented graph $D_{p}(\pi)$ is defined by induction on $\mathrm{dp}(p)$:
(i) if $p=f\left(\in F_{0}\right)$ with $\pi(\lambda)=\mathbf{e}$ then $D_{p}(\pi)=D_{f}(\mathrm{e})$;
(ii) if $p=f\left(p_{1}, \ldots, p_{k}\right)\left(k>0, f \in F_{k}\right)$ with $\pi(\lambda)=\mathbf{e}, \pi(i)=\mathbf{e}^{i}(i=1, \ldots, k)$ then $D_{p}(\pi)=D_{f}\left(\mathbf{e}, \mathbf{e}^{1}, \ldots, \mathrm{e}^{k}\right) \cup\left(\cup\left(D_{p_{i}}^{\prime}\left(\pi^{i}\right) \mid 1 \leqq i \leqq k\right)\right)$ where $D_{p_{i}}^{\prime}\left(\pi^{i}\right)$ is obtained from $D_{p_{i}}\left(\pi^{i}\right)$ by "multiplying its nodes by i ", that is, the nodes of $D_{p_{i}}^{\prime}\left(\pi^{i}\right)$, are the symbols $X_{r}^{i w}$ where X_{r}^{w} are nodes of $D_{p_{i}}\left(\pi^{i}\right)$, moreover, there is an edge from $X_{r}^{i w}$ to $Y_{s}^{i 0}$ in $D_{p i}^{\prime}\left(\pi^{i}\right)$ iff there is an edge from X_{r}^{w} to Y_{s}^{v} in $D_{p_{i}}\left(\pi^{i}\right)$. Nodes and edges of graphs are combined as sets.

Definition 1. We say that \mathbf{A} is pure K-visit, if for each $p\left(\in \operatorname{dom} \tau_{\mathrm{A}}\right)$ there exists a π : path $(p) \rightarrow \Phi_{K}(A)$ with acyclic $D_{p}(\pi)$.

To support this definition, the following observation can be made. If $D_{p}(\pi)$ is acyclic then a computation sequence (see in [5] for attribute grammars) can be constructed, which induces a K-visit tree-walking attribute evaluation strategy on p.

Definition 2. Suppose that to each $f(\in F)$ there corresponds an element \mathbf{e}^{f} of $\Phi_{K}(A)$ and let $\Pi_{K}=\left\{\mathrm{e}^{f} \mid f \in F\right\}$. A is said to be simple K-visit concerning Π_{K} if for each $p\left(\in \operatorname{dom} \tau_{\mathrm{A}}\right)$ there exists a π : path $(p) \rightarrow \Pi_{K}$ for which the following two conditions hold:
(i) if $\mathrm{lb}_{p}(w)=f$ then $\pi(w)=\mathbf{e}^{f}(w \in \operatorname{path}(p))$,
(ii) $D_{p}(\pi)$ is acyclic.

A is simple K-visit, if it is simple K-visit concerning some Π_{K}.
The classes of all tree transformations induced by pure, simple` K visit DATTs are denoted by $\mathscr{D} \mathscr{A}_{P K}, \mathscr{D} \mathscr{A}_{S K}$, respectively. Observe, that $\Phi_{1}(A)=\left\{\left(A_{i}, A_{s}\right)\right\}$ so, in the particular case $K=1$, the two properties defined above are identical. Therefore $\mathscr{D}_{\mathscr{A}_{11}}=\mathscr{D} \mathscr{A}_{S 1}$ and they can be denoted by $\mathscr{D} \mathscr{A}_{1}$.

