
All minimal clones on the three-element set 

By B. CsÂKÀNY 

1. Preliminaries 

A clone on a set M is a set of Unitary operations on M which is closed under 
composition and contains all projections. The clones on M form an algebraic 
lattice; the atoms and the dual atoms of this lattice are called minimal clones and 
maximal clones on M, respectively. A full description of all clones, hence of all 
minimal and maximal clones for \M\ = 2 was given by Post; a complete list of all 
maximal clones was found by Jablonskil for \M | = 3 and by Rosenberg for any 
finite M (see [15], [10], and [17]). Until now, only special examples of minimal 
clones were known for the case |M|>2 . In this paper we determine all minimal 
clones on a three-element M. 

We use the standard universal algebraic terminology [9] except that function 
stands for operation and term function for polynomial. All functions (and hence 
all clones) are defined on the base set 3 = {0, 1, 2}. If / is a function, [ / ] is the 
clone generated by / i.e. the clone of all term functions of the algebra (3; / ) . 
Projections will also be called trivial functions. We use the notation a for the set 
of triplets consisting of distinct entries from 3 and i for 33\<r. 

In what follows we often make use of functions of the following types 1)—4). 
1) Unary functions. Such a function / is denoted by u„, where «=9./(0)4-

+ 3. /( l )+/(2) . 
2) Binary idempotent functions. Such a function with the Cayley table 

0 1 2 
0 0 ns n4 

1 «3 1 n2 

2 n0 2 

will be denoted by b„, where n = If 
3) Majority functions. A ternary function m satisfying m(x, x, y) = m(x, y,x) = 

=m(y,x,x)=x for any x, j € 3 is called a majority function. 
4) Semiprojections. A ternary function s is called a semiprojection if there 

exists a fc€3 such that .s(x0, x1, x2)=xk for arbitrary (x0, xlt x2)ei. 
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A function belonging to one of the above four classes will be referred to as 
a special function. For « > 1 we call an w-ary nontrivial function / sharp if 
/(x0> J = x m a where for all i ^ j , 
A binary function is sharp iff it is idempotent. Majority functions and nontrivial 
semiprojections are sharp ternary. As a trivial consequence of the definition, an 
/i-ary function / is sharp iff all A:-ary functions in [ / ] are trivial provided k < n . 

A sharp ternary function / is uniquely determined by the values / (0 , 0, 1), 
/(0, 1,0),/(0, 1, 1), and all f(q>) with cpia. Call the numbers 

X i f ) = 4./(0, 0, l) + 2./(0, 1, 0)+/(0, 1, 1) 
and 

M = 35./(0, 1, 2)+34 . /(0, 2, l )+3 3 . / ( l , 0, 2)+3 2 . / ( l , 2, 0) + 

+3-/(2, 0, l )+/(2 , 1, 0) 

the characteristic and mantissa of / , and let the pair x ( f ) , ( i ( f ) stand for / . For 
example 4,44 is Pixley's ternary discriminator function ([20], p. 8) and 1,624 is the 
dual discriminator [8] on 3. Observe that 1, t (t=0, ..., 728) are the majority 
functions, and 0, t are the semiprojections with /=0. As these ternary functions 
will play an important role, we also use an alternative notation m, for 1, t and 
st for 0 , / ; e.g. w728 is the majority function on 3 whose value is 2 on each <p€tx. 
Clearly, every majority function or semiprojection / is uniquely determined by the 
sequence of its values on a, called the range of / ; further, the number v(j) of 
distinct entries in the range of / is called the variance of / . 

Let <p be a permutation of 3. To each n-ary function / we assign f , called 
a. conjugate of f defined by f9(x0, ..., xn_1)=(f(x0(p-1, ..., x^cp-1))?. The 
map f ^ f f carries each clone onto the clone "if; in particular [ f Y a n d 

(*) g€L/l implies g*<E[/"]. 

We can permute the variables of / as well: for a permutation of n (={0, ..., n — 1}) 
put ..., x„_i)=/(xo^ ^(n-i)^)- Remark that always hence 
we can write simply Note also that [f^\=[f] for any t¡/. 

