General products and equational classes of automata

By Z. Ésik and F. Gécseg

The aim of this paper is to characterize those equational classes of automata which are obtained by means of the general product. It will be seen that such classes can be given by "patterns" of identities to be called p-identities. Moreover, these equational classes are either very large or very small.

1. Preliminaries

Let $\mathfrak{A}=(A, F, \delta)$ be an automaton, where A is the state set, F is the input set and δ is the next-state function of \mathfrak{H}. As it is well known \mathfrak{A} can be considered an F-unoid (F-algebra with unary operational symbols) $\mathfrak{U}=(A, F)$ such that af= $=\delta(a, f)(a \in A, f \in F)$. Further on it will be supposed that F is finite. If A is also finite then we speak about a finite F-unoid.

In the sequel F and F^{\prime} with or without indices will denote finite sets of unary operational symbols.

As usual F^{*} will stand for the free monoid freely generated by F. If $p=$ $=f_{1} \ldots f_{k} \in F^{*}$ is a word and x is a variable then $x p$ is the F-polynomial symbol $\left(\ldots\left(x f_{1}\right) \ldots\right) f_{k}$.

Let K be a class of F-unoids. Then the operators \mathbf{H}, \mathbf{S} and \mathbf{P} on K are defined as follows:
$\mathbf{H}(K)$: homomorphic images of unoids from K,
$\mathbf{S}(K)$: subunoids of unoids from K,
$\mathbf{P}(K)$: direct products of nonvoid families of unoids from K.
By Birkhoff's Theorem (cf. [3]): For a nonvoid class K of F-unoids HSP(K) is the smallest equational class containing K.

Next we recall the concept of the products of automata (cf. [1]).
Let $\mathfrak{H}_{i}=\left(A_{i}, F_{i}\right)(i \in I)$ be a non-void family of unoids, F a finite set of operational symbols and

$$
\varphi: \Pi\left(A_{i} \mid i \in I\right) \times F \rightarrow \Pi\left(F_{i} \mid i \in I\right)
$$

a mapping. Take the F-unoid $\mathfrak{A}=(A, F)$ with $A=\Pi\left(A_{i} \mid i \in I\right)$ and $\mathrm{pr}_{i}(\mathrm{a} f)=$ $=\operatorname{pr}_{i}(\mathbf{a}) \operatorname{pr}_{i}(\varphi(\mathbf{a}, f))$ for arbitrary $\mathbf{a} \in A, f \in F$ and $i \in I$, where pr_{i} is the $i^{\text {th }}$ projection. Then \mathfrak{A} is the (general) product of $\mathfrak{A}_{i}(i \in I)$ with respect to F and φ.

For arbitrary $\mathrm{a} \in A, f \in F$ and $i \in I$ let $\varphi_{i}(\mathrm{a}, f)$ be the $i^{\text {th }}$ component of $\varphi(\mathrm{a}, f)$. If there exists a linear ordering \leqq on I such that for every $i \in I, \varphi_{i}$ is independent of its $j^{\text {th }}$ component $(j \in I)$ whenever $j \geqq i$ then \mathfrak{A} is an α_{0}-product. Obviously, if $F_{i}=F$ and $\varphi_{i}(\mathbf{a}, f)=f$ for arbitrary $i \in I, \mathbf{a} \in A$ and $f \in F$ then \mathfrak{A} is the direct product of $\mathfrak{H}_{i}(i \in I)$. Let us note that the formations of the product, the α_{0}-product and the direct product are transitive. Moreover, further on for α_{0}-products in $\varphi_{i}(\mathrm{a}, f)$ we shall indicate only those components on which φ_{i} may depend, i.e., f and $\operatorname{pr}_{j}(\mathrm{a})$ if $j<i(j \in I)$.

Let K be a class of unoids (not necessarily of the same type). Then
$\mathbf{P}_{g}(K)$ is the class of all general products of unoids from K,
$\mathbf{P}_{5 a_{0}}(K)$ is the class of all α_{0}-products of unoids from K with finitely many factors, and
\mathbf{K}_{F} is the similarity class of F-unoids.
To determine unoid identities preserved by products we recall the concept of an l-free system.

Take a unoid $\mathfrak{O}=(A, F)$, an element $a \in A$ and an integer $l \geqq 0$. The system $(\mathfrak{\Re}, a)$ is l-free if $a p \neq a q$ whenever $p \neq q$ and $|p|,|q| \leqq l\left(p, q \in F^{*}\right)$, where $|p|$ denotes the length of p.

