Decomposition results concerning *K*-visit attributed tree transducers

By Z. FÜLÖP

The concept of attributed tree transducer was introduced in [1], [4] and [6]. On the other hand, the 1-visit, pure K-visit and simple K-visit classes of attributed grammars were defined in [3] and [5]. In this paper, we formulate these properties for deterministic attributed tree transducers defined in [6] and prove some decomposition results. Namely, we show that each tree transformation induced by a pure K-visit attributed tree transducer can be induced by a bottom-up tree transducer followed by an 1-visit attributed tree transducer. Here, the bottom-up tree transformation induced by a simple K-visit attributed tree transducer can be induced by a bottom-up tree transformation induced by a simple K-visit attributed tree transducer. Here, the bottom-up tree transformation induced by a simple K-visit attributed tree transducer can be induced by a deterministic bottom-up tree transducer followed by an 1-visit attributed tree transducer followed by an 1-visit attributed tree transducer can be induced by a deterministic bottom-up tree transducer followed by an 1-visit attributed tree transducer followed by an 1-visit attributed tree transducer can be induced by a deterministic bottom-up tree transducer followed by an 1-visit attributed tree transducer.

1. Notions and notations

By a type we mean a finite set F of the form $F = \bigcup_{n < \omega} F_n$ where the sets F_n are pairwise disjoint and $F_0 \neq \emptyset$.

For an arbitrary type F and set S the set of trees over S of type F is the smallest set $T_F(S)$ satisfying:

(i) $F_0 \cup S \subseteq T_F(S)$,

(ii) $f(p_1, ..., p_n) \in T_F(S)$ whenever $f \in F_n, p_1, ..., p_n \in T_F(S)$ (n>0). If $S = \emptyset$ then $T_F(S)$ is written T_F .

The set of all positive integers is denoted by N. Let N^* denote the free monoid generated by N, with identity λ .

For a tree $p(\in T_F(S))$ the depth (dp(p)), root (root(p)), the set of subtrees (sub(p)) of p and paths (path(p)) of p as a subset of N^* are defined as follows:

(i) dp (p)=0, sub (p)={p}, root (p)=p, path (p)={ λ } if $p \in F_0 \cup S$,

(ii) dp $(p) = 1 + \max \{ dp (p_i) | 1 \le i \le n \}$, root (p) = f, sub $(p) = \{p\} \cup (\cup (\operatorname{sub} (p_i)) | 1 \le i \le n)$, path $(p) = \{\lambda\} \cup \{iv | 1 \le i \le n, v \in \operatorname{path} (p_i)\}$ if $p = f(p_1, \dots, p_n) (n > 0, f \in F_n)$. Subtrees of height 0 of a tree $p(\in T_F(S))$ are called leaves of p. For each $p(\in T_F(S))$, $w(\in \text{path}(p))$ there is a corresponding label $lb_p(w)$ $(\in F \cup S)$ and a subtree $\operatorname{str}_p(w)$ $(\in \operatorname{sub}(p))$ in p which are defined by induction on the length of w:

(i) $lb_p(w) = root(p)$, $str_p(w) = p$ if $w = \lambda$,

(ii) $lb_{p_{i}}(w) = lb_{p_{i}}(v)$, $str_{p}(w) = str_{p_{i}}(v)$ if w = iv, $p = f(p_{1}, ..., p_{n})$, $1 \le i \le n$.

In the rest of this paper, F, G and H always mean types, moreover, the set of auxiliary variables $Z = \{z_0, z_1, ...\}$ and its subsets $Z_n = \{z_1, ..., z_n\}$ (n=0, 1, ...) are kept fixed. Observe that $Z_0 = \emptyset$. Let $n \ge 0$ and $p \in T_F(Z_n)$. Substituting the elements $s_1, ..., s_n$ of a set S for $z_1, ..., z_n$ in p, respectively, we have another tree, which is in $T_F(S)$ and denoted by $p(s_1, ..., s_n)$. There is a distinguished subset $\hat{T}_F(Z_n)$ of $T_F(Z_n)$ defined as follows: $p \in \hat{T}_F(Z_n)$ if and only if each z_i $(1 \le i \le n)$ appears in p exactly once.

We now turn to the definition of tree transducers. The terminology used here follows [2].

Subsets of $T_F \times T_G$ are called tree transformations. The domain of a tree transformation $\tau (\subseteq T_F \times T_G)$ is denoted by dom τ and defined by dom $\tau = \{p \in T_F | (p, q) \in \tau \text{ for some } q \in T_G\}$. The composition $\tau_1 \circ \tau_2$ of the tree transformations $\tau_1 (\subseteq T_F \times T_G)$ and $\tau_2 (\subseteq T_G \times T_H)$ is defined by $\tau_1 \circ \tau_2 = \{(p, q) | (p, r) \in \tau_1, (r, q) \in \tau_2 \text{ for some } r\}$. If \mathscr{C}_1 and \mathscr{C}_2 are classes of tree transformations then their composition $\mathscr{C}_1 \circ \mathscr{C}_2$ is the class $\mathscr{C}_1 \circ \mathscr{C}_2 = \{\tau_1 \circ \tau_2 | \tau_1 \in \mathscr{C}_1, \tau_2 \in \mathscr{C}_2\}$.

