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1. Introduction 

This paper discusses some statistical problems which arise in analyzing the 
results of experiments involving the measurement evaluation and comparison of 
the performance of computing systems, and simulation of such processes, as well. 
These sequences are generally correlated and in most cases contain a portion which 
is nonstationary. It is widely accepted that a computer system is operating under 
a stochastic load and generates stochastic response sequences which are assumed 
stationary. Such sequences include system response times, utilizations, throughputs 
(measured e.g. in transactions/sec.), device waiting times, etc. The properties of 
these output sequences are unknown and the system is being measured in order to 
estimate characteristics of the specific sequences. As an example the experimenter 
might be interested in the mean, covariance function of the response times (or even 
in the response time distribution) and in the utilizations of the major system com-
ponents (CPU, memory, disks, etc.). Furthermore, the experimenter is often interested 
in estimating the above quantities as a function of some input parameter such as 
the number of terminals or transaction rate and in comparing these estimated func-
tions for alternative system configurations. The output sequences are correlated 
(often strongly) and hence the usual statistical procedures which assume independent 
observations do not apply. 

Let us consider a database system (see e.g. [8], [9]), where transaction response 
time and transaction rate are particularly important. These have been chosen as 
the major criteria for evaluating an alternative system. There were made modi-
fications to the operating system so that certain supervisory functions which account 
for a substantial amount of processor utilization are executed on a separate processor. 

A typical time series of transaction response times and its sample correlation 
function is given in Figure 1. 
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Fig. 1 
Sample covariance function of transaction response time 

The problem of getting confidence intervals for the mean of a stationary output 
sequence from a discrete event simulation has an upgrowing literature and program 
packages (see e.g. [9], [10], [12] and [14]). This problem is connected with a run 
length control procedure which is designed to terminate the simulation when a 
confidence interval of a prespecified relative width has been generated or to continue 
the run to a maximum length. 

This paper is concerned with the above mentioned problems for the following 
practical point of view. Instead of using the spectral analysis techniques, which 
assume indirectly the asymptotic normality, we are using the stochastic difference 
and differential equation method, which enables us to calculate the confidence 
limits in advance, to get exact results in the Gaussian case and, at the same time, 
good approximations for non-Gaussian sequences. 

The results are in good agreement with those of the simulation (see [9], [10]), 
though the calculations can be carried out on a small calculator, using the tables 
of the known exact distribution of the maximum likelihood estimator of the damping 
parameter of an autoregressive (AR) process. 

There exist many approaches to the problem of generating confidence intervals 
for the mean of dependent sequences of random variables and for determining 
the length of a steady-state simulation. In our method we get the same results 
by simple calculations based on the concept of sufficient statistics and on the approxi-
mation of discrete time process by continuous time process. It is remarkable that 
explicit results can be gotten and carried out only in the continuous time case. 

The main novelty in our method is not only its simplicity, but in the direct 
estimation of the correlation and giving sufficient statistics. Indeed, instead of the 
tedious calculations of spectral densities we are using only the first covariances and 
the boundary random variables which keep the storage requirements of the method 
extremely low. 

Using two estimates 
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for the unknown mean n = E X i in the correlated case it is not known which of 
them is better. Let, for simplicity, Xt be the following time series Xt=J>,+/I, 
where 

y, = W i - i + 8 f , ( £ S i = o, <7? = ( i - e 2 K ) . (2 ) 

Then XN js not uniformly, in 0 < e < l , a better estimate than X0, in the sense 
that Var XN^Var X0, if (see [3], [4]) and compare with (10) below. 

Finally, let us point out that in constructing confidence bounds by the spectral 
method and by the normal approximation, one can find a gap in the earlier proofs, 
because the authors do not care about the question of uniform (in 0 < / x ( 0 ) < ° ° , 
where fx(X) is the spectral density of process x) normal approximation when the 
number of observations Nevertheless, it can easily be seen that uniform 
approximation does not hold even in the above mentioned special case (2), if 

(see [2], [4]). 