The conjugations and permutations of variables generate a permutation group 
Tn of order 3!n! on the set of all n-ary functions on 3. The classes 1)—4) are closed 
with respect to 7\, T2, T3, and T3 respectively. Two functions are said to be 
essentially distinct if they have different arities, or belong to distinct orbits 
of Tn. 

We conclude the introduction with the following immediate observation: 
a nontrivial clone i? is minimal iff i ?= [ / ] for each nontrivial /€'<?. 

2. The list of minimal clones 

First we approximately locate the functions generating minimal clones. 

Proposition. Let be a minimal clone and m the minimum arity of nontrivial 
functions from c8. Then If is m-ary then f is special; moreover 
if f,g£<8 are m-ary then both f and g are of the same type i (lS/^4). 
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Proof. The statement is clear if m = \. If m=2, then each nontrivial binary 
function is sharp and hence idempotent. 

Let First we show that contains a sharp ternary function. Indeed, 
to each sharp at least quaternary / on 3 there exists an i such that / ( x 0 , ..., xn_x) = 
=jc( (/€n) whenever x0, ..., xn_! are not all distinct ([18]; see also the proof of 
Thm. 1, § 33 in [9]). This proves that on 3 each sharp function is at most ternary. 

Let / be a sharp ternary function from <€. We show that [i] contains a non-
trivial semiprojection or a majority function. Indeed, i f / ( 0 = 0 , 3 or 5 then t itself 
is a semiprojection, and if / ( 0 = 1 then t is a majority function. Thus let y(t) (J 
${0,1,3,5}. We show that '/.(g) = 6 for some g£[i]. First if / ( 0 = 2 ( / ( 0 = 7) 
then exchanging the last (first) two variables we obtain r with / ( r )=4 . Thus let 
/ ( 0 =4. Then the characteristic of 

t(t(x, y, z), t(x, y, t(x, z, j)), t(x, z, jO) 

equals 6 (as direct verification or Lemma 1.10 in [20] would show). Let / ( 0 = 6 . 
Write t'(x,y,z) for t(t(x, y, z), y, z). Then x(t')=Q and if /Ve?(=0,44) we 
are done. Now if /¿ (0^44 then t(a,b, c)=d^a for some (a,b,c)£a and there-
fore t'(a,b, c) = t(d,b, c)=d7±a. It remains to consider fi(t)=44. In this case 
t(y, t(z, y, x), z)=0,424 is the required semiprojection. 

We thus have that there is a majority function or a nontrivial semiprojection 
in c6. Taking into account that for g a semiprojection each ternary /6[g] is a semi-
projection and that a similar assertion is valid for majority functions, this proves 
the first part of the proposition. The second part is implied by the following simple 
observation: if i-cj and the functions / and g are of type i) and j) then /ff[g]. 

In virtue of the Proposition our task is to find the different minimal clones 
generated by functions of the four types above. 

1) Unary functions. A nontrivial unary function / generates a minimal clone 
iff either / is a retraction of M (i.e. f o f — f ) or a permutation of prime order 
([1'6], Theorem 4.4.1). The functions u0 and w2 are representatives of the two 
orbits of retractions while u7 and u15 are representatives of the two orbits of prime 
order permutations. The table below shows the minimal clones generated by unary 
functions on 3. The clone standing at the meet of the row starting with [m] and 
column marked by the permutation (p is [u]*. The place of [uY is empty if [«]«• 
is equal to some [u]* which appeared earlier. One may check directly that the clones 
in the table are pairwise distinct. 

Table 1 

(01) (02) (12) (012) (021) 

[«»] [«is! [«as! 
M ["ILL [MS] [ « 3 ] ["4] ["23] 
[ " ? ] [«21] [ " u ] 
[ « 1 5 ] 

2) Binary functions. We proved in [6]: every minimal clone on 3 containing 
an essentially binary operation is a conjugate of exactly one of the following twelve 
clones: [6f] with /€{0, 8, 10, 11, 16, 17, 26, 33, 35, 68, 178, 624}. 

Table 2 (which is constructed on the same principle as Table 1) displays the 
minimal clones generated by binary functions on 3. The clones are pairwise distinct 
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because each [ft] in the table contains no nontrivial binary function other than 
b(x. y) and its dual b(y, x). In other words, the free algebra with two free generators 
in the variety generated by (3; b) consists of no more than four elements; in this 
form, our observation may be found in Berman's paper on three element algebras [2]. 
Thus, it remains to check that Table 2 has no pair of dual functions. 