By a bottom-up tree transducer we mean a system A = (F, A, G, A', P) where A is a nonempty finite set, the set of states, $A'(\subseteq A)$ is the set of final states, moreover, P is a finite set of rewriting rules of the form $f(a_1z_1, ..., a_kz_k) \rightarrow aq$ where $k \ge 0$, $f \in F_k$, $a, a_1, ..., a_k \in A$, $q \in T_G(Z_k)$. A is said to be deterministic if different rules in P have different left sides. P can be used to define a binary relation \Rightarrow on the set $T_F(A \times T_G)$. The reflexive, transitive closure of \Rightarrow is denoted by \Rightarrow and called derivation. The exact definition can be found in [2]. The tree transformation induced by A is a relation $\tau_A(\subseteq T_F \times T_G)$ defined by

$$\tau_{\mathbf{A}} = \{ (p, q) | p \stackrel{*}{\xrightarrow{}} aq \text{ for some } a \in A' \}.$$

A top-down tree transducer is again a system $\mathbf{A} = (F, A, G, A', P)$ which differs from the bottom-up one only in the form of the rewriting rules. Here, P is a finite set of rules of the form $af(z_1, ..., z_k) \rightarrow q(a_1 z_{i_1}, ..., a_l z_{i_l})$ where $k, l \ge 0$, $f \in F_k$, $a, a_1, ..., a_l \in A$, $1 \le i_1, ..., i_l \le k$, $q \in T_G(Z_l)$. Moreover, A' is called the set of initial states. The relation \Rightarrow can now be defined on the set $T_G(A \times T_F)$ and its reflexive, transitive closure is again denoted by \Rightarrow_A^* (c.f. [2]). The tree transformation induced by \mathbf{A} is a relation $\tau_{\mathbf{A}} (\subseteq T_F \times T_G)$ defined by

$$\tau_{\mathbf{A}} = \{(p, q) | ap \stackrel{*}{\underset{\mathbf{A}}{\Rightarrow}} q \text{ for some } a (\in A') \}.$$

The following concept of attributed tree transducer was defined in [6]. We repeat this definition, with a slightly different formalism, because this new one seems to be simpler. Moreover, we allow not only the completely defined but the partially defined case as well.

By a deterministic attributed tree transducer, or shortly DATT, we mean a system $A = (F, A, G, a_0, P, rt)$ defined as follows:

(a) A is a finite set, the set of attributes, which is the union of the disjoint sets A_s and A_i where A_s is called the set of synthesized attributes, A_i is called the set of inherited attributes;

(b) $a_0 \in A_s;$

(c) rt is a partial mapping from A_i to T_G ;

(d) P is a finite set of rewriting rules of the form

$$af(z_1, \ldots, z_k) \leftarrow \bar{q}(a_1 z_{j_1}, \ldots, a_l z_{j_l})$$
 (1)

where $k, l \ge 0, f \in F_k, \bar{q} \in \hat{T}_G(Z_l), a \in A_s, 0 \le j_1, ..., j_l \le k, a_r \in A_i$ if $j_r = 0$ and $a_r \in A_s$ if $1 \le j_r \le k$ (r=1, ..., l) as well as rules of the form

$$a(z_j, f) \leftarrow \bar{q}(a_1 z_{j_1}, \dots, a_l z_{j_l})$$
 (2)

where $f \in F_k$ for some $k (\geq 1)$, $l \geq 0$, $a \in A_i$, $1 \leq j \leq k$, $\bar{q} \in \hat{T}_G(Z_l)$, $0 \leq j_1, \ldots, j_l \leq k$ and a_r is the same as above $(r=1, \ldots, l)$. Any two different rules of P are required to have different left sides.

From now on, for the sake of convenience we shall use the following notation for each element x of the set $N \cup \{0\}$

$$\bar{x} = \begin{cases} x & \text{if } x \in N \\ \lambda & \text{if } x = 0. \end{cases}$$

Let $p \in T_F$. We can define the relation $\Leftarrow_{p,A}$ on the set $T_G(A \times \text{path}(p))$ in the following way. For $q, r(\in T_G(A \times \text{path}(p))) q \Leftarrow_{p,A} r$ if r is obtained from q by substituting the tree $\overline{q}((a_1, v_1), ..., (a_l, v_l))$ for some leaf $(a, w) (\in A \times \text{path}(p))$ of q if either the condition (a) or (b) holds:

(a) (i) $a \in A_s$, (ii) $lb_p(w) = f(\in F_k \text{ for some } k \ge 0)$, (iii) the rule (1) is in P, (iv) $v_r = w \bar{l}_r$ (r=1, ..., l);

(b) (i)
$$a \in A_i$$
,

(ii)
$$w = vi$$
 for some $i (\in N)$.