2. Preliminary results 

The sample covariance functions of waiting time and response time experiments 
show an exponentially decaying and never an oscillating character, which allows 
us not to be interested in checking hidden periodicities. In this case, all the roots 
of the characteristic equation of a higher order AR process are real and negative 
(in the continuous time case), or less than, in moduli, 1 (in the discrete time case). 

This makes possible to assume that the process or one of his derivatives has 
a simple structure. Our method can be used for higher order autoregressive schemes 
too, after simple transformations and assuming that the roots of the characteristic 
polynomial are real. 

On the basis of the sample covariance function we may assume that the sequence 
of observations X(l) , X(2), ... forms a realization of a one dimensional stationary, 
Markovian and Gaussian process %(ri) (called elementary Gaussian), with unknown 
paramete r s n=E£(ri), c\=D2£,{n) = Var {(/j) and 

corr (f (n), £ (n - 1 ) ) = q, i.e., 

( i ( n ) - A t ) - e ( « ( n - i ) - / 0 + e (n) , O ) 

where e(n) is a Gaussian white noise with Ee(n) =0, a\ =(1 —Q2)O\. 
We are interested for instance in the construction of confidence limits for the 

parameter ¡x, or if we denote the process of the base system by ¿^(n) and the 
alternative system, after certain functional redistribution by £2(«) then the main 
question is that whether the difference of sample means 

differs significantly from 0 or not. N is the sample size and 

*».! = 4 i *,(»). i = 1.2. (4) jV „=1 
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Let us recall the following results (see e.g. [4] or [13]). The spectral density 
function, /.(A), of the process £(/?) has the form 

f a . i i ( 5 ) 
) 2n \l-ee~a\2 2n (l — Q cos A)2+g2 sin2A ' v ' 

/ « m — 

If Q and A\ are known the maximum likelihood estimator of /x is the following 

(X +X N "I 

where — ^ — 2 f ° r m a system of sufficient statistics J , JV-l 
*i+*w+(i-e) 2 xi 

(6) 2 + ( l - e ) ( J V - 2 ) ' 

which is normally distributed with parameters 

^ ^ 2 + ( l - g K J V - 2 ) ) - ( 7 ) 

Assuming that £(«) is the discrete variant of the continuous process £(i) with 
the differential 

dZ{t)=-tf(t)dt+ow-dw(t), Q = e~Xit, (8) 

where w(t) is the standard Wiener process, then it is known that aw can be estimated 
exactly and 2Xo\=a\. The damping (or decaying) parameter A (and so Q, too) 
can be estimated poorly and this is the reason why n has fairly wide confidence 
intervals. The maximum likelihood estimator of A is approximately normally 
distributed if A T ^ 1000. Tables of the distribution of the maximum likelihood 
estimator of the parameter A can be found in [4], or [5], [6]. In the continuous 
time case the sufficient statistics of the unknown parameter ¡j, are ^(0)+<^(r), 

T 
J £(t)dt and the maximum likelihood estimator has the form 

£ ( 0 ) + S ( j ) + A f W)dt 

* = — — W • (9> 

with variance 2o\l(2+XT). Note that for T=\,ol=\ we have. 

^ ( i f f i + M J . i ^ ^ ^ i f f l A j . i i ^ i . if , « 2 ( ,0 , 

i.e., depending on XT the mean of two observations can be a better estimate for 
1 J 1 N (Ti\ 

H than — f £(t)dt, and of course better than — — - 2 £ ni7 • 
1 * 7V + 1 I = 0 \ly J 
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The sufficient statistics for I are 

and the maximum likelihood estimator has the form (0%=1) 

, - [ s l - T / 2 ] + Y[sl-T/2r+Tsl I 

3. Confidence interval construction 

Using advantage of the table given in [5] (or [6]) and the approximate variance 
of fi getting from (7) 