Theorem 3. For each $K(\geqq 1), \mathscr{D} \mathscr{A}_{P K} \subset \mathscr{B} \circ \mathscr{D} \mathscr{A}_{1}$.
Proof. Let $\mathbf{A}\left(=\left(F, A, G, a_{0}, P, r t\right)\right)$ be a pure K-visit DATT. Consider the bottom-up tree transducer $\mathbf{B}\left(=\left(F, B, \bar{F}, B^{\prime}, P^{\prime}\right)\right)$ where
(a) $B=B^{\prime}=\Phi_{K}(A)$;
(b) for each $m(\geqq 0), \bar{F}_{m}$ is defined as follows $\left\langle f ; \mathbf{e}, \mathbf{e}^{1}, \ldots, \mathbf{e}^{k}\right\rangle \in \bar{F}_{m}$ if and only if
(i) $f \in F_{k}$ for some $k(\geqq 0)$,
(ii) $\mathbf{e}, \mathbf{e}^{1}, \ldots, \mathrm{e}^{k} \in \Phi_{K}(A)$,
(iii) $m=l_{1}+\ldots+l_{k}$ where l_{i} is the number of components of $\mathbf{e}^{i}(i=1, \ldots, k)$,
(iv) $D_{f}\left(\mathrm{e}, \mathrm{e}^{1}, \ldots, \mathrm{e}^{k}\right)$ is acyclic;
(c) for each $m(\geqq 0),\left\langle f ; \mathbf{e}, \mathbf{e}^{1}, \ldots, \mathbf{e}^{k}\right\rangle\left(\in \bar{F}_{m}\right)$ the rule

$$
f\left(\mathbf{e}^{1} z_{1}, \ldots, \mathbf{e}^{k} z_{k}\right) \rightarrow \mathbf{e}\left\langle f ; \mathbf{e}, \mathbf{e}^{1}, \ldots, \mathbf{e}^{k}\right\rangle(\overbrace{z_{1}, \ldots, z_{1}}^{l_{1} \text { times }}, \ldots, \overbrace{z_{k}, \ldots, z_{k}}^{l_{k} \text { times }})
$$

is in P^{\prime}.

Moreover, let the DATT $\mathbf{C}=\left(\bar{F}, C, G, c_{0}, P^{\prime \prime}, \mathrm{rt}^{\prime \prime}\right)$ be defined as follows
(a) $C_{s}=A_{s}, C_{i}=A_{i}, c_{0}=a_{0}, \mathrm{rt}^{\prime \prime}=\mathrm{rt}$;
(b) $P^{\prime \prime}$ is constructed in the following way. Let $m \geqq 0,\left\langle f ; \mathbf{e}, \mathbf{e}^{\mathbf{1}}, \ldots, \mathbf{e}^{k}\right\rangle \in \bar{F}_{m}$ with $\mathrm{e}=\left(\left(I_{1}, S_{1}\right), \ldots,\left(I_{l}, S_{l}\right)\right)$ and $\mathrm{e}^{j}=\left(\left(I_{1}^{j}, S_{1}^{j}\right), \ldots,\left(I_{l_{j}}^{j}, S_{i}^{j}\right)\right) \quad(1 \leqq j \leqq k)$. For each $a\left(\in C_{s}\right)$ let the rule $a\left\langle f ; \mathbf{e}, \mathbf{e}^{\mathbf{1}}, \ldots, \mathrm{e}^{k}\right\rangle\left(z_{1}, \ldots, z_{m}\right) \leftarrow q\left(a_{1} z_{i_{1}}, \ldots, a_{s} z_{i_{s}}\right)$ be in $P^{\prime \prime}$ if the following conditions hold:

$$
\begin{equation*}
a f\left(z_{1}, \ldots, z_{k}\right)-q\left(a_{1} z_{j_{1}}, \ldots, a_{s} z_{j_{s}}\right) \in P \tag{i}
\end{equation*}
$$

$$
i_{r}=\left\{\begin{array}{llll}
j_{r}(=0) & \text { if } \quad a_{r} \in A_{i} & (r=1, \ldots, s) \tag{ii}\\
l_{1}+\ldots+l_{j_{r}-1}+n & \text { if } \quad a_{r} \in S_{n_{r}}^{j_{r}} & \text { for some } & n\left(=1, \ldots, l_{j_{r}}\right)
\end{array}\right.
$$