- (iii) $lb_p(v) = f(\in F_k \text{ for some } k \ge 1),$
- (iv) the rule (2) is in P,
- (v) $v_r = v\bar{j}_r$ (r=1, ..., l).

Observe that a leaf of q which is in $A_i \times \{\lambda\}$ can never be substituted because, for such a leaf, neither (a) nor (b) can hold. Therefore we define the relation " $\underset{p,A}{\leftarrow}$ concerning rt" which contains $\underset{p,A}{\leftarrow}$ in the following manner: $q \underset{p,A}{\leftarrow} r$ concerning rt if either $q \underset{p,A}{\leftarrow} r$ or r is obtained from q by substituting rt(a) (if it exists) for a leaf $(a, \lambda) (\in A_i \times \{\lambda\})$ of q. Let the *n*-th power, transitive closure, reflexive, transitive closure of $\underset{p,A}{\leftarrow}$ be denoted by $\underset{p,A}{\leftarrow} n, \underset{p,A}{\leftarrow} n, \underset{p,A}{\leftarrow}$, respectively, and similarly for the relation $\underset{p,A}{\leftarrow}$ concerning rt. We can now define the tree transformation $\tau_{\mathbf{A}} \subseteq T_{\mathbf{F}} \times T_{\mathbf{G}}$ induced by **A** in the following way

$$\tau_{\mathbf{A}} = \{(p,q) | (a_0, \lambda) \xleftarrow[p, \mathbf{A}]{*} q \text{ concerning rt} \}.$$

An example for a DATT can be found in [6]. The relation $\Leftarrow_{n,A}^{*}$ is called derivation. The length lt (a) of a derivation $\alpha = q \xleftarrow{*}{r} r$ is defined as the integer n for which $q \leftarrow_{p, \overline{A}}^{n} r$.

In the rest of this paper, by a DATT we always mean a noncircular DATT (see [6]).

Before going on, we make an observation which will often be used without reference. Let $p \in T_F$, $w \in \text{path}(p)$, $l \ge 0$, $q \in \hat{T}_G(Z_l)$, $a \in A_s$, $a_1, \ldots, a_l \in A_i$ and let $\operatorname{str}_p(w)$ be denoted by p_w .

Suppose that

$$(a, w) \xleftarrow[p, \Lambda]{n} q((a_1, w), \dots, (a_l, w))$$
(3)

and there is no step in (3), in which, a leaf in $A_i \times \{w\}$ is substituted. Then

$$(a, \lambda) \leftarrow_{p_{w}, \mathbf{A}}^{n} q((a_1, \lambda), \dots, (a_l, \lambda))$$

and the converse also holds.

The classes of all tree transformations induced by top-down tree transducers, (deterministic) bottom-up tree transducers, deterministic attributed tree transducers are denoted by $\mathcal{T}, (\mathcal{D})\mathcal{B}, \mathcal{D}\mathcal{A},$ respectively.

2. K-visit attributed tree transducers

Let $A(=(F, A, G, a_0, P, rt))$ be a DATT and let $K(\geq 1)$ be an integer.

By a partition of A we mean a sequence $((I_1, S_1), ..., (I_l, S_l))$ where $I_i(S_i)$ are pairwise disjoint subsets of $A_i(A_s)$ whose union is $A_i(A_s)$. Let $\Phi_K(A)$ denote the set of all partitions of A with $l \leq K$.

Now let $f \in F_k$ $(k \ge 0)$, $\mathbf{e}^i \in \Phi_K(A)$ with $\mathbf{e}^i = ((I_1^i, S_1^i), \dots, (I_{l_i}^i, S_{l_i}^i))$ $(i = 0, 1, \dots, k)$. The oriented graph $D_f(\mathbf{e}^0, \mathbf{e}^1, \dots, \mathbf{e}^k)$ is defined as follows. Its nodes are the symbols I_j^{λ} , S_j^{λ} $(j=1,...,l_0)$ and the symbols I_j^{i} , S_j^{i} $(i=1,...,k, j=1,...,l_i)$. Edges are oriented for each

(i) $j(=1, ..., l_0)$ from I_j^{λ} to S_j^{λ} ; (ii) $j(=1, ..., l_0-1)$ from S_j^{λ} to I_{j+1}^{λ} ; (iii) i(=1, ..., k), $j(=1, ..., l_i)$ from I_j^{λ} to S_j^{λ} ; (iv) i(=1, ..., k), $j(=1, ..., l_i-1)$ from S_j^{λ} to I_{j+1}^{λ} ; (v) $j(=1, ..., l_0)$, $a(\in S_j^0)$ from $X_r^{1_s}$ to S_j^{λ} if there is a rule $af(z_1, ..., z_k) \leftarrow q(a_1z_{i_1}, ..., a_lz_{i_l})$ in P for which $a_s \in X_r^{i_s}$ under some s(=1, ..., l), $r(=1, ..., l_{i_s})$, $X \in \{I, S\};$

(vi) i(=1, ..., k), $j(=1, ..., l_i)$, $a(\in I_j^i)$ from $X_r^{l_s}$ to I_j^i if there is a rule $a(z_i, f) \leftarrow q(a_1 z_{i_1}, ..., a_l z_{i_l})$ in P with $a_s \in X_r^{i_s}$ under some s, r, X defined as in (v).

