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Introduction 

One of the most interesting problems in the theory of fuzzy sets is the choice 
of the fuzzy connective operations, i.e. the union and the intersection. 

Definition 1. The fuzzy set p is an arbitrary function 

p:X-[0,l] (1) 

interpreted on the non-empty universal discourse X. 
In such a sense, the characteristic function of the common sets is a special 

fuzzy set. 
Zadeh (1965) [24] extended the intersection and union of the subsets of the 

common sets in the following way 

PALIB(X) = max(fiA(x), PB(x)) for all x£X and 

PAnB(x) = min (nA(x), pB(x)) for all x£X, (2) 

where fiAUB and pAnB are the fuzzy sets corresponding to AUB and AC\B, 
respectively. 

Below we shall survey in broad outlines the development of the views relating 
to fuzzy operations. Historical survey of fuzzy operations: 

Besides operations (1), others also have been proposed for the generalization 
of the operations in set theory [24], [17]. Some examples are 

PAHB(x) = HA(X) • fiB(X) a n d 

PAUB 0 0 = HA (X) + nB (X) - pA (x) • PB (x) (3) 
or ' 

HAC\B(X) = max (jiA ( x ) + f i B 0 0 — 1, 0) and 

PAUB(X) = min (¡xA(x)+/iB(x), l ) . (4) 
All this reveals the arbitrary nature of the definitions. This arbitrariness can be 

resolved with a basis on the axiom system general in mathematics. Strivings in this 
direction were first made in defence of the min and max operations [3], [12], [9]. 

5» 
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In effect, this merely involved the characterization of operations (1) with other 
properties. 

Subsequently, other axiom systems were created [11], [12], [14], which were not 
represented by operations (1); there were publications in which algebraic structures 
were investigated without representation [2], [13], [15]. Here the emphasis was on 
the rational establishment of the axioms. 

A whole series of axiomatic examinations arose for the most varied operations; 
however, these were unable to unify the views relating to the operations, but rather 
made the problem more ramified. Study of the mutual interrelations between the 
axiom systems might have led to a solution, but very great difficulty was caused by 
the fact that it was impossible to compare the axioms. Only one such study has 
been made [10]. 

One possibility was to return to the bases, i.e. to base the rational nature of the 
axioms not on opinions, but on empirical examinations. The first such examina-
tion did not relate exactly to this, but to the question of whether the created opera-
tions correspond to practice [21]. The result was that they do not. 

Further, it is not advisable to make a mathematical theory dependent on narrow 
empirical examinations; rather, operation classes must be produced from which 
the appropriate operation can be selected in a manner adequate to the practical 
requirements. 

The operations should if possible be made flexible. Parameter-dependent opera-
tion series were produced by Yager [23] and by Hamacher [11], but these were as 
individual as the earlier operations. Although operation classes were defined, 
a practical interpretation of the parameters did not materialize. 

The next period was characterized by the appearance of monographs on opera-
tions and axiom systems [6], [22]. 

These works ensured a possibility for the discovery of the common properties 
of operations and axiom systems and for the selection of a minimal axiom system [4]. 
However, only a narrow range of the examined operations could be characterized 
with these axiom systems. 

The axioms of this minimal system are the strict monotonity of the operations, 
the holding of the correspondence principle, associativity and continuity. The 
adoption of these axioms can be based rationally in the following way: 

The correspondence principle is satisfied by all fuzzy operations, i.e. their 
restriction to the characteristic function is a classical set-theory operation. The 
associativity holds for every operation examined so far, and in addition a possibility 
is created for the extension of two-variant operations to multi-variant ones. The 
lack of continuity terminates the homogeneous effect of the operation. 

Strict monotonity is not satisfied by every operation; its condition rather served 
the realization of the representation. However, the condition of monotonity exists 
for all operations. 

Thus, it is advisable to carry out an examination of not strictly monotonous 
operations. Hence, we must obtain, for example, (4) and (1). 

The main result in the paper is the giving of representations of all operations 
of such type, as functions of various conditions. 

The study relies on the theory of ordered semigroups [8], [20] and the associative 
function equations [1]. 
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1. Fuzzy algebra 

Let I be the closed interval [0, 1] of the real numbers. This notation partly 
serves to simplify the description, and partly refers to the generalizability of the 
theorems and definitions. 

The set of all the fuzzy sets (1) is 

F(X) = {n\ti: X - I } (5) 
(we shall denote F(X) briefly by F). Let Ch be a set of common characteristic 
functions. 