Moreover, for each $j(=1, \ldots, k), n\left(=1, \ldots, l_{j}\right), a\left(\in I_{i}^{j} \cup \ldots \cup I_{n}^{j}\right)$ let the rule $a\left(z_{i},\left\langle f ; \mathrm{e}, \mathrm{e}^{\mathrm{l}}, \ldots, \mathrm{e}^{k}\right\rangle\right) \leftarrow q\left(a_{1} z_{i_{1}}, \ldots, a_{s} z_{i_{s}}\right)$ be in $P^{\prime \prime}$ if

$$
\begin{equation*}
a\left(z_{j}, f\right)-q\left(a_{1} z_{j_{1}}, \ldots, a_{s} z_{j_{s}}\right) \in P \tag{i}
\end{equation*}
$$

$$
i_{r}=\left\{\begin{array}{llll}
j_{r}(=0) & \text { if } \quad a_{r} \in A_{i} & (r=1, \ldots, s) \tag{ii}\\
l_{1}+\ldots+l_{j_{r}-1}+u & \text { if } & a_{r} \in S_{u}^{j} & \text { for some }
\end{array} u=\left(1, \ldots, l_{j_{r}}\right) .\right.
$$

The 1 -visit property of \mathbf{C} can be shown in the following manner. In [3], it was proved that an attributed grammar is 1 -visit iff each of its brother graphs is acyclic. We can formulate the concept of the brother graph for DATTs and can easily show that each brother graph of \mathbf{C} is acyclic.

The proof of the next lemma can be performed by a simple induction on $\mathrm{dp}(p)$.
Lemma 4. Let $p \in T_{F}, \mathbf{e} \in B$. Then $p_{\mathbf{B}}^{*} \mathbf{e} \bar{q}$ for some $\bar{q}\left(\in T_{F}\right)$ if and only if there exists a π : path $(p) \rightarrow \Phi_{K}(A)$ with $\pi(\lambda)=\mathbf{e}$ and acyclic $D_{p}(\pi)$.

Lemma 5. Let $p \in T_{F}, \bar{q} \in T_{F}, q \in \hat{T}_{G}\left(Z_{s}\right), a_{1}, \ldots, a_{s} \in A_{i}, \mathbf{e} \in B$ with $\mathbf{e}=\left(\left(I_{1}, S_{1}\right), \ldots\right.$ $\ldots,\left(I_{l}, S_{l}\right)$) and let $a \in S_{j}$ for some $j(=1, \ldots, l)$. Suppose that $p_{\mathbf{B}}^{*} \mathbf{e} \bar{q}$ and $(a, \lambda) \underset{p, \mathrm{~A}}{\stackrel{*}{=}} q\left(\left(a_{1}, \lambda\right), \ldots,\left(a_{s}, \lambda\right)\right)$. Then $a_{1}, \ldots, a_{s} \in I_{1} \cup \ldots \cup I_{j}$.

Proof. It follows from the previous lemma that there exists a π : path $(p) \rightarrow$ $\rightarrow \Phi_{K}(A)$ with $\pi(\lambda)=\mathbf{e}$ and acyclic $D_{p}(\pi)$. Suppose that, say, $a_{1} \in I_{k}$ where $k>j$. Then, by the definition of $D_{p}(\pi)$, there is a path from I_{k}^{λ} to S_{j}^{λ} in $D_{p}(\pi)$ due to the dependency edges of $D_{p}(\pi)$. On the other hand, there is a path from S_{j}^{λ} to I_{k}^{λ} in $D_{p}(\pi)$ because $k>j$, which contradicts the fact that $D_{p}(\pi)$ is acyclic.

Lemma 6. Let $a \in A_{s}, p \in T_{F}, \bar{q} \in T_{F}, \quad q \in T_{G}\left(A_{i} \times\{\lambda\}\right), \quad e \in B$. Suppose that $(a, \lambda) \underset{p, \mathbf{A}}{\stackrel{*}{=}} q$ and $p \stackrel{*}{\Rightarrow} \mathbf{e} \bar{q}$. Then $(a, \lambda) \underset{\overline{\mathbf{q}}, \mathbf{C}}{\stackrel{*}{=}} q$.