The graph $D_f(\mathbf{e}^0, \mathbf{e}^1, ..., \mathbf{e}^k)$ corresponds to the concept of partition graph for a production of an attribute grammar, which concept was introduced in [5].

Let $p(=f(p_1, ..., p_k)) \in T_F(k > 0, f \in F_k)$ and consider a mapping π : path $(p) \rightarrow \Phi_K(A)$. The mappings π^i : path $(p_i) \rightarrow \Phi_K(A)$ are defined by $\pi^i(w) = \pi(iw)$ $(i = 1, ..., k, w \in path(p_i)).$

Now, let again $p \in T_F$ and π : path $(p) \rightarrow \Phi_K(A)$. The oriented graph $D_p(\pi)$ is defined by induction on dp (p):

(i) if $p = f(\in F_0)$ with $\pi(\lambda) = \mathbf{e}$ then $D_p(\pi) = D_f(\mathbf{e})$;

(ii) if $p = f(p_1, ..., p_k)$ $(k > 0, f \in F_k)$ with $\pi(\lambda) = \mathbf{e}, \pi(i) = \mathbf{e}^i$ (i = 1, ..., k) then $D_p(\pi) = D_f(\mathbf{e}, \mathbf{e}^1, ..., \mathbf{e}^k) \cup (\cup (D'_{p_i}(\pi^i) | 1 \le i \le k))$ where $D'_{p_i}(\pi^i)$ is obtained from $D_{p_i}(\pi^i)$ by "multiplying its nodes by *i*", that is, the nodes of $D'_{p_i}(\pi^i)$, are the symbols X_r^{iw} where X_r^{w} are nodes of $D_{p_i}(\pi^i)$, moreover, there is an edge from X_r^{iw} to Y_s^{iv} in $D'_{p_i}(\pi^i)$ iff there is an edge from X_r^{w} to Y_s^{v} in $D_{p_i}(\pi^i)$. Nodes and edges of graphs are combined as sets.

Definition 1. We say that A is pure K-visit, if for each $p(\in \text{dom } \tau_A)$ there exists a π : path $(p) \rightarrow \Phi_K(A)$ with acyclic $D_p(\pi)$.

To support this definition, the following observation can be made. If $D_p(\pi)$ is acyclic then a computation sequence (see in [5] for attribute grammars) can be constructed, which induces a K-visit tree-walking attribute evaluation strategy on p.

Definition 2. Suppose that to each $f(\in F)$ there corresponds an element e^f of $\Phi_K(A)$ and let $\Pi_K = \{e^f | f \in F\}$. A is said to be simple K-visit concerning Π_K if for each $p(\in \text{dom } \tau_A)$ there exists a π : path $(p) \to \Pi_K$ for which the following two conditions hold:

(i) if $lb_p(w) = f$ then $\pi(w) = e^f$ ($w \in path(p)$),

(ii) $D_p(\pi)$ is acyclic.

A is simple K-visit, if it is simple K-visit concerning some Π_K .

The classes of all tree transformations induced by pure, simple K visit DATTs are denoted by \mathcal{DA}_{PK} , \mathcal{DA}_{SK} , respectively. Observe, that $\Phi_1(A) = \{(A_i, A_s)\}$ so, in the particular case K = 1, the two properties defined above are identical. Therefore $\mathcal{DA}_{P1} = \mathcal{DA}_{S1}$ and they can be denoted by \mathcal{DA}_1 .

Theorem 3. For each $K(\geq 1)$, $\mathcal{DA}_{PK} \subset \mathcal{B} \circ \mathcal{DA}_1$.

Proof. Let $A(=(F, A, G, a_0, P, rt))$ be a pure K-visit DATT. Consider the bottom-up tree transducer $B(=(F, B, \overline{F}, B', P'))$ where

(a) $B=B'=\Phi_K(A);$

(b) for each $m(\geq 0)$, \overline{F}_m is defined as follows $\langle f; \mathbf{e}, \mathbf{e}^1, ..., \mathbf{e}^k \rangle \in \overline{F}_m$ if and only if

- (i) $f \in F_k$ for some $k \geq 0$,
- (ii) **e**, **e**¹, ..., **e**^k $\in \Phi_K(A)$,

(iii) $m=l_1+...+l_k$ where l_i is the number of components of e^i (i=1,...,k), (iv) $D_f(e, e^1, ..., e^k)$ is acyclic;

(c) for each $m (\geq 0)$, $\langle f; \mathbf{e}, \mathbf{e}^1, ..., \mathbf{e}^k \rangle$ ($(\in \overline{F}_m)$) the rule

$$f(\mathbf{e}^{1}z_{1},\ldots,\mathbf{e}^{k}z_{k}) \rightarrow \mathbf{e}\langle f; \mathbf{e},\mathbf{e}^{1},\ldots,\mathbf{e}^{k}\rangle(\overbrace{z_{1},\ldots,z_{1}}^{l_{1} \text{ times}},\ldots,\overbrace{z_{k},\ldots,z_{k}}^{l_{k} \text{ times}})$$

is in P'.