A state $a \in A$ is ambiguous if there are $f_{1}, f_{2} \in F$ such that $a f_{1} \neq a f_{2}$.
Obviously, every system (\mathfrak{A}, a) is 0 -free. Moreover, it easily follows from the proof of the Theorem in [2] that for a class K of unoids the following statements are equivalent:
(i) For an $l>0$ and all F there is an l-free system (\mathfrak{H}, a) with $\mathfrak{H}=(A, F) \in$ $\in \mathbf{P}_{f z_{0}}(K) \cap K_{F}$,
(ii) K contains a $\mathfrak{B}=\left(B, F^{\prime}\right)$ such that for a $b \in B$ and a $p \in F^{\prime *}$ with $|p|=l-1$, $b p$ is ambiguous. Therefore, if l is the greatest integer under which the above l-free system exists then for arbitrary $\mathfrak{B}=\left(B, F^{\prime}\right) \in K, b \in B, p \in F^{\prime *}$ with $|p| \geqq l$ and $f_{1}, f_{2} \in F^{\prime}, b p f_{1}=b p f_{2}$.

2. Identities preserved by general products

Let K be an arbitrary nonvoid class of unoids. Then for every $F, \mathbf{H S P}_{\boldsymbol{g}}(K) \cap K_{F}$ is an equational class since $\mathbf{H S P}_{g}(K)=\mathbf{H S P P}_{g}(K)$ obviously holds. Moreover, it is easy to show that $\mathbf{H S P}_{g}(K)$ is closed under the general product.

Now we introduce special identities to characterize $\mathbf{H S P}_{g}(K) \cap K_{F}$. A p identity is
(i) $m=n$, or
(ii) $(k, m)=(k, n)$
where m, n and k are non-negative integers. A unoid $\mathfrak{H}=(A, F)$ satisfies p-identity (i) if \mathfrak{A} satisfies all identities $x g_{1} \ldots g_{m}=y h_{1} \ldots h_{n}$ for arbitrary $g_{1}, \ldots, g_{m}, h_{1}, \ldots$ $\ldots, h_{n} \in F$. Moreover, \mathfrak{A} satisfies (ii) if it satisfies all identities $x f_{1} \ldots f_{k} g_{1} \ldots g_{m}=$ $=x f_{1} \ldots f_{k} h_{1} \ldots h_{n}$ for arbitrary $f_{1}, \ldots, f_{k}, g_{1}, \ldots, g_{m}, h_{1}, \ldots, h_{n} \in F$. In these cases we also say that (i) or (ii) holds in \mathfrak{Y}.

For a class K of unoids denote by K^{*} the class of all p-identities holding in every unoid from K. Moreover, $K^{* *}$ stands for the class of all unoids which satisfy every p-identity in K^{*}. Then we have the following

Theorem. For arbitrary F and nonvoid class K of unoids $\operatorname{HSP}_{\boldsymbol{g}}(K) \cap K_{F}=$ $=K^{* *} \cap K_{F}=\operatorname{HSPP}_{f x_{0}}(K) \cap K_{F}$.

Proof. Obviously p-identities are preserved under general products. Thus $K^{* *} \supseteq \mathbf{H S P}_{g}(K)$. Therefore, to prove the Theorem it is enough to show that $\mathbf{H S P P}_{f x_{0}}(K) \cap K_{F} \supseteq K^{* *} \cap K_{F}$ which follows from statements (i) and (ii) below.
(i) Let $x g_{1} \ldots g_{m}=y h_{1} \ldots h_{n}$ be an F-identity satisfied by $\mathbf{H S P P}_{f a_{0}}(K) \cap K_{F}$. Then the p-identity $m=n$ is in K^{*}.
(ii) Let $x f_{1} \ldots f_{k} g_{1} \ldots g_{m}=x f_{1} \ldots f_{k} h_{1} \ldots h_{n}$ be an F-identity holding in $\mathbf{H S P P}_{f z_{0}}(K) \cap$ $\cap K_{F}$ such that $g_{1} \neq h_{1}$ if $m, n>0$. Then the p-identity $(k, m)=(k, n)$ is in K^{*}.

We shall prove (ii) only. Statement (i) can be shown in a similar way.
If for every l there are an $\mathfrak{U}=(A, F) \in \mathbf{P}_{f \alpha_{0}}(K) \cap K_{F}$ and an $a \in A$ such that (\mathfrak{H}, a) is l-free then in $\operatorname{HSPP}_{f \alpha_{0}}(K) \cap K_{F}$ only the trivial identities hold. Therefore, $\mathbf{H S P P}_{f x_{0}}(K) \supseteq K_{F}$.