Definition 2. The fuzzy sets ¡x and v are said to be equal if 

/¿(jc) = v(x) for all xdX. (6) 

The fuzzy set fi precedes the fuzzy set v if 

fi(x) =§ v(x) for all x£X. (7) 

Theorem 1. The relation s is a partial ordering on F. Let us consider an 
n-ary algebraic operation 

*: F"-F (n = 1,2, ...) (8) 
on the set F of fuzzy sets. 

Definition 3. The operation * is isotonic (antitonic) if it follows from the 
( inequalities 

HiTSVi (i = 1, 2, ..., n) 
that 

fj,1*...*fi„Sv1*...*v„ (ji1*...*n„^v1*...*vn) (9) 

for all (Hi, ..., [!„), (v1; ..., v„)£F". The isotonic and antitonic operations together 
are said to be monotonic. 

The ordering relation s interpreted on the fuzzy sets is a generalization of the 
partial ordering defined by the entailment interpreted on the common sets. 

Definition 4. By fuzzy algebra [5] (the algebra of fuzzy sets) we understand all 
those algebraic structures interpreted on F for which it holds that 

(Al) all of its operations are monotonic. 
Fuzzy algebra is said to be "ordinary" if the following condition also holds: 
(A2) the restriction of all of its algebraic operations to Ch agrees with some 

set-theory operation with the same number of variables. 
In our work we shall examine those ordinary fuzzy algebras <F, # ) (in the 

following simply fuzzy algebra) which satisfy the following conditions: 
(F l ) * is a binary connective operation, i.e. its restriction to Ch is either inter-

section interpreted on the normal sets, or union. 
Let us consider those fuzzy algebraic operations for which there is a function 

/ : 7 X / - 7 such that 

(H*v)(x) = f{n{x), v(x)) for all x€X. (10) 

The attribution * — / is mutually unambiguous. Let us denote the set of fuzzy al-
gebraic operations with this property by Z. 
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(F2) Let * be an operation belonging to Z. 

Theorem 2. Let * : FxF—F be an operation in Z. The algebraic structure 
< f , *> satisfying condition F1 is fuzzy algebra if, and only if, it holds for the func-
tion / ascribed to * that 

(i) / is monotonic in the sense agreeing with * ; 
(ii) / (0 , 0)=0, / (1 , 1) = 1, and further, if the restriction of the operation * to 

Ch is intersection (union); then / (0 , 1)=/(1, 0 ) = 0 (/(0, 1)=/(1 , 0) = 1). 

Proof. Let <F, *> be the fuzzy algebra satisfying condition F l . 
(i) Let us assume that * is isotonic. Let xx, x2, ylt y2dl, so that x^x2 

and _)'] ^ y2 • Let us consider the fuzzy sets 

Hi(x) = Xj_, n2{x) = x2, vx(x) = yu v2(x) = y2 for every x£X. 

For these it holds that 
^ fi2 and V[ S v2. 

It follows from the isotonity of operation * that 

Taking F2 into consideration: 

f(jh(x), Vl(x))^f(^(x), v2(x)) for all x£X. 

It therefore follows from Xi=*2 and y ^ y 2 that 

fix^yd ^f(x2,y2), 

i.e. / is isotonic. The postulate can be demonstrated similarly for the antitonic case. 
(ii) The postulate arises simply from consideration of A2 or F l and F2. 

' Proof of the inverse of the postulate is likewise simple. 
Consequence: with the operation / ascribed to * I is an ordered algebraic 

structure. 
Theorem 2 ensures that study of the representations of the algebraic structure 

determined by the operation / ascribed to the operation * is sufficient for examina-
tion of the representations of the fuzzy algebras <F, *> satisfying conditions F l 
and F2. 

As concerns / , let us assume that 
(F3) / is associative; 
(F4) / is continuous on IX I. 
It can readily be seen that the operation * determined by such / is associative 

and continuous from point to point, i.e. if the series of fuzzy sets {¿/„} and {v„} 
converge from point to point to the fuzzy sets n and v, then the series of fuzzy 
sets {p„*v„} converges from point to point to the fuzzy set n*v. 

In the following section postulates will be given for the case when the restriction 
to Ch of the operation * determined by / is the normal set-theory intersection. 
In this case we denote the determining function by c. The function corresponding 
to the union is denoted by d. The postulates for c and their proofs can be applied 
appropriately to d. 
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2. Representation theorem 

Let us first summarize the properties having by the function c: Ixl—I defined 
in section 2. 