Moreover, let the DATT $C = (\overline{F}, C, G, c_0, P'', rt'')$ be defined as follows (a) $C_s = A_s, C_i = A_i, c_0 = a_0, rt'' = rt$;

(b) P'' is constructed in the following way. Let $m \ge 0$, $\langle f; \mathbf{e}, \mathbf{e}^1, ..., \mathbf{e}^k \rangle \in \overline{F}_m$ with $\mathbf{e} = ((I_1, S_1), ..., (I_i, S_i))$ and $\mathbf{e}^j = ((I_1^j, S_1^j), ..., (l_{i_j}^j, S_{i_j}^j))$ $(1 \le j \le k)$. For each $a \in C_s$ let the rule $a \langle f; \mathbf{e}, \mathbf{e}^1, ..., \mathbf{e}^k \rangle$ $(z_1, ..., z_m) \leftarrow q(a_1 z_{i_1}, ..., a_s z_{i_s})$ be in P'' if the following conditions hold:

(i)
$$af(z_1, ..., z_k) \leftarrow q(a_1 z_{j_1}, ..., a_s z_{j_s}) \in P,$$

(ii) $i_r = \begin{cases} j_r (= 0) & \text{if } a_r \in A_i & (r = 1, ..., s) \\ l_1 + ... + l_{j_r - 1} + n & \text{if } a_r \in S_n^{j_r} & \text{for some } n (= 1, ..., l_{j_r}). \end{cases}$

Moreover, for each j(=1, ..., k), $n(=1, ..., l_j)$, $a(\in I_1^j \cup ... \cup I_n^j)$ let the rule $a(z_i, \langle f; \mathbf{e}, \mathbf{e}^1, ..., \mathbf{e}^k \rangle) \leftarrow q(a_1 z_{i_1}, ..., a_s z_{i_s})$ be in P'' if

(i)
$$a(z_j, f) \leftarrow q(a_1 z_{j_1}, ..., a_s z_{j_s}) \in P$$
,

(ii)
$$i = l_1 + \dots + l_{j-1} + n$$
,

$$i_r = \begin{cases} j_r(=0) & \text{if } a_r \in A_i & (r = 1, ..., s) \\ l_1 + ... + l_{j_r - 1} + u & \text{if } a_r \in S_u^{j_r} & \text{for some } u = (1, ..., l_{j_r}). \end{cases}$$

The 1-visit property of C can be shown in the following manner. In [3], it was proved that an attributed grammar is 1-visit iff each of its brother graphs is acyclic. We can formulate the concept of the brother graph for DATTs and can easily show that each brother graph of C is acyclic.

The proof of the next lemma can be performed by a simple induction on dp (p). Lemma 4. Let $p \in T_F$, $\mathbf{e} \in B$. Then $p \stackrel{*}{\underset{B}{\to}} \mathbf{e}\bar{q}$ for some $\bar{q} (\in T_F)$ if and only if there exists a π : path $(p) \rightarrow \Phi_K(A)$ with $\pi(\lambda) = \mathbf{e}$ and acyclic $D_p(\pi)$.

Lemma 5. Let $p \in T_F$, $\bar{q} \in T_F$, $q \in \hat{T}_G(Z_s)$, $a_1, \ldots, a_s \in A_i$, $e \in B$ with $e = ((I_1, S_1), \ldots, (I_l, S_l))$ and let $a \in S_j$ for some $j (=1, \ldots, l)$. Suppose that $p \xrightarrow{\cong}_{B} e\bar{q}$ and $(a, \lambda) \xleftarrow{\cong}_{p,A} q((a_1, \lambda), \ldots, (a_s, \lambda))$. Then $a_1, \ldots, a_s \in I_1 \cup \ldots \cup I_j$.

Proof. It follows from the previous lemma that there exists a π : path $(p) \rightarrow \Phi_k(A)$ with $\pi(\lambda) = e$ and acyclic $D_p(\pi)$. Suppose that, say, $a_1 \in I_k$ where k > j. Then, by the definition of $D_p(\pi)$, there is a path from I_k^{λ} to S_j^{λ} in $D_p(\pi)$ due to the dependency edges of $D_p(\pi)$. On the other hand, there is a path from S_j^{λ} to I_k^{λ} in $D_p(\pi)$ because k > j, which contradicts the fact that $D_p(\pi)$ is acyclic.

Lemma 6. Let $a \in A_s$, $p \in T_F$, $\bar{q} \in T_F$, $q \in T_G(A_i \times \{\lambda\})$, $e \in B$. Suppose that $(a, \lambda) \xleftarrow{*}_{p,A} q$ and $p \stackrel{*}{\xrightarrow{B}} e\bar{q}$. Then $(a, \lambda) \xleftarrow{*}_{\bar{q},C} q$.