Proof. The proof can be performed by induction on $\mathrm{dp}(p)$.
(a) Let $\mathrm{dp}(p)=0$ i.e. $p=f\left(\in F_{0}\right)$. Then by supposition, $a f \leftarrow q^{\prime}\left(a_{1} z_{a}, \ldots, a_{5} z_{0}\right) \in P$ $\left(s \geqq 0, q^{\prime} \in \hat{T}_{G}\left(Z_{s}\right), a_{1}, \ldots, a_{s} \in A_{i}\right), q=q^{\prime}\left(\left(a_{1}, \lambda\right), \ldots,\left(a_{s}, \lambda\right)\right)$, moreover, $f \rightarrow \mathbf{e}\langle f ; \mathbf{e}\rangle \in P^{\prime}$ and $\bar{q}=\langle f ; \mathbf{e}\rangle$. Therefore, by the definition of $\mathbf{C}, a\langle f ; \mathbf{e}\rangle \leftarrow q^{\prime}\left(a_{1} z_{0}, \ldots, a_{s} z_{0}\right) \in P^{\prime \prime}$.
(b) Now let $\mathrm{dp}(p)>0$ that is $p=f\left(p_{1}, \ldots, p_{k}\right)\left(k>0, f \in F_{k}\right)$. Here, $p_{\mathrm{B}}^{*} \mathbf{e} \bar{q}$ can be written in the form

$$
p=f\left(p_{1}, \ldots, p_{k}\right) \stackrel{*}{\overrightarrow{\mathbf{B}}} f\left(\mathbf{e}^{1} \bar{q}_{1}, \ldots, \mathbf{e}^{k} \bar{q}_{k}\right) \underset{\mathbf{B}}{\Rightarrow}
$$

with

$$
\mathbf{e}\left\langle f ; \mathbf{e}, \mathbf{e}^{1}, \ldots, \mathbf{e}^{k}\right\rangle\left(\bar{q}_{1}, \ldots, \bar{q}_{1}, \ldots, \bar{q}_{k}, \ldots, \bar{q}_{k}\right)=\mathbf{e} \bar{q}
$$

$$
\mathbf{e}^{j}=\left(\left(I_{1}^{j}, S_{1}^{j}\right), \ldots,\left(I_{l_{j}^{j}}^{j}, S_{l_{j}^{j}}^{j}\right)\right) \quad(j=1, \ldots, k)
$$

First we can prove the following
Statement. Let $1 \leqq j \leqq k, 1 \leqq n \leqq l_{j}, b \in I_{i}^{j} \cup \ldots \cup I_{n}^{j}, t \in T_{G}\left(A_{i} \times\{\lambda\}\right)$ and suppose that the relation $\beta=(b, j) \underset{p, \mathrm{~A}}{\stackrel{*}{=}} t$ holds. Then $(b, i) \underset{\overline{\mathrm{q}}, \mathrm{C}}{\stackrel{*}{=}} t$ where $i=l_{1}+\ldots+l_{j-1}+n$.

The proof of this statement can be done by an induction on $1 t(\beta)$. When It $(\beta)=1$ then $b\left(z_{j}, f\right) \leftarrow t^{\prime}\left(b_{1} z_{0}, \ldots, b_{s} z_{0}\right) \in P \quad\left(s \geqq 0, t^{\prime} \in T_{G}\left(Z_{s}\right), b_{1}, \ldots, b_{s} \in A_{i}\right)$ and $t=t^{\prime}\left(\left(b_{1}, \lambda\right), \ldots,\left(b_{s}, \lambda\right)\right)$ so, by the definition of $\mathbf{C}, b\left(z_{i}, f\right)-t^{\prime}\left(b_{1} z_{0}, \ldots, b_{s} z_{0}\right) \in P^{\prime \prime}$.