(Tl) c is monotonous ; 
(T2) c(0, 0)=0, c(l, 1) = 1, c(0, l ) = c ( l , 0 )=0 ; 
(T3) c is associative; 
(T4) c is continuous. 

Theorem 3. If Tl and T3 hold for c, then 
(Tl ') c is isotonic [8]. 

Thus, the set I forms a semigroup completely ordered with operation c. 

Definition 5. The function h is said to be Archimedean in the interval [a, b\ if 

h(x, x)<x for all x£(a,b). (11) 
The representation theorem relating to the Archimedean case was proved by 

Ling [16] by means of elementary analysis. The theorem can be derived from the 
earlier result of Mostert and Shields [18]. 

We shall make use of this theorem in the following. 

Theorem 4. Let J be a closed interval [a, b] of real numbers, and h the func-
tion h:JxJ-*J- h has the properties that 

(i) h is monotonous ; . 
(ii) h is associative; 

(iii) h is continuous ; 
(iv) h(a, a)=a, h(b, b)=b, h(b, x)=h(x, b)=x (xfEJT); (12) 
(v) h is Archimedean 

it and only if there exists a continuous, strictly monotonously decreasing function g, 
mapping the interval [a, b\ into the interval [0, for which g(b)=0 such that 
h may be represented in the form _ 

h(x,y) = g^(g(x) + g(y)) (13) 

where g ( _ 1 ) is the pseudo-inverse of g 

, 1 ) r . j g - H * ) if g ( b ) - * s g ( a ) , 

where is the normal inverse of function g in [g(6), g(a)]. 
Function g is termed the additive generator of the Archimedean operation h, 

and g is unambiguously determined apart from a positive constant, i.e. a -g ( a>0) 
likewise generates h. 

It should be noted that the theorem can also be stated in such a way that the 
generator function g' maps the interval [a, b] into [ — 0], it increases strictly 
monotonously, and g(b)=0. In this case the definition of the pseudo-inverse is 
modified appropriately. 

Function c with properties Tl—T4 satisfies conditions (i)—(iv) of Theorem 4. 
In the following we shall not restrict our considerations to the Archimedean case. 
Mostert and Shields have carried out similar examinations relating to semigroups [18]. 
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Let us consider the set of the idempotent points of the interval / 

N = {x|x67, c(x, x) = x}. (15) 

Theorem 5. N is a closed set. 

Proof. We see that N contains every accumulation point. Let x0 be an 
optional accumulation point of N. A point series x„ may then be selected from 
N such that 

lim x„ = x0 . 
/1—CO 

Since x„£N for every n, we have c(x„, x„)=x0 , and c is continuous (T4), so that 

c(x0, Xq) = lim c (x„ ,x„ )= lim x„ = x0 , 
xn~~x0 X" ' X0 

and thus x0£N. 
Let M=I\N. M is a restricted and open point set. Let us assume that M is 

not empty. 

Theorem 6. M can be constructed as the combination of a finite or infinitely 
large number of open intervals, not projecting into one another in pairs, the end-
points of which do not belong to M [21]. 

Therefore M has the form 
M = \J Mi (16) 

i£P 

where P is a finite or an infinite index set and M ; £ , • ) , for which, if x£(a f , ¿»¡), 

c(x, x) x, (17) 

while c ( a i , a ^ = a i and c(bi,bi)=bi. 
Let us select an optional region [ft, 6,]X[tff, ¿¡]. In this region it holds too 

that c is isotonic (Tl'), associative (T3) and continuous (T4). For determination 
of the properties corresponding to T2, let us consider the following theorems: 

Theorem 7. For every x£[a„bl\: 
(i) c(a f , x) = c(x, af) = a,-, (18) 

(ii) c(bi,x) = c(x, bt) = x. (19) 
Proof. First, we see that 

c( l , x) = c(x, 1) = x for all x£I . (20) 

On the basis of (T2), c(0, 1)=0 and. c(l, 1) = 1, and with consideration of the 
continuity (T4) the function c(x, 1) therefore maps I on /. Then,, for any y £ l 
there exists an x £ / such that c(x, = Utilizing this fact and the associativity (T3). 

c(y, 1) = c(c(x, 1), 1) = c(x, c( 1,1)) = c(x, 1) = y for all y£I. 