Table 2 

(01) (02) (12) (012) (021) 

[¿>o] [ ¿ 3 2 4 ] [ 6 ; 2 s ] 

lbs] [¿>36a] [bsol [¿>36] [¿>40] [¿>602] 

[ 6 , o] [¿>28o] [¿>458] [¿>20] [¿>448] [¿>18sl 

[¿111 [¿>286] [ 6 . 1 J 

I M I ^ S S l ] [6296] [¿>47] [¿>205] [¿>1,„] 

[¿>28?] [¿>53] [¿>38] [¿>43] [¿>206] 

[ 6 4 4 9 ] [¿>3,] 
I M ÍÖ122Í ÍÖ557] 

tf>125] [ 6 7 1 ] [¿>42] 1 6 « ] [¿>53o] 

[ 6 6 8 ] [¿>52S] [¿>116] 

[ é n J [ ¿ 2 9 0 ] 

[¿to*] 

The next lemma serves as a tool for handling the remaining two cases. It is 
a direct consequence of the definition of a minimal clone. 

Lemma 1. Let G, H be subsets of the set F of special functions such that 
I. H<=G; 

II. [ i l f l F c G for every g£G; 
III. [g]f]H^0 for every g£G; 
IV. If huh2£H and h^h2 then MIM 

Then {[A]: h£H} is the set of pairwise distinct minimal clones generated by g£G. 

3. Majority functions. For a majority function / generating a minimal clone 
we have two possibilities: 

a) v ( f ) = 3. We prove that up to permutation of variables / is the dual discri-
minator d (i.e. the majority function with d(a,b,c) = c if (a, b, c)da). Following 
[8], a non-empty binary relation C on 3 is called p-rectangular if for every pair 
(i, j ) $ C there are no more than two elements in C which have the form (i, x) 
or (y , j ) . First we show that the subalgebras of (3 ; / ) 2 are ^-rectangular relations 
on 3. In the opposite case, we may suppose without loss of generality (renaming 
the elements and taking C - 1 if necessary) that there is a subalgebra C of (3 ; / ) 2 

such that <0,0>s£C but <0, 1), <0, 2), (l,0)€C. By assumption v(f)=3, the range 
of / contains 0, and we may permute the variables of / so that / ( 2 ,0 , 1)=0. 
Then <0, 0>=</(0, 1, 0),/(2, 0, l )>=/«0 , 2), (1, 0), <0, 1»€C, a contradiction. How-
ever, d preserves the /»-rectangular relations on 3 (see [8]), hence it preserves all 
subalgebras of (3 ;/>2. Now we can apply the following theorem of Baker and 
Pixley ([1], see also [20], Theorem 1.2): if a finite algebra A has a term function 
which is a majority function, then every function preserving all subalgebras of 
A2 is a term function of A. We obtain that d is a term function of (3; / ) , hence 
(/£[/]. On the other hand, [i/] is a minimal clone ([7], Theorem 1), hence /€[*/]. 
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As d is a homogeneous function (i.e. a function preserving all permutations), 
/ must be a homogeneous majority function. Thus / coincides with d up to 
ordering of variables. 

b) v(f)<3. There exists 3 • 26 —3 = 189 majority functions with this property, 
and they belong to 10 distinct orbits of T3. Here we list the representatives having 
the least index for these orbits (the number in brackets indicates the number of 
functions constituting the represented orbit): 

Table 3 

m0(3) w13(18) ot109(6) 
36) /n2s(36) 7n12l)(18) 
18) . m39( 18) 

/ W i o ( 1 8 ) m S 5 ( 1 8 ) 

We prove that the minimal clones generated by majority functions having 
variance less than 3 are exactly [m0], [m324] (m324 = (m0)(01>), [m728] (mV28 = (m0)(02)), 
[m109], [m473] (m 473 — (w109)^02)), and [m5t0] (w510—(w109)^12)); note that the remaining 
functions in the orbit of mW) may be obtained from the listed ones by permutations 
of variables and hence do not generate further clones. 

Apply Lemma 1. Let F be the set of special functions, G the set of majority 
functions with variance <3, and H= {m,\ i =0, 364, 728, 109, 473, 510}. The 
requirement I is fulfilled by definition. As for II, it is a consequence of the follow-
ing lemma which will be used once more later. 