When $\operatorname{lt}(\beta)>1$ then β can be written in the following form

$$
(b, j) \underset{p, \mathrm{~A}}{=} t^{\prime}\left(\left(b_{1}, \bar{j}_{1}\right), \ldots,\left(b_{s}, \bar{j}_{s}\right)\right) \underset{p, \mathrm{~A}}{\stackrel{*}{=}} t^{\prime}\left(t_{1}, \ldots, t_{s}\right)=t
$$

where
$s \geqq 0, t^{\prime} \in \hat{T}_{G}\left(Z_{s}\right), b_{1}, \ldots, b_{s} \in A, t_{1}, \ldots, t_{s} \in T_{G}\left(A_{i} \times\{\lambda\}\right), b\left(z_{j}, f\right) \leftarrow t^{\prime}\left(b_{1} z_{j_{1}}, \ldots, b_{s} z_{j_{s}}\right) \in P$ Then, by the definition of $\mathbf{C}, b\left(z_{i},\left\langle f ; \mathbf{e}, \mathbf{e}^{\mathbf{1}}, \ldots, \mathbf{e}^{k}\right\rangle\right) \leftarrow t^{\prime}\left(b_{1} z_{i_{1}}, \ldots, b_{s} z_{i_{s}}\right) \in P^{\prime \prime}$ where

$$
i_{r}=\left\{\begin{array}{llll}
j_{r}(=0) & \text { if } & b_{r} \in A_{i} & (r=1, \ldots, s) \\
l_{1}+\ldots+l_{j_{r}-1}+v & \text { if } & b_{r} \in S_{v}^{j_{r}}
\end{array} \text { for some } \quad v\left(=1, \ldots, l_{j_{r}}\right) .\right.
$$

Now let $r(=1, \ldots, s)$ be such an index for which $\dot{b}_{r} \in S_{v}^{i r}$ and so $1 \leqq j_{r} \leqq k$. Then the relation $\left(b_{r}, j_{r}\right) \underset{p, \mathrm{~A}}{*} t_{r}$ can be written in the form $\left(b_{r}, j_{r}\right) \underset{p, \mathrm{~A}}{\stackrel{*}{=}} t_{r}^{\prime}\left(\left(c_{1}, j_{r}\right), \ldots\right.$ $\left.\ldots,\left(c_{u}, j_{r}\right)\right) \underset{p, \mathrm{~A}}{\stackrel{*}{=}} t_{r}^{\prime}\left(\bar{t}_{1}, \ldots, \bar{t}_{u}\right)=t_{r}$ for some $u(\geqq 0), t_{r}^{\prime}\left(\in \hat{T}_{G}\left(Z_{u}\right)\right), c_{1}, \ldots, c_{u}\left(\in A_{i}\right), \bar{t}_{1}, \ldots$ $\ldots, \bar{t}_{u}\left(\in T_{G}\left(A_{i} \times\{\lambda\}\right)\right.$ and we can suppose that the derivation $\left(b_{r}, j_{r}\right) \underset{p, \mathrm{~A}}{\stackrel{*}{=}} t_{r}^{\prime}\left(\left(c_{1}, j_{r}\right), \ldots\right.$ $\left.\ldots,\left(c_{u}, j_{r}\right)\right)$ has no such a step, in which, a leaf in $A_{i} \times\left\{j_{r}\right\}$ substituted. Then $\left(b_{r}, \lambda\right) \underset{p_{j_{r}}, \mathrm{~A}}{*} t_{r}^{\prime}\left(\left(c_{1}, \lambda\right), \ldots,\left(c_{u}, \lambda\right)\right)$ so, by the induction hypothesis concerning $\mathrm{dp}(p)$, we have $\left(b_{r}, \lambda\right) \underset{\overline{\bar{q}_{j_{r}}}, \mathbf{c}}{\stackrel{*}{=}} t_{r}^{\prime}\left(\left(c_{1}, \lambda\right), \ldots,\left(c_{u}, \lambda\right)\right)$ which means that $\left(b_{r}, i_{r}\right) \underset{\overline{\bar{q}}, \overline{\mathbf{C}}}{\stackrel{*}{=}} t_{r}^{\prime}\left(\left(c_{1}, i_{r}\right), \ldots\right.$ $\left.\ldots,\left(c_{u}, i_{r}\right)\right)$ because $\mathrm{lb}_{\bar{q}}\left(i_{r}\right)=\bar{q}_{j_{r}}$. On the other hand, by Lemma $5, c_{1}, \ldots, c_{u} \in I_{1}^{j r} \cup \ldots$ $\ldots \cup I_{v}^{j r}$, moreover, the length of each of the derivations $\left(c_{1}, j_{r}\right) \underset{p, \mathrm{~A}}{\stackrel{*}{=}} \bar{i}_{1}, \ldots$ $\ldots,\left(c_{u}, j_{r}\right) \underset{p, \mathbf{A}}{\stackrel{*}{=}} \bar{t}_{u}$ is less than $\mathrm{lt}(\beta)$ so we have $\left(c_{1}, i_{r}\right) \underset{\overline{\bar{q}}, \mathbf{C}}{\stackrel{*}{=}} \bar{t}_{1}, \ldots,\left(c_{u}, i_{r}\right) \underset{\bar{q}, \bar{C}}{\stackrel{(}{\bar{C}}} \bar{t}_{u}$, that is $\left(b_{r}, i_{r}\right) \underset{\bar{q}, \overline{\mathrm{C}}}{\stackrel{*}{=}} t_{r}^{\prime}\left(\bar{t}_{1}, \ldots, \bar{t}_{u}\right)=t_{r}$.