Part (i) of the theorem is a simple consequence of the isotonity (Tl ') and (20) 

ai = c(ai, at) ^ c(x, a,) S c ( 1, a,) = a,. 

The proof of part (ii) is the application of that of (20) to [at, ¿»¡]. 
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Theorem 8. For every x£(a f , b,), c(x, x ) < x . 

Proof. As a consequence of the isotonity (Tl ' ) and (19) 

c(x, x) S c(bi, x) = x for all x€[a ; , bt]. 

If x£(ah bi), then c(x, x)^x, so that 

c(x, x) < x for all x£ (a(, b-). 

Theorem 9. For every (x, y)€[cti, 6,]X[a,-, bt] 

c(x, y) s min (x, y). (21) 

Proof As a consequence of (19) 

c(x, j ) S c(x, b,) = x and c(x, y) S c(bi, y) = y, 
therefore, 

c(x, y) S min (x, y). 

Theorem 10. Let 7 / = / 2 \ ( J Mf. Then 
HP 

c(x, y) = min (x, y) for all (x, y)£H. (22) 

Proof. Let us assume that x^y. Let (x, y)£H. 

(i) If x£N and y f J , then 

x = c(x, x) S c(x, y) = c(x, 1) = x. 

(ii) If x6(a,-, bf)QM and then 
x = c(x, bf) =5 c(x, j ) S c(x, 1) = x. 

In both cases c(x, j>)=x=min (x, j ) . 
Let cf be the restriction of the function c to the region [ah ¿>;]X[a;, b,\. 

As a consequence of the equalities c(cr;, and c(b,,bt)=bt as well as the 
isotonity (Tl ' ) and continuity (T4) of c, ct maps the region [ah ¿>,]x[6i,-, Z>;] on 
fa, bi\. 

To summarize, c{ satisfies conditions T l ' , T3, T4 and T2' 

(T2') c,(a ; , a f) = a ; , c f(b ( , bt) = bt, 
ci(ai> bi) = CI(bi, at) = di 

and by Theorem 8 it is Archimedean. From the Ling theorem, therefore, for every 
i£P there exists a generator function gt additive in [ah ¿>;] to c ;. 

Thus, the following theorem holds for c: 

Theorem 11. Let c be the function c: / X / — / . c satisfies conditions Tl—T4 
if and only if c has the form 

_ J ^""(fcto+ftOO). if (*•?)€ AT,' = (a„ bif i£P 
c ( * ' 7 ) - l m i n ( x , 7 ) , if ( * , > o a 2 \ u M ? 

i€P 
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where {Af,}ie P is the sum of a finite or infinitely large number of open intervals 
belonging to /, not projecting into one another in pairs. is a function mapping 
the closed interval [at, b,] into the interval [0, =»], which is a continuous, strictly 
monotonously decreasing function, and gj(6,)=0. g ( - 1 ) is the pseudo-inverse of 
(It should be noted that P may be empty.) 

Proof, (i) Let us assume that T1—T4 hold for the function c : / X / — / • If every 
point of / is idempotent, i.e. I=N, then on the basis of Theorem 10, c(x, y) = 
= min(x, y) for all (x, y)£P. If Nczl, then as a consequence of Theorems 5 
and 6 in P there are regions , 6,] X[tf,, bt] not projecting into one another in 
pairs, in which the functions cf satisfy the conditions of Theorem 4 (Ling) by 
Theorems 7—10. In the given region, therefore, there exist generator functions 
g t additive for c,-s. Outside such regions, from Theorem 10: c(x, ^ ) = m i n (x, j ) . 

(ii) Let us assume that the function c : / X / — / exists in the form (23). If 
P is empty, then c(x, y)=min (x, y) for all (x, y ) f j 2 . Therefore T1—T4 hold. 

If P is not empty, then by Theorem 4 (Ling) the function c is isotonic, as-
sociative and continuous separately both in the regions {A/?} (i£P) and outside 
these regions. 

Because of (12), at the limit of the regions M c ( x , ^ )=min (x, y), and 
c therefore has no breakpoint. Thus, c is continuous (T4) in P. T2 similarly 
follows from these arguments. 

The proof of the isotonity (Tl ' ) and the associativity (T3) is lengthy, and ac-
cordingly we do not present it here. 

Without proof, we list some of the consequences of Theorem 11. 