Lemma 2. Let f be a majority function whose range does not contain the element 
~ a (e3). Then the 'same holds for every non-trivial'ternary function in [/]. 

Proof. Clearly, a non-trivial ternary function in [ / ] is a majority function. 
Assume that [ / ] contains a non-trivial ternary function whose range includes 
a, and let g be such a function with a shortest /-term: g(x, y, z) = f(g0(x, y, z), 
gi(x, y, z), g2(x, y, z)). For a suitable <p€cr we have g(<p)=f (g0(<p), gi(fp), gi(<p))=a. 
Thus (g0((p), gi(<?>), g2(<p))i l> a n d hence gi((p) = a for at least two distinct 3. 
By the minimality of g, these gt must be trivial and hence both of them equal 
the same projection. But then g also equals that projection, i.e. g is trivial, a 
contradiction. 

Next we prove III. In virtue of (*) it is enough to show that for each function 
in Table 3 there is an m^H such that Write f=f(x, y, z) for 

/ ( / , / ( 0 1 2 ) , / ( 0 2 i > ) = / ( / ( * , y, A f ( y , z, x)J{z, x, y)). Then 
- m0 = Wj = m4 = m10 = m120 

and 
mio9 = (m13)(01} — m2S = (w39)(01j = ms 5, 

i.e. [w4], [w10],,[m120] and m109i[w13], [m28], [m39], lw85], as required. 
Finally, we have to prove that IV is fulfilled, i.e. that none of the functions in 

H is contained in the clone generated by another one. The unique non-trivial 
permutation of 3 preserved by m105 and m728 is (01), that preserved by m324 
and m510 is (02), and that preserved by m0 and m m is (12). Hence no function 
in one of these three pairs is included in the clone generated by a function appearing 
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in another pair. Furthermore, the ranges of m105 and m723 have no common 
entry; thus, by Lemma 2, m109$[/n728] and m12S^[mim). Concerning the remaining 
pairs we can argue in the same way. 

Now we see that the conclusion of Lemma 1 also holds. This combined with 
the result in the case v ( f ) = 3 allows us to summarize the minimal clones generated 
by majority functions as follows: 

4) Semi-projections. There are 3 • 36=2187 semiprojections, and they belong 
to 74 distinct orbits of Ts. Table 5 shows representatives of these orbits (the 
number of functions in the orbit is added in brackets if it differs from 36). Every 
orbit is represented by its member of characteristic 0 having the least mantissa. 
For the sake of brevity we write down the mantissa only. 

We prove that the semi-projections generating minimal clones are exactly 
j0,58» 2̂6> s7o. 4̂24. a r |d the functions in their orbits. This means that the minimal 
clones generated by semi-projections are exactly those in the following table (which 
is constructed in the usual manner). 

Table 4 

(01) (02) (12) 

lm0] 
[Wios] 
["tod 

[m32i] ["tos] 
[m473] [m510] 

Table 5 

0(9) 21(18) 86 108 150(12) 
1 22 87 109(18) 153 
2 23 88 110 154 
4(18) 25 90 111(18) 156 
5 26(18) 91 113 157 
8(18) 44(3) 92 126 324(18) 
10 49 96 127 325(18) 
11(18) 50(18) 99 128 342 
12 52(18) 100 135 343 
13 76(9) 101 136 345 
14 81 102 138 346(18) 
15(18) 82 103 139(18) 396(6) 
16 83 104(18) 140 424(6) 
17 84 105 141 426(18) 
19(18) 85 106 144 

Table 6 

(01) (02) (12) (012) (021) 

Uoi [̂ 364] U728] 
[•vs] f̂ sGsl ko] [»J [-540] [̂ eaal 
[52S] [£449] [̂ 37] 
[íye] [̂ 634] [̂ 332] [¿434] 
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Denote by S the set of functions appearing in Table 6, and let stand for 
the set of conjugates of S;. 

For the proof, we again apply Lemma 1. Let F be the set of special functions, ' 
G the set of semi-projections, and H=S. Clearly, they fulfil I and II. However, 
the verification of III and IV demands tiresome computations. 