Next assume that l is the greatest integer for which there exist an $\mathfrak{A}=(A, F) \in$ $\in \mathbf{P}_{f_{0}}(K) \cap K_{F}$ and an $a \in A$ such that ($\left.\mathfrak{K}, a\right)$ is l-free. Let the identity $x f_{1} \ldots f_{k} g_{1} \ldots$ $\ldots g_{m}=x f_{1} \ldots f_{k} h_{1} \ldots h_{n}$ hold in $\mathbf{H S P P}_{f x_{0}}(K) \cap K_{F}$ where $g_{1} \neq h_{1}$ if $m, n>0$. Suppose that the p-identity $(k, m)=(k, n)$ is not in K^{*}. Then we find a unoid $\mathfrak{Y}^{\prime}=$ $=\left(A^{\prime}, F^{\prime}\right) \in K$, an element $a^{\prime} \in A^{\prime}$ and operational symbols $f_{1}^{\prime}, \ldots, f_{k}^{\prime}, g_{1}^{\prime}, \ldots$ $\ldots, g_{m}^{\prime}, h_{1}^{\prime}, \ldots, h_{n}^{\prime} \in F^{\prime}$ under which

$$
a^{\prime} f_{1}^{\prime} \ldots f_{k}^{\prime} g_{1}^{\prime} \ldots g_{m}^{\prime} \neq a^{\prime} f_{1}^{\prime} \ldots f_{k}^{\prime} h_{1}^{\prime} \ldots h_{n}^{\prime} .
$$

Take the l-free system (\mathfrak{H}, a) above, and form the α_{0}-product $\mathfrak{B}=(B, F)$ of \mathfrak{U} and \mathfrak{U}^{\prime} given by the function $\varphi: A \times A^{\prime} \times F \rightarrow F \times F^{\prime}$ such that φ_{1} is the identity mapping of F. Moreover,

$$
\begin{gathered}
\varphi_{2}\left(a f_{1} \ldots f_{i}, f_{i+1}\right)=f_{i+1}^{\prime} \quad \text { if } \quad i \leqq l, \\
\varphi_{2}\left(a f_{1} \ldots f_{k} g_{1} \ldots g_{i}, g_{i+1}\right)=g_{i+1}^{\prime} \quad \text { if } \quad k+i \leqq l
\end{gathered}
$$

and

$$
\varphi_{2}\left(a f_{1} \ldots f_{k} h_{1} \ldots h_{i}, h_{i+1}\right)=h_{i+1}^{\prime} \quad \text { if } \quad k+i \leqq l .
$$

In all other cases φ_{2} is defined arbitrarily. Then in \mathfrak{B} we have

$$
\begin{aligned}
& \left(a, a^{\prime}\right) f_{1} \ldots f_{k} g_{1} \ldots g_{m}=\left(a f_{1} \ldots f_{k} g_{1} \ldots g_{m}, a^{\prime} f_{1}^{\prime} \ldots f_{k}^{\prime} g_{1}^{\prime} \ldots g_{m}^{\prime}\right) \neq \\
& \neq\left(a f_{1} \ldots f_{k} h_{1} \ldots h_{n}, a^{\prime} f_{1}^{\prime} \ldots f_{k}^{\prime} h_{1}^{\prime} \ldots h_{n}^{\prime}\right)=\left(a, a^{\prime}\right) f_{1} \ldots f_{k} h_{1} \ldots h_{n},
\end{aligned}
$$

which is a contradiction. This ends the proof of the Theorem.
Next we show that $\mathbf{H S P}_{g}(K) \cap K_{F}$ has a finite basis. As it has been noted if for arbitrary l and F^{\prime} there are an $\mathfrak{A}=\left(A, F^{\prime}\right) \in \mathbf{H S P}_{g}(K)$ and an $a \in A$ such that (\mathfrak{H}, a) is l-free then only the trivial identities hold in $\mathbf{H S P}_{g}(K) \cap K_{F}$. Thus we may assume that there exists such a maximal l which is also denoted by l.
(To check that the F-identities determined by the systems of p-identities below form a basis observe the existence of an l-free system (\mathfrak{A}, a) with $\mathfrak{Z} \in \mathbf{H S P}_{g}(K) \cap K_{F}$ such that for arbitrary $\mathfrak{B}=(B, F) \in \operatorname{HSP}_{g}(K) \cap K_{F}$ and $b \in B$ the mapping $\varphi:\{a\} \rightarrow\{b\}$ can be extended to a homomorphism of \mathfrak{A} into \mathfrak{B}.)
I. K^{*} contains no p-identities of form $m=n$.
I. 1. There is a p-identity $(k, m)=(k, n)$ in K^{*} with $m<n$.
a) k_{1} is minimal among all k occurring in p-identities $(k, m)=(k, n)$ from K^{*} with $m<n$,
b) m_{1} is minimal among all m occurring in p-identities $\left(k_{1}, m\right)=\left(k_{1}, n\right)$ from K^{*} with $m<n$,
c) n_{1} is minimal among all n occurring in p-identities $\left(k_{1}, m_{1}\right)=\left(k_{1}, n\right)$ from K^{*} with $m_{1}<n$,
d) k_{2} is minimal among all k occurring in nontrivial* p-identities $(k, m)=$ $=(k, m)$ from K^{*},
e) m_{2} is minimal among all m occurring in nontrivial p-identities $\left(k_{1}, m\right)=$ $=\left(k_{1}, m\right)$ from K^{*}.