(13) 
N I - Q ' U ; 

the following approximate confidence intervals can be used for /i/cr?, having the 
upper g,95 and lower £.os confidence bounds for g at the levels 0.95 and 0.05 

< 1 4 ) 

and a ¿(0.9) we call the half confidence interval width at the level />=0.9. 
Table 1 contains the lower and upper estimates of g for different sample size 

and the half confidence interval width at level /7=0.9 and for all the values Q, Q.9s, g.05. 
From Table 1, one can get estimation for the run length control too, in the 

sense that the required half-width is attained or not. At given q and e (half-width) 
with £>.05 one can get the maximum value N(g) for which 

_ L 6 4 5 № £ r = - - <"> 
and the minimal value N(g) 

1 
e.g. for g = .99 = 1 — j ^ - and 2=0.33 (when iV = 5000) one can get 

4 - W ) = 432o> N i i - i k ) = m o -
Note that in the case when g, a, m are all unknown, it does not exist such 

a statistic with known distribution as Student's t in the independent observation 
case. With this respect we recall the following results (see [2], [3], [4]). 

Let us assume for simlicity that T = 1 and <rw= 1. Let us take a positive func-
tional x(£) for the lower confidence limit of A, and //(£) real-valued func-
t iona l as upper and lower confidence limits for p. We assume that all these func-

6* 
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N " 100 500 

M. Arato 

Table 1 

1000 5000 10000 50000 

1010.14 
0.981 
0.979 

0.979 
0.075 
0.071 

Q = 0.99 
X 1.010 5.025 10.050 50.252 100.50 502.52 
e.os 0.9999* 0.9993 0.9976 9.9934 0.9924 0.9911 
3 .05 0.9750 0.9816 0.9841 0.9869 0.9879 0.9891 

£.9(0) 2.321 1.038 0.734 0.328 0.232 0.104 
£.9(0.95) 23.263* 3.032 1.501 0.404 0.266 0.110 
£ . 9 ( 0 . 0 5 ) 1.426 0.763 0.581 0.287 0.211 0.099 

q = 0.995 
X 0.5012 2.506 5.013 25,063 50.125 250.63 
e.95 0.9999* 0.9999 0.9996 0.9973 0.9967 0.9959 
e.ot 0.9852 0.9893 0.9908 0.9928 0.9934 0.9942 

£ . 9 ( 0 ) 3.286 1.469 1.039 0.465 0.329 0.147 
£ . 9 ( 0 . 9 5 ) 23.263* 23.263 3.678 0.633 0.405 0.162 
£ . 9 ( 0 . 0 5 ) 1.905 1.003 0.765 0.387 0.286 0.136 

Q= 0.998 
X 0.202 1 . 0 0 1 2.002 10.010 20.020 100.10 
0.95 0.9999* 0.9999* 0.9999 0.9995 0.9991 0.9985 
3 .05 0.9925 0.9950 0.9955 0.9968 0.9971 0.9975 

£ . 9 ( 0 ) 5.199 2.325 1.644 0.735 0.520 0.233 
£ . o ( 0 . 9 5 ) 23.263* 23.263* 23.263 1.471 0.775 0.269 
£ . 9 ( 0 . 0 5 ) 2.681 1.469 1.095 0.581 0.432 0.208 

q = 0.999 
X 0.100 0.500 1 . 0 0 1 5.003 10.005 > 50.03 
0.95 0.99999* 0.99999* 0.99999* 0.99993 0.99976 0.99933 
3.05 . 0.99700 0.99710 0.99748 0.99815 0.99840 0.99869 

£ . 9 ( 0 ) 7.35 3.289 2.326 1.040 0.735 0.329 
£ . 9 ( ^ . 9 5 ) 73.566* 73.566* 73.566* 3.932 1.502 0.402 
£ . 9 ( 3 . 0 5 ) 4.244 1.931 1.410 0.765 0.581 0.287 

The half confidence interval width &„(Q) = 1.645 Y(l + iO/W(l — (?) at level p for p / f f t • ¿ e 
means the /? level confidence bound of Q, g=e~A/N, X= —N log Q, N is the sample size. 