Consider two semi-projections, st, Sj, which are representatives of orbits 
of T3 (i.e. whose indices appear in Table 5). Draw an arrow from st to Sj if 
there exists an ¿¡-term function which is conjugate to s} (i.e. (^j)''€[•?,] for some 
permutation of 3). To prove III, in view of (*) it is sufficient to produce a set of 
arrows such that in the resulting oriented graph, for each non-trivial representative 
s there exists a path which starts from s and ends in one of s0, sa, s26, s76, and 
s424. Such a set of 68 arrows is in the appendix at the end of the paper. 

Our concluding task is to prove that for any different functions sh Sj£ S Sj$ [sj 
is valid. We start with a trivial lemma. 

Lemma 3. Let f g be functions. If there exist a subset K and an element 
k of some direct power 3" such that k belongs to the subalgebra of (3; g)n generated 
by K but does not belong to the subalgebra of (3;/)" generated by K, then 

We also need a special case of this lemma. 

Lemma 3*. Let f , g be as above. If there exists a permutation of M which is 
an automorphism of the algebra (M;/) but not of the algebra (M;g) then g^ [/] 
(cf. the proof of IV for majority functions with variance <3). 

Apply Lemma 3 for the case M = 3, n=2, K—{(0, 2), (1, 0), (2, 1)}. The 
set K may be visualized by means of the figure 

Then the subalgebras of <3; generated by K appear in the following figures 
(i is indicated below the given figure): 

0 

2 

0 0 o V 

•2 1 
0 364 728 8 

368 80 36 40 
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A 
Q 0 Q 
A A A C—Ö c r ~ 

26 449 37 

Q Q 0 

A A /\ 
684 

2 
332 424 

D 
692 

A 
c — ¿ ) 

76 

It can be read: 
a) [s424] 0 5 = {s424}, 
P) if s£S s , [s]nS={.s}, 
7) if i f 5 0 U 5 2 8 , then [5] fl (5"0 U S26 U S7G) = {s}, 
8) if s£S76, then [5] Pi ^ ={.?}, 
£) $ [-̂ Te]! ^ i i [J684]> ̂ s i [S332]-
Observe further that for ^ S o U S ^ U S ^ the algebra (3 ; s,) has a non-

trivial automorphism, while for Sj£Ss the algebra <3; sj) does not. Hence, by 
Lemma 3*, we have 

C) if Si£S0{J S26U S76 and Sj(.Sa, then J j i fo] . 
The transposition (01) is an automorphism of (3; i332) and not an automor-

phism of <3 ;s t) for ¿=0,364,26,449. Hence 
V) i [5332] for / =0, 364, 26, 49. 

Similarly, with the aid of (02) we obtain 
9) Si Stag«] for ¿=0,728,449,37, 

and using (12) there follows 
1) for ¿ = 364,728,26,37. 
Lemma 3 can be used also to prove 
x) for ¿#424, always s424$ [•?(]• 

Indeed, subalgebras of (3; si24)2 must be ^-rectangular, since for a subalgebra 
C and distinct elements x2£3 it is impossible to have ( i , j } $ C and (i, Xj), 
<»'. x2), (y,j)£C because of si2i[(i, xx>, ( y j ) , (i, x2)) = (i,j). Now, for s£S, iV424, 
consider the subset of 32 displayed in the above figure with subscript i, and call 
it Kt. Take this subset for K, st for / , and s424 for g. Then, by its definition, 
Ki is a subalgebra of (3; j,)2 but it is not /^-rectangular (see the figure) and thus 
the subalgebra of (3; s424) generated by Kt contains at least one element k $ K^ 
Lemma 3 then applies and gives x). 

The last step is: 
J449$ [̂ TgIj S26$ [SGSl]) ^37$ [S332]-

We prove the first assertion, the proof of the others being similar. As the range 
of ¿449 does not contain 0, we are done if we show that the range of any function 
in [j76] contains 0. In the contrary case, take the shortest s76-term function t whose 
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range does not contain 0. Let t{x, y, z)=s7e(t0(x, y, z), ix(x, y, z), t2(x, y, zj). Then 
t0(cp) =0 for a suitable q>£a, and hence t(cp)=0, a contradiction. 

a)—A) together mean that for any sh SjdS, Sj $ [J,] whenever i^j. We have 
verified IV of Lemma 1, hence Table 6 really is the list of all minimal clones on 3 
generated by semi-projections. 