If r is such an index for which $b_{r} \in A_{i}$ and so $j_{r}=0$ then $t_{r}=\left(b_{r}, \lambda\right)$, therefore
$\left(b_{r}, i_{r}\right) \underset{\bar{q}, \mathrm{C}}{\stackrel{*}{\overline{\mathrm{C}}}} t_{r}$ again. All that means that

$$
(b, i) \underset{\bar{q}, \overline{\mathrm{c}}}{=} t^{\prime}\left(\left(b_{1}, \bar{i}_{1}\right), \ldots,\left(b_{s}, \bar{i}_{s}\right)\right) \underset{\overline{\bar{q}}, \mathrm{C}}{\stackrel{*}{\overline{\mathrm{c}}}} t^{\prime}\left(t_{1}, \ldots, t_{s}\right)=t
$$

. proving our statement.
Now we return to the induction step of the lemma. The relation $(a, \lambda) \underset{p, A}{\stackrel{*}{=}} q$ can be written in the form

$$
(a, \lambda) \underset{p, \mathbf{A}}{\Leftarrow}=q^{\prime}\left(\left(a_{1}, j_{1}\right), \ldots,\left(a_{s}, \bar{j}_{s}\right)\right) \underset{p, \mathbf{A}}{\stackrel{*}{=}} q^{\prime}\left(q_{1}, \ldots, q_{s}\right)=q
$$

where $s \geqq 0, q^{\prime} \in \hat{T}_{G}\left(Z_{s}\right), a_{1}, \ldots, a_{s} \in A, q_{1}, \ldots, q_{s} \in T_{G}\left(A_{i} \times\{\lambda\}\right)$ and $a f\left(z_{1}, \ldots, z_{k}\right)-$ $\leftarrow q^{\prime}\left(a_{1} z_{j_{1}}, \ldots, a_{s} z_{j_{s}}\right)$ is in P. Then, by the definition of \mathbf{C}, the rule $a\left\langle f ; \mathbf{e}, \mathbf{e}^{1}, \ldots, \mathbf{e}^{k}\right\rangle$ $\left(z_{1}, \ldots, z_{m}\right) \leftarrow q\left(a_{1} z_{i_{1}}, \ldots, a_{s} z_{i_{s}}\right)$ is in $P^{\prime \prime}$ where $m=l_{1}+\ldots+l_{k}$ and

$$
i_{r}=\left\{\begin{array}{llll}
j_{r}(=0) & \text { if } \quad a_{r} \in A_{i} & (r=1, \ldots, s) \\
l_{1}+\ldots+l_{j_{r}-1}+n & \text { if } & a_{r} \in S_{n}^{j_{r}}
\end{array} \text { for some } \quad n\left(=1, \ldots, l_{j_{r}}\right) .\right.
$$