Proof. The proof can be performed by induction on dp(p).

(a) Let dp (p)=0 i.e. $p=f(\in F_0)$. Then by supposition, $af \leftarrow q'(a_1z_0, ..., a_sz_0) \in P$ $(s \ge 0, q' \in \hat{T}_G(Z_s), a_1, ..., a_s \in A_i), q = q'((a_1, \lambda), ..., (a_s, \lambda))$, moreover, $f \rightarrow e \langle f; e \rangle \in P'$ and $\bar{q} = \langle f; e \rangle$. Therefore, by the definition of C, $a \langle f; e \rangle \leftarrow q'(a_1z_0, ..., a_sz_0) \in P''$. (b) Now let dp (p) > 0 that is $p = f(p_1, ..., p_k)$ $(k > 0, f \in F_k)$. Here, $p \stackrel{*}{\Rightarrow} e\bar{q}$ can be written in the form

$$p = f(p_1, ..., p_k) \stackrel{*}{\underset{\mathbf{B}}{\Rightarrow}} f(\mathbf{e}^1 \bar{q}_1, ..., \mathbf{e}^k \bar{q}_k) \stackrel{\cong}{\underset{\mathbf{B}}{\Rightarrow}}$$

$$\langle f; \mathbf{e}, \mathbf{e}^1, ..., \mathbf{e}^k \rangle (\overline{q}_1, ..., \overline{q}_1, ..., \overline{q}_k, ..., \overline{q}_k) = \mathbf{e} \bar{q}$$

with

$$\mathbf{e}^{j} = ((I_{1}^{j}, S_{1}^{j}), \dots, (I_{l_{j}}^{j}, S_{l_{j}}^{j})) \quad (j = 1, \dots, k).$$

First we can prove the following

e

STATEMENT. Let $1 \leq j \leq k, 1 \leq n \leq l_j, b \in I_1^j \cup ... \cup I_n^j, t \in T_G(A_i \times \{\lambda\})$ and suppose that the relation $\beta = (b, j) \rightleftharpoons_{p,A}^* t$ holds. Then $(b, i) \rightleftharpoons_{\overline{q,C}}^* t$ where $i = l_1 + ... + l_{j-1} + n$. The proof of this statement can be done by an induction on It (β) . When It $(\beta) = 1$ then $b(z_j, f) \leftarrow t'(b_1 z_0, ..., b_s z_0) \in P$ $(s \geq 0, t' \in T_G(Z_s), b_1, ..., b_s \in A_i)$ and $t = t'((b_1, \lambda), ..., (b_s, \lambda))$ so, by the definition of $\mathbf{C}, b(z_i, f) \leftarrow t'(b_1 z_0, ..., b_s z_0) \in P''$. When It $(\beta) > 1$ then β can be written in the following form

$$(b, j) \xleftarrow[p, \mathbf{A}]{} t'((b_1, \bar{j}_1), \dots, (b_s, \bar{j}_s)) \xleftarrow[p, \mathbf{A}]{} t'(t_1, \dots, t_s) = t$$

where

 $s \ge 0, t' \in \hat{T}_G(Z_s), b_1, \dots, b_s \in A, t_1, \dots, t_s \in T_G(A_i \times \{\lambda\}), b(z_j, f) \leftarrow t'(b_1 z_{j_1}, \dots, b_s z_{j_s}) \in P$. Then, by the definition of C, $b(z_i, \langle f; \mathbf{e}, \mathbf{e}^1, \dots, \mathbf{e}^k \rangle) \leftarrow t'(b_1 z_{i_1}, \dots, b_s z_{i_s}) \in P''$ where

$$i_r = \begin{cases} j_r(=0) & \text{if } b_r \in A_i & (r = 1, ..., s) \\ l_1 + ... + l_{j_r - 1} + v & \text{if } b_r \in S_v^{j_r} & \text{for some } v (= 1, ..., l_{j_r}). \end{cases}$$