Then a suitable basis can be given in form

$$
\left(k_{1}, m_{1}\right)=\left(k_{1}, n_{1}\right),\left(k_{2}^{(1)}, m_{2}^{(1)}\right)=\left(k_{2}^{(1)}, m_{2}^{(1)}\right), \ldots,\left(k_{2}^{(r)}, m_{2}^{(r)}\right)=\left(k_{2}^{(r)}, m_{2}^{(r)}\right)
$$

where $\quad k_{2}^{(1)}=k_{2}, m_{2}^{(1)}=m_{2}, k_{2}^{(1)}<\ldots<k_{2}^{(r)}<k_{2}+m_{2} \quad$ and $\quad k_{2}+m_{2} \geqq m_{2}^{(1)}>\ldots>m_{2}^{(r)}$. (Note that $k_{1}, k_{2} \leqq l$ and $k_{1}+n_{1}, k_{2}+m_{2}>l$.)
I. 2. K^{*} contains no p-identity $(k, m)=(k, n)$ with $m<n$. Then there is a basis of form ($\left.k_{2}^{(i)}, m_{2}^{(i)}\right)=\left(k_{2}^{(i)}, m_{2}^{(i)}\right), \ldots,\left(k_{2}^{(r)}, m_{2}^{(r)}\right)=\left(k_{2}^{(r)}, m_{2}^{(r)}\right) \quad\left(k_{2}^{(1)}=k_{2}\right.$, $m_{2}^{(1)}=m_{2}, k_{2}^{(1)}<\ldots<k_{2}^{(r)}<k_{2}+m_{2}, \quad m_{2}^{(r)}<\ldots<m_{2}^{(1)} \leqq k_{2}+m_{2}$) where k_{2} and m_{2} are obtained by d) and e) in I. 1.
II. K^{*} has a p-identity $m=n$.

Let m_{1} be minimal among all m occurring in p-identities $m=n$ from K^{*}. Moreover let k_{2} and m_{2} be given by d) and e) in I. Then one of the bases has the form

$$
m_{1}=m_{1},\left(k_{2}^{(1)}, m_{2}^{(1)}\right)=\left(k_{2}^{(1)}, m_{2}^{(1)}\right), \ldots,\left(k_{2}^{(r)}, m_{2}^{(r)}\right)=\left(k_{2}^{(r)}, m_{2}^{(r)}\right)
$$

where again $k_{2}^{(1)}=k_{2}, m_{2}^{(1)}=m_{2}, k_{2}^{(1)}<\ldots<k_{2}^{(r)}<k_{2}+m_{2}$ and $k_{2}+m_{2} \geqq m_{2}^{(1)}>\ldots>m_{2}^{(r)}$.
If K consists of finitely many finite unoids then a finite basis can be given effectively. Therefore, for such a K and a finite $\mathfrak{A}=(A, F)$ it is decidable whether \mathfrak{A} is contained by $\operatorname{HSP}_{g}(K) \cap K_{F}$.

Finally, it can be shown by a slight modification of the proof that the Theorem remains valid for infinite F, too.

DEPT. OF COMPUTER SCIENCE
A. JÓZSEF UNIVERSITY

ARADI VÉRTANÚK TERE 1
SZEGED, HUNGARY
H-6720

References

[1] Gécseg, F., Model theoretical methods in the theory of automata, Proceedings of the Symposium of Mathematical Foundations of Computer Science, High Tatras, 1973, pp. 57-63.
[2] Gécseg, F., Representation of automaton mappings in finite length, Acta Cybernet., v. 2, 1975, pp. 285-289.
[1] Мальцев, А. И., Алгебраические системь, Москва, 1970.
(Received Jan. 14, 1983)

[^0]
[^0]: * A p-identity of form $(k, m)=(k, m)$ is trivial if $m=0$.