3. Summary 

In the preceding part we have proved the following result: 

Theorem. There exist 84 minimal clones on 3 and each of them is a conjugate 
of exactly one of the following 24 clones: 
[foL M . ["?], [«is]; 
[b0l [68]> [¿>io], [¿-ill, [ M , [¿>17], [¿33], [Z>35], [668], [¿>178], [¿>624]; 
[m0], [m109], [w 6 2 4 ]; 

[jO]j [*], [̂ 26]) [fye]» ['̂ 424]* 
The other minimal clones may be read from Tables 1, 2, 4, and 6. The Cayley 

tables of the binary functions in the Theorem may be found in [6]. The ranges of 
the ternary functions appearing in the Theorem may be seen in the following: 

Table 7 

/ / (0 , 1,2) / ( 0 , 2 , 1) / ( 1 , 0 , 2 ) / ( 1 , 2 , 0 ) / ( 2 , 0 , 1) / (2 , 1,0) 

m0 0 0 0 0 0 0 
"Î109 0 1 1 0 0 1 
«621 2 1 2 0 1 0 
So 0 0 0 0 0 0 
Í8 0 0 0 0 2 2 
2̂6 0 0 0 2 2 2 

0 0 2 2 1 1 
si2i 1 2 0 2 0 1 

Several functions occurring here are familiar from earlier research. (3; Z>0) 
and <3; 610) are the two three-element semilattices. They and <3; bu), (3; b2e) 
(left zero semigroups with an outer zero, resp. unit element) are bands satisfying 
xyx=xy identically. Hence the minimality of clones they generate is involved by 
Theorem 4.4.4 in the book of Pöschel and Kaluznin [16]. The minimality of [6178] 
was proved in [12] by Marcenkov, Demetrovics, and Hannák ((3; b17S) is a tourna-
ment; it is known as "the paper-stone-scissors algebra"). The algebra <3; 6624) 
is essentially the affine space [4] over GF(3). 

The functions bs, b±1, 635, and Z>68 appeared in Plonka's paper [13]; the last 
one goes back to Takasaki [19]. Kepka deals with b16 and ¿>17 in [11]. 

As for the ternary functions, m0 is the median function on the chain 1 < 0 < 2 , 
and the minimality of [m0] is a special case of 4.4.5 in [16]. Finally, the minimality 
of [w624] and [i424] was established in [7]. 
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Appendix 

Si -Í0 =Sl(il, <>l)(12), *) = y, z), A'lC*, r, y), x) 
Si-*-S0=S2(Sz) (i2)<12), y) 
SÍ-+S(,=SÍ(SÍ, (¿4)(02) , 
Í5~'Í1=J5(Í5, (ís)(02), (̂ >)( L 2 )) 
•SlO =^10(̂ 10 » (Jlo)(12) , y) 

ÍI2~*Í1=Í12((Í12)(12)) 1̂2) Z) 
(íl3)(12) , y) 

Sll-*Sl=Su(Sli, (íl4)(02) , (̂ 14)(01>) 
(J15)<021), (̂ 15)(012)) 

•̂ ÍS ~ ~ t (Siq)(12) , (íl«)(012)) 
íl7~*'í8=íl7(í17> (í17)(12)> (í17)(01)) 

19, (^1»)(12), (̂ lö)<01)) 
J21~*'íl=í2l((í2l)(12), (̂ 2l)(02)> J2l) 
J22~*'̂ 13= 2̂2(í22j (̂ 22)(12)» (̂ 22)(01)) 
2̂3~*"Jll==í23(í33j (̂ 23)(02)» -*) 

í25~*"̂ 23==í25(̂ 25í (̂ 25)(12) > (̂ 25)(02)) 
^ 4 9 = (̂ 4s(̂ 491 (̂ 49)(12), (̂ 49)(02)))ï021ï 

^60—= 5̂0(̂ 50 ) (Í60)(02), y) 
"̂ 62(̂ 52 ) (í5a)(12), (̂ 52)(01)) 

í81"*"í0=í8l(í81> (̂ 8l)<12) 1 y) 
Í82~"Í1=Í82(̂ 82 , (̂ 82)(12) > >") 
^83-,'^0=Í83(í83, (í83)(12) > J") 