Now let r(=1, ..., s) be such an index for which $b_r \in S_v^{j_r}$ and so $1 \leq j_r \leq k$. Then the relation $(b_r, \bar{j}_r) \rightleftharpoons_{p,\bar{A}}^* t_r$ can be written in the form $(b_r, j_r) \rightleftharpoons_{p,\bar{A}}^* t_r'((c_1, j_r), ...$ $\dots, (c_u, j_r)) \rightleftharpoons_{p,\bar{A}}^* t_r'(\bar{i}_1, ..., \bar{i}_u) = t_r$ for some $u(\geq 0), t_r'(\in \hat{T}_G(Z_u)), c_1, ..., c_u(\in A_i), \bar{i}_1, ...$ $\dots, \bar{i}_u(\in T_G(A_i \times \{\lambda\}))$ and we can suppose that the derivation $(b_r, j_r) \rightleftharpoons_{p,\bar{A}}^* t_r'((c_1, j_r), ...$ $\dots, (c_u, j_r))$ has no such a step, in which, a leaf in $A_i \times \{j_r\}$ substituted. Then $(b_r, \lambda) \rightleftharpoons_{p_{j_r},\bar{A}} t_r'((c_1, \lambda), ..., (c_u, \lambda))$ so, by the induction hypothesis concerning dp (p), we have $(b_r, \lambda) \rightleftharpoons_{\bar{d}_{j_r},\bar{C}} t_r'((c_1, \lambda), ..., (c_u, \lambda))$ which means that $(b_r, i_r) \xleftarrow_{\bar{q},\bar{C}} t_r'((c_1, i_r), ...$ $\dots, (c_u, i_r))$ because $lb_{\bar{q}}(i_r) = \bar{q}_{j_r}$. On the other hand, by Lemma 5, $c_1, ..., c_u \in I_1^{j_r} \cup ...$ $\dots, (c_u, j_r) \xleftarrow_{p,\bar{A}} \bar{i}_u$ is less than lt (β) so we have $(c_1, i_r) \xleftarrow_{\bar{q},\bar{C}} \bar{i}_1, ..., (c_u, i_r) \xleftarrow_{\bar{q},\bar{C}} \bar{i}_u$, that is $(b_r, i_r) \xleftarrow_{\bar{q},\bar{C}} t_r'(\bar{i}_1, ..., \bar{i}_u) = t_r$.

If r is such an index for which $b_r \in A_i$ and so $j_r = 0$ then $t_r = (b_r, \lambda)$, therefore

169

1

 $(b_r, l_r) \xleftarrow{*}{\overline{q}, C} t_r$ again. All that means that

$$(b,i) \xleftarrow[\bar{q},\bar{C}]{} t'((b_1,\bar{l}_1),...,(b_s,\bar{l}_s)) \xleftarrow[\bar{q},\bar{C}]{} t'(t_1,...,t_s) = t$$

, proving our statement.

Now we return to the induction step of the lemma. The relation $(a, \lambda) \xleftarrow{r}{p, A} q$ can be written in the form

$$(a, \lambda) \xleftarrow[p, \mathbf{A}]{=} q'((a_1, j_1), \dots, (a_s, j_s)) \xleftarrow[p, \mathbf{A}]{=} q'(q_1, \dots, q_s) = q$$

where $s \ge 0$, $q' \in \hat{T}_G(Z_s)$, $a_1, \ldots, a_s \in A$, $q_1, \ldots, q_s \in T_G(A_i \times \{\lambda\})$ and $af(z_1, \ldots, z_k) \leftarrow q'(a_1 z_{j_1}, \ldots, a_s z_{j_s})$ is in P. Then, by the definition of C, the rule $a \langle f; \mathbf{e}, \mathbf{e}^1, \ldots, \mathbf{e}^k \rangle$ $(z_1, \ldots, z_m) \leftarrow q(a_1 z_{i_1}, \ldots, a_s z_{i_s})$ is in P" where $m = l_1 + \ldots + l_k$ and

$$i_r = \begin{cases} j_r(=0) & \text{if } a_r \in A_i & (r = 1, ..., s) \\ l_1 + ... + l_{j_r - 1} + n & \text{if } a_r \in S_n^{j_r} & \text{for some } n(= 1, ..., l_{j_r}). \end{cases}$$

Let r(=1, ..., s) be an index for which $a_r \in S_n^{j_r}$ for some $n(=1, ..., l_{j_r})$ and so $1 \leq j_r \leq k$. Then the relation $(a_r, \bar{j}_r) \rightleftharpoons_{p,\bar{A}}^* q_r$ can be written in the form $(a_r, j_r) \rightleftharpoons_{p,\bar{A}}^* q_r'((b_1, j_r), ..., (b_u, j_r)) \rightleftharpoons_{p,\bar{A}}^* q_r'(\bar{q}_1, ..., \bar{q}_u) = q_r$ for some $u \geq 0, q_r' \in \hat{T}_G(Z_u)$, $b_1, ..., b_u \in A_i, \bar{q}_1, ..., \bar{q}_u \in T_G(A_i \times \{\lambda\})$. We can again suppose, that there is no step in the derivation $(a_r, j_r) \rightleftharpoons_{p,\bar{A}}^* q_r'((b_1, j_r), ..., (b_u, j_r))$, in which, a leaf in $A_i \times \{j_r\}$ is substituted. Therefore $(a_r, \lambda) \rightleftharpoons_{p_{j_r},\bar{A}}^* q_r'((b_1, \lambda), ..., (b_u, \lambda))$ from which, by Lemma 5, $b_1, ..., b_u \in I_1^{j_r} \cup ... \cup I_n^{j_r}$ and, by the induction hypothesis on dp (p), we get $(a_r, \lambda) \rightleftharpoons_{\bar{q}_{j_r},\bar{C}} q_r'((b_1, \lambda), ..., (b_u, \lambda))$ that is $(a_r, i_r) \rightleftharpoons_{\bar{q},\bar{C}}^* \bar{q}_1, ..., (b_u, i_r)$. On the other hand, by the statement, we have $(b_1, i_r) \rightleftharpoons_{\bar{q},\bar{C}} \bar{q}_1, ..., (b_u, i_r) \nleftrightarrow_{\bar{q},\bar{C}} \bar{q}_u$ which means that $(a_r, i_r) \oiint_{\bar{q},\bar{C}}^* q_r'(\bar{q}_1, ..., \bar{q}_u) = q_r$.