X 2.020 
0.85 0.9996 
0.05 0.956 

£.9 (0) 1.673 
£ . 0 ( 0 . 9 5 ) 11.630 
£ . 9 ( 0 . 0 5 ) 1.097 

0 = 0.98 
10.101 20.203 
0.995 0.991 
0.969 0.971 
0.732 0.518 
1.469 0.774 
0.586 0.429 

101.014 202.03 
0.985 0.984 
0.976 0.977 

0.231 0.164 
0.268 0.183 
0.211 0.153 

* In the cases marked by * the upper confidence bound for Q is equal to 1 and the confidence 
interval width is ~ (see section 4). 

I 
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tionals are continuous on R( -in the C[0, 1] metric, but n and ¡i may assume 
values + and — °=>. The continuity of functionals assuming infinite values is to be 
understood as continuity induced by the topology of the real line, closed by points 
— co and First we have the following assertion, which says that no nonzero 
lower limit can be constructed for the parameter X with any degree of confidence. 

Theorem 1. Let /?>0, and let £) be a positive functional defined in the space 
R( and continuous in the C[0, 1] metric, with the property that x(¿;) — °° if 
sup |£(i)| — L e t it satisfy for any n and X the condition P Then 

P{x(0=0}^g(X,P) (17) 

where the positive function g( •) does not depend on the choice of functional and 
g(X,P)^l as A-0. 

For parameter p the following statement says that if p, X are unknown it is 
impossible to construct finite confidence intervals using continuous functions. 
We assume that p. and p has the property that for a real value c 

p^ + c) = p(0 + c, p(Z + c) = KO + c. (18) 

Theorem 2. Let P > 1/2, and let fi(£) be real valued functionals (which 
may assume values — °° or on the space which are continuous in the 
C[0, 1] metric and which satisfy the conditions 

P{p S At©} S p, 

P{p < №} ^ P, 

for any p and A ( — A > 0 ) . Then 

P{p(0 = «>} sf(X,p), 

P{p(Z)=-«>}^f(X,p), 

(19) 

(20) 

where f(X, P) does not depend on the choice of these functionals, and f(X, /?) —1/2 
as A—0. 

Simulation results were given in [6] to illustrate the situation and to have a 
picture on the function g(X, P), where the following estimators (T=\, a%= 1) 
were taken: 

1 N J 

m2, %2 the maximum likelihood estimators, 

£(0) + £(l) , 2 

N 

mo -
( { ( D - a o ) ) 8 
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where ^ = (i = l, 2, ..., N), ¿;o=£(0). N was taken between 60 and 100 
and n (the number of samples) was 1000. We have the following approximations: 

g(X, 0.05) % 1 if ¿<0.5, (i.e., P(x(O=0) = 1 if As0.5 on level /5=0.05), 
g(l, 0.05) « 1 if A<4, 
«(A, 0.9) « 1 if A<9, 
g(A, 0.95) % 1 if A<12. 

It seems that 

but this statement is not proved. 
Theorem 2 can be reworded as follows: When the parameters p and A of 

a stationary Gaussian Markov process are unknown, it is impossible to construct 
finite confidence intervals for p. using continuous functionals. 

From the proof provided in [2] it can be seen that for any e > 0 there exists 
a /1(e) such that for small values of A 

Running a simulation less than its length would not provide the information 
needed, while running it longer would be a waste of time, so it has great practical 
meaning for the experimenter to have some preliminary estimation about the 
accuracy requirements. We shall assume further, that this accuracy requirement 
is specified by the half-width of the. confidence interval of the mean value, p, 
devided by the standard deviation, of the process £(/). In this section we will 
describe the incorporation of the method of sections 2 and 3 into a sequential esti-
mation procedure. We shall show that one possible approach is that, when using 
the approximation with continuous time we estimate the decay parameter A (and 
so g) by given accuracy. This procedure uses the same amount of storage required 
earlier but uses some new random time moments (the Markov moments) and 
requires only a small amount of computing per output element. 