Let $r(=1, \ldots, s)$ be an index for which $a_{r} \in S_{n}^{j_{r}}$ for some $n\left(=1, \ldots, l_{j_{r}}\right)$ and so $1 \leqq j_{r} \leqq k$. Then the relation $\left(a_{r}, \bar{j}_{r}\right) \underset{p, \mathrm{~A}}{\stackrel{*}{=}} q_{r}$ can be written in the form $\left(a_{r}, j_{r}\right) \underset{p, \mathrm{~A}}{\stackrel{*}{=}} q_{r}^{\prime}\left(\left(b_{1}, j_{r}\right), \ldots,\left(b_{u}, j_{r}\right)\right) \underset{p, \mathrm{~A}}{\stackrel{*}{=}} q_{r}^{\prime}\left(\bar{q}_{1}, \ldots, \bar{q}_{u}\right)=q_{r}$ for some $u \geqq 0, q_{r}^{\prime} \in \hat{T}_{G}\left(Z_{u}\right)$, $b_{1}, \ldots, b_{u} \in A_{i}, \bar{q}_{1}, \ldots, \bar{q}_{u} \in T_{G}\left(A_{i} \times\{\lambda\}\right)$. We can again suppose, that there is no step in the derivation $\left(a_{r}, j_{r}\right) \underset{p, \mathbf{A}}{\stackrel{*}{=}} q_{r}^{\prime}\left(\left(b_{1}, j_{r}\right), \ldots,\left(b_{u}, j_{r}\right)\right)$, in which, a leaf in $A_{i} \times\left\{j_{r}\right\}$ is substituted. Therefore $\left(a_{r}, \lambda\right) \underset{p_{j_{r}}, \mathrm{~A}}{*} q_{r}^{\prime}\left(\left(b_{1}, \lambda\right), \ldots,\left(b_{u}, \lambda\right)\right)$ from which, by Lemma 5 , $b_{1}, \ldots, b_{u} \in I_{1}^{j r} \cup \ldots \cup I_{n}^{j r}$ and, by the induction hypothesis on $\mathrm{dp}(p)$, we get $\left(a_{r}, \lambda\right) \stackrel{*}{\stackrel{*}{\bar{q}_{j_{r}}}=} q_{r}^{\prime}\left(\left(b_{1}, \lambda\right), \ldots,\left(b_{u}, \lambda\right)\right)$ that is $\left(a_{r}, i_{r}\right) \underset{\bar{q}, \mathbf{C}}{\stackrel{*}{=}} q_{r}^{\prime}\left(\left(b_{1}, i_{r}\right), \ldots,\left(b_{u}, i_{r}\right)\right)$. On the other hand, by the statement, we have $\left(b_{1}, i_{r}\right) \stackrel{*}{\stackrel{\bar{q}}{\overline{\mathbf{C}}}} \overline{\overline{\mathbf{q}}} \bar{q}_{1}, \ldots,\left(b_{u}, i_{r}\right) \stackrel{*}{\stackrel{*}{\bar{q}, \mathbf{C}}} \bar{q}_{u} \quad$ which means that $\left(a_{r}, i_{r}\right) \stackrel{*}{\stackrel{\text { q. }}{, ~} \bar{C}} q_{r}^{\prime}\left(\bar{q}_{1}, \ldots, \bar{q}_{u}\right)=q_{r}$.

If $r(=1, \ldots, s)$ is such an index for which $a_{r} \in A_{i}$ and so $j_{r}=0$ then it is clear that $q_{r}=\left(a_{r}, \lambda\right)$, therefore $\left(a_{r}, \bar{i}_{r}\right) \stackrel{*}{\stackrel{(}{\bar{q}}, \mathbf{C}} q_{r}$ again. The two cases of r and $a\left\langle f ; \mathbf{e}, \mathbf{e}^{1}, \ldots, \mathbf{e}^{k}\right\rangle\left(z_{1}, \ldots, z_{m}\right) \leftarrow q^{\prime}\left(a_{1} z_{i_{1}}, \ldots, a_{s} z_{i_{s}}\right) \in P^{\prime \prime}$ together prove that

$$
(a, \lambda) \underset{\overline{\bar{q}}, \overline{\mathbf{C}}}{=} q^{\prime}\left(\left(a_{1}, \bar{i}_{1}\right), \ldots,\left(a_{s}, \bar{i}_{s}\right)\right) \underset{\overline{\bar{q}}, \overline{\mathbf{C}}}{\stackrel{*}{\bar{c}}} q^{\prime}\left(q_{1}, \ldots, q_{s}\right)=q
$$