If r(=1, ..., s) is such an index for which $a_r \in A_i$ and so $j_r = 0$ then it is clear that $q_r = (a_r, \lambda)$, therefore $(a_r, \bar{i}_r) \xleftarrow{*}{\bar{q}, C} q_r$ again. The two cases of r and $a \langle f; e, e^1, ..., e^k \rangle (z_1, ..., z_m) \leftarrow q'(a_1 z_{i_1}, ..., a_s z_{i_s}) \in P''$ together prove that

$$(a, \lambda) \xleftarrow[q, \overline{c}]{=} q'((a_1, \overline{i}_1), \ldots, (a_s, \overline{i}_s)) \xleftarrow[q, \overline{c}]{=} q'(q_1, \ldots, q_s) = q.$$

This ends the proof of Lemma 6.

The proof of the next lemma is essentially the converse of the previous one.

Lemma 7. Let $a \in A_s$, $p \in T_F$, $\bar{q} \in T_F$, $q \in T_G(A_i \times \{\lambda\})$, $e \in B$. Suppose that $p \stackrel{*}{\Longrightarrow} e\bar{q}$ and $(a, \lambda) \stackrel{*}{\underset{\bar{q}, C}{\longleftarrow}} q$. Then $(a, \lambda) \stackrel{*}{\underset{p, \overline{A}}{\longleftarrow}} q$.

Now we are ready to prove our theorem. Suppose that $(p, q) \in \tau_A$ that is $(a_0, \lambda) \xleftarrow{*}{p, A} q$ concerning rt. Because A is K-visit, by Lemma 4, there exist $\bar{q} \in T_F$

and $\mathbf{e} \in B$ with $p \underset{\mathbf{B}}{\overset{*}{\mathbf{B}}} \mathbf{e} \bar{q}$, therefore, by Lemma 6, $(a_0, \lambda) \xleftarrow[\bar{q}, \overline{\mathbf{C}}]{\mathbf{c}} q$ concerning rt", hence $(p, q) \in \tau_{\mathbf{B}} \circ \tau_{\mathbf{C}}$. Conversely, by $(p, q) \in \tau_{\mathbf{B}} \circ \tau_{\mathbf{C}}$ we have a $\bar{q} \in T_F$ for which $p \underset{\mathbf{B}}{\overset{*}{\mathbf{B}}} \mathbf{e} \bar{q}$ under some $\mathbf{e}(\in B)$ and $(a_0, \lambda) \xleftarrow[\bar{q}, \overline{\mathbf{C}}]{\mathbf{c}} q$ concerning rt". Then, by Lemma 7, we have $(a_0, \lambda) \xleftarrow[\bar{p}, \overline{\mathbf{A}}]{\mathbf{c}} q$ concerning rt. The fact, that the inclusion is strict follows from the proof of Theorem 4.1 of [6]. This ends the proof of Theorem 3.

After studying the proof of the previous theorem two observation can be made. On the one hand, instead of the bottom-up tree transducer **B** we can have a topdown one which can be constructed by reversing the rewriting rules of **B**. Although this top-down one does not induce the same tree transformation as **B**, the following will be valid.

Corollary 8. $\mathscr{D}\mathscr{A}_{PK} \subset \mathscr{T} \circ \mathscr{D}\mathscr{A}_{1}$.

On the other hand it also seems that if A is simple K-visit then a deterministic bottom-up tree transducer can be constructed, so we have

Corollary 9.

$$\mathscr{DA}_{SK} \subset \mathscr{DB} \circ \mathscr{DA}_1$$

```
RESEARCH GROUP ON THEORY OF AUTOMATA
HUNGARIAN ACADEMY OF SCIENCES
SOMOGYI U. 7.
SZEGED, HUNGARY
H—6720.
```

References

- [1] BARTHA, M., An algebraic definition of attributed transformations, Acta Cybernet., v. 5, 1982, pp. 409-421.
- [2] ENGELFRIET, J., Bottom-up and top-down tree transformations, A comparison, Math. Systems Theory, v. 9, 1975, pp. 198-231.
- [3] ENGELFRIET, J. and G. FILE, The formal power of one-visit attribute grammars, Acta Inform., v. 16, 1981, pp. 275-302.
- [4] ENGELFRIET, J., Some open questions and recent results on tree transducers and tree languages, Formal language theory, ed. by R. V. Book, Academic Press, 1980, pp. 241-286.
- [5] ENGELFRIET, J. and G. FILE, Simple multi-visit attribute grammars, Memorandum 314, Twente University of Technology, 1980.
- [6] FÜLÖP, Z., On attributed tree transducers, Acta Cybernet., v. 5, 1981, pp. 261-279.

(Received Oct. 26, 1982)