Let us denote by e the required relative half-width of the ratio ¿u/o^, and by 
p = 1 — p the given confidence level, and the 1 — 0?/2)-quantile of the Gaussian 
distribution. 

For given a, where 1—a means the confidence level for Q, to make small 
the difference 

g(A, P) % e-c«A, when A - 0, 

s u p P ^ M O ^ t i ^ 1/2 +A. W » - ' . 

4. Run length control and sequential estimation 

(21) 

we shall take advantage of sequential estimation of Q. For given a and c let us 
take H in such a way that (XX denotes the a quantile of normal distribution). 
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Further, let us denote by 
( 

X(H) = inf F i2(s)ds^H(e, a)}, (23) 
0 

the Markov moment and take 

w - l f M - ^ ; ^ . 04) 
0 2 f £2(t)dt 

0 

Then the following statement is true (see LIPTSER, SHIRYAEV [13], ARATÓ [4]) . 

Theorem 3. The sequential estimator X(H) is normally distributed with 
parameters 

EXX(H) = X, D*(?.(H)) = J 7 , ( 2 5 ) 

and it is efficient, i.e., it has minimal variance. 
The calculated H depends on C, a and from the realization getting r ( H ) 

for given s1 ; p it is possible to check (compare with (21)). 

XP 

A G H ) 
1 +Öl-to/2) 1 / 1 + g«/2 

1 — ö l - (a /2) ' @a/2 . 
(26) 

where ¿>=e~XAlN, X, _ (A/2)=X(H)+X1_(A/2)/YH. After the fulfilment of (26) one can 
construct confidence limits for the unknown mean p. 

To get some approximations for T(H) one has to turn to the papers of NOVIKOV 
[ 1 5 ] — [ 1 7 ] (see also LIPTSER—SHIRYAEV [13]) . 

Theorem 3 remains valid (under some natural conditions on a(t, £)) if we 
regard the process 

df (0 = Ia(t, Z(t))dt+dw(t), 

( see LIPTSER—SHIRYAEV [13] § 17 .5) . 
A natural question arises whether the advantages of sequential estimators are 

consequences of a rather long mean observation time EX(X(H)). For general a(t, 
this question is unsolved. The following statement is true (see NOVIKOV [17]) . 

Theorem 4. For AsO as T-+ 

P ^ ( H ) - T ) = 4 ( ^ ) 1 / 2 E X P { - ^ - G + ^ } ( L + 0 ( L ) ) , ( 2 7 ) 

EKX(H)^2[_XH+2)/H] + } / 8 ( X 2 H 2 + 4XH)+2H. ( 2 8 ) 

Further, if X2H-~ then 

E M H ) = 2 X H [ L + ^ ] } + O [ ± I ) ) , ( 29 ) 

and if X2H—0, then 

E^(H) = H1'2 [ 2 .09 + 0 . 8 5 6 1 I / 1 / 2 + o (X2H)\. ( 3 0 ) 
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Note that remarkable fact that these results are in good agreement of those 
simulation results which are published in HEIDELBERGER, W E L C H [9] , [ 1 0 ] or 
H E I D E L B E R G E R [ 8 ] . 

Tables based on Theorems 3 and 4, one can construct easily. 

Abstract 

This paper intends to show that the method proposed by Kolmogorov in constructing confi-
dence limits for diffusion type processes gives a more simple and straightforward tool in run length 
control of output sequences of stationary series than the spectral method. There exists an upgrowing 
literature of the spectral method for construction confidence limits (see e. g. the survey paper HEIDEL-
BERGER, WELCH [9]), and even software program packages were constructed on this basis. We show 
that the Gaussian processes, when the computational requirements and storage remain low, can be 
used as good approximations with the advantage that instead of simulation one can get exact formu-
las. The connection between run length control and sequential estimation methods are found and 
some results of Novikov can be used. 
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