í86~*í2=:
8̂6(í86! (í8e)(12)i (í8«)(012)) 

J87"*'í2 = í87((í87)(12) > Í87J ($87)(021)) 
í88"*íl=^88(í88, (í8s)(12) > >0 
Í90~*í0=^90(í90i (̂ 9o)(12) , J*) 

9̂1 ~*S1 = í9l( í91 > (̂ 9l)(12) , y) 
S92~*So =̂ 92(̂ 92, (̂ 92)(12), y) 
•S96 12) , $96 , 
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•Slot) = J 1 0 0 C S ' l 0 0 ) C^10o)(12) ) (> y100)(02)) 

•$101 ~ = " ^ l O l ^ l O l » ( * y i 0 l ) ( 1 2 ) i ( • y 1 0 l ) ( 0 2 i ) 

•̂ 102 ~=,^102(-^102 » (5102)(021) ) C?m)(02) ̂  
•$103 " ^ l f l " ^ 1 0 3 ( ^ 1 0 3 » (•S103)(021J » ( • S 1 0 3 ) ( 0 2 ) ) 

•$104 = ^104(^104 Í (*^104) (12) j y ) 

•y105~*'*S'2— •S'l05(('y105)(12) ) Xt (•yi05)(021)) 
•̂106 = 1̂06(-̂ 106 1 (¿10e)(12)> (̂ X06)(01)) 
•Sl08"'*''?l7=i10sC*i Z> (•y10s)(02)) 
•$109 ~~̂"̂¡ß = ('̂ 109(, 1̂0fl » y> (•yi09)(12)))(12) 

•̂110 = l̂lo(C l̂lo)(12) ï (•y110)(02) Í l̂io) 
•yiiî ioa— l̂iiC n̂x» X, (Jm)(i2)) 
^ U 3 ^ ' ^ 1 6 = : ' S ' l l 3 ( ( ' S 1 1 3 ) ( 1 2 ) » ( l S ' l l 3 ) ( 0 2 ) » ^ l i a ) 

•S126~*"'S'lll=-S,126('ï126) (̂ 126)(021) > (,y126)(02)) 
J l 2 7 ^ í l 0 9 : = ' S ' l 2 7 ( ' S 1 2 7 í (-?127)(012) > 

•̂ 128 ~~=,^128('^128 ) (•S12s)(12) j C$Í28)(012)) 
•S l35~* ' 'S '0 = ' r i35(S l35> (¿135)<021) ) C?13s)<012) ) 

5*136 -*"*5' l35= 'S136(-S ' l36) (•S136)(012) » Z > ) 

^138 = ^138(^138 » ( • y i38)(02) » ( ^ l S S ^ O U ) ) 

' S 139"^ ' ' S 26 = : ' y i 39C- V ) Í139J (*S"l39)(12)) 

5 l 4 0 - * " ' y 2 6 = : ' y l 4 o ( ( ' y X 4 o ) ( 1 2 ) » ( • y l4o) (02) » S l i o ) 

•SÍ41> CSl4l)<18)) 
•̂ 144 ~ = •$144 (̂ 144 » (•S144)(12)i (•y144)(02>) 
•̂ 150 > (•S'l50)(01) ) (lS15o)(12)) 
•yi63-*"-yi35=-SÍ53CSÍ53> (•S'lS3)(02) ï (̂ lSŜ OZl)) 
•̂164 ~ ~ ( ^ 1 5 4 ) ( 0 2 ) > 1̂54) 
•yl68~*''yl05=-yi56('S,156» (•S'l56)(02) » .V) 

•̂ 157, (•yi57)(02)))CQ21) 

•̂ 324 ~ ~ = 3̂24(̂ 324 » x> Z) 
•̂ 325 ~*'̂ lll = 'y325('y325j X> z ) 
3̂42̂ 1̂11 = -y342Cy342 » x> *-) 

Í343->''íl9='f343C-*» S313 5 (i343)(12)) 
S " y 3̂45 » (̂ 345)(12)) 

•y346-*"'y28='y346(-̂ j 3̂46» (•s346)(12)) 
•Î396~>'y424 — $395(5390 > (•s396)(02) > 
•s426-*''ylll=-y428('y426ï x i 
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