This ends the proof of Lemma 6.
The proof of the next lemma is essentially the converse of the previous one.
Lemma 7. Let $a \in A_{s}, p \in T_{F}, \bar{q} \in T_{F}, q \in T_{G}\left(A_{i} \times\{\lambda\}\right), \mathbf{e} \in B$. Suppose that $p \underset{\mathbf{B}}{*} \mathbf{e} \bar{q}$ and $(a, \lambda) \underset{\bar{q}, \mathrm{C}}{\stackrel{*}{=}} q$. Then $(a, \lambda) \underset{p, \mathrm{~A}}{\stackrel{*}{\rightleftharpoons}} q$.

Now we are ready to prove our theorem. Suppose that $(p, q) \in \tau_{\mathrm{A}}$ that is $\left(a_{0}, \lambda\right) \underset{p, \mathrm{~A}}{\stackrel{*}{=}} q$ concerning rt. Because \mathbf{A} is K-visit, by Lemma 4, there exist $\bar{q} \in T_{F}$
and $\mathbf{e} \in B$ with $p \underset{\mathbf{B}}{\Rightarrow} \mathbf{e} \bar{q}$, therefore, by Lemma $6,\left(a_{0}, \lambda\right) \underset{\overline{\mathbf{q}}, \overline{\mathbf{C}}}{\stackrel{*}{\overline{\mathbf{C}}}} q$ concerning $\mathrm{rt}^{\prime \prime}$, hence $(p, q) \in \tau_{\mathbf{B}} \circ \tau_{\mathbf{C}}$. Conversely, by $(p, q) \in \tau_{\mathbf{B}} \circ \tau_{\mathbf{C}}$ we have a $\bar{q} \in T_{F}$ for which $p \underset{\mathbf{B}}{*} \mathbf{e} \bar{q}$ under some $\mathbf{e}(\in B)$ and $\left(a_{0}, \lambda\right) \underset{\bar{q}, \overline{\mathbf{C}}}{\stackrel{*}{=}} q$ concerning $\mathrm{rt}^{\prime \prime}$. Then, by Lemma 7 , we have $\left(a_{0}, \lambda\right) \stackrel{*}{\stackrel{*}{p}, \mathrm{~A}} q$ concerning rt . The fact, that the inclusion is strict follows from the proof of Theorem 4.1 of [6]. This ends the proof of Theorem 3.

After studying the proof of the previous theorem two observation can be made. On the one hand, instead of the bottom-up tree transducer \mathbf{B} we can have a topdown one which can be constructed by reversing the rewriting rules of B. Although this top-down one does not induce the same tree transformation as \mathbf{B}, the following will be valid.

Corollary 8.

$$
\mathscr{D}_{\mathscr{A}_{P K}} \subset \mathscr{T} \circ \mathscr{D} \mathscr{A}_{1}
$$

On the other hand it also seems that if \mathbf{A} is simple K-visit then a deterministic bottom-up tree transducer can be constructed, so we have

$$
\begin{aligned}
& \text { Corollary } 9 . \\
& \mathscr{D} \mathscr{A}_{S K} \subset \mathscr{D} \mathscr{B} \circ \mathscr{D} \mathscr{A}_{1} .
\end{aligned}
$$

References

[1] Bartha, M., An algebraic definition of attributed transformations, Acta Cybernet., v. 5, 1982, pp. 409-421.
[2] Engelfriet, J., Bottom-up and top-down tree transformations, A comparison, Math. Systems Theory, v. 9, 1975, pp. 198-231.
[3] Engelfriet, J. and G. File, The formal power of one-visit attribute grammars, Acta Inform., v. 16, 1981, pp. 275-302.
[4] Engelfriet, J., Some open questions and recent results on tree transducers and tree languages, Formal language theory, ed. by R. V. Book, Academic Press, 1980, pp. 241-286.
[5] Engelfriet, J. and G. File, Simple multi-visit attribute grammars, Memorandum 314, Twente University of Technology, 1980.
[6] FüLöp, Z., On attributed tree transducers, Acta Cybernet., v. 5, 1981, pp. 261—279.