Theorem 12. Every function c: Ixl-*I satisfying conditions T l—T4 is 
commutative. 

Definition 6. The function t: / X / — / is said to be a t norm [19] if 
(i) I ( 0 , 0 ) = 0, t(x, 1) = /(1,JC)=JC f o r all * € / , 

(ii) t is isotonic, 
(iii) t is commutative, and 
(iv) t is associative. 

Definition 7. The function t: / X / — / is said to be a strict t norm if (i) and 
(iv) hold, and 

(v) t is continuous, and 
(vi) t is strictly isotonic, i.e. 

t(xlf )>) < t(x2, y) if 0 < X i < X 2 S l , 

t(x, < t(x, y2) if 0 < yx < y2 ^ 1. 

Theorem 13. Every function c: / X / — / satisfying conditions T l—T4 is 
a continuous t norm. 

If we assume strict monotonity instead of Tl for function c, then it is a strict 
t norm and Archimedean in I. 

Studies relating to continuous t norms have been performed by Schweizer and 
Sklar [19], [20]. 

Finally, let us examine the possibility of constructing the min (x, y) function 
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by means of a generator function. By Theorem 4 (Ling) there is no additive generator 
of form (13), as it is not Archimedean. Ling studied this problem in some detail [16]. 

Theorem 14. Let J be the closed interval [a, b] of the real number straight 
line. If c(x, y) = min (x, y) for all (x, y)£[a, A]X[a, b], then there does not exist 
a continuous function g: [a, ¿>] — [0, such that c can be represented in the form 

min (x, y) = g*(g(x) +g(y)) (24) 
where it holds for (the not unconditionally continuous) g* that g*(g(x))=x 
for all x€[a, b]. 

Theorem 15. Assume that J and c satisfy the conditions of Theorem 14. 
Then, there does not exist a strictly monotonously decreasing function g: [a, b\ — 
—[0, <=°] such that c can be represented in the form 

min (x, y) = g*(g(x)+g(y)) 
where g* is the function defined in Theorem 14. 

A connection may be created between the generator functions and min (x, y) 
from another aspect. Let g(x) be the additive generator function of c(x, y). 

Theorem 16. gA(x) ( / > 0 ) also has the properties of the generator functions. 
Theorem 17. If cA(x, y) is an operation determined by the generator function 

then 
lim c^(x, y) = min (x,y). 

Theorems 16 and 17 for strictly monotonous functions c(x, y) have been 
proved by Dombi [4]. 

3. Examples 
(i) Zadeh [24] 

(ii) Lukasievicz [17] 

c(x,y) = min (x, y), 
(c(x, x) = x, *€•/). 

c{x,y) = max (x+y — 1, 0) 
L— x, if x S 1, 

g ( x ) - if 

(not strictly monotonous, Archimedean). 
(iii) [24] 

c(x, y) = x-y, 
g(x) = log x 

(strictly monotonous). 
(iv) Dubois [7] 

x-y x-y 
c(x, y) = max (x, y, A) 

if A > x, y, 

min (x, otherwise, 
x g(x) = -log — , if x > 0, 
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(v) Harnacher [12] 

c(x, y) = 
X • x • y 

g(x) = - l o g 
X-x 

l + ( A - l ) - x ' 
(vi) Yager [23] 

(*, y) = { 
l - ( ( l - * ) A + ( l - j ' ) , ) l M » if ( l - x ) A + ( l - j > ) A < 1, c 0, otherwise, 

f (1 —jc)a, if X < 1 , 
lO, if x = 1. 

(vii) Dombi [4] 

c(x, y) = 
1 

4. Conclusion 

The objective outlined in the Introduction has been attained. The square 
resolution existing in the general case is based on the non-Archimedean nature. 
If we do not desire such a resolution, then the operations must be restricted to the 
Archimedean case. 

Modification of other conditions means the possibility of a further step in the 
investigations. An example is the study of the non-continuous case, e.g. 

which otherwise satisfies Tl—T3. 
Setting out from the generator functions, another research area is the charac-

terization of the possible operation classes, or the study of the connection between 
various operations, e.g. generalization of the DeMorgan laws. 

The question still remains of what connection exists between the empirical 
examinations and the fuzzy algebraic operations. The research up to date has not 
provided a satisfactory answer to this. 
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X , if y = 1, 
t(x, y)= y, if X = 1 , 

0, if X jt 1 and y 1, 
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