On identities preserved by general products of algebras

By Z. Ésik

Equational classes of automata (i.e. unoids) obtained by general product were characterized in [1]. Here we present similar results for tree automata, i.e., arbitrary algebras. We show that the main result $K^{**} = HSP_g(K) = HSP_{\alpha_0}(K) = HSPP_{f\alpha_0}(K)$ in [1] remains valid in this generality, too.

First we briefly introduce the basic notions to be used. For all unexplained notions coming from universal algebra and tree-automata theory the reader is referred to [3] and [2].

By a rank-type we mean an arbitrary subset R of the set of nonnegative integers. A type corresponding to a rank-type R is a collection of operational symbols $F = \coprod (F_k | k \ge 0)$ such that $F_k \ne \emptyset$ if and only if $k \in R$. In the sequel we fix a ranktype R and by a type always mean a type corresponding to R.

Algebras of type F constitute a similarity class \mathscr{K}_F . An algebra $\mathfrak{A} \in \mathscr{K}_F$ is a pair $(A, \{f_{\mathfrak{A}} | f \in F\}) - (A, F)$ for short —, where $f_{\mathfrak{A}}$ is a k-ary operation on the nonvoid set A for any $f \in F_k$. By a class of algebras we shall mean an arbitrary nonvoid class of algebras.

We are going to deal with certain products of algebras. Let I be a nonvoid set linearly ordered by \leq . Given a system $\mathfrak{A}_i = (A_i, F_i)$ $(i \in I)$ of algebras, by a general product we mean an algebra $\mathfrak{A} = (A, F) = \Pi(\mathfrak{A}_i, \varphi|i \in I)$, where $A = \Pi(A_i|i \in I)$, φ is a family of mappings of $(\Pi(A_i|i \in I))^k \times F_k$ into $\Pi((F_i)_k|i \in I)$, and finally, the operations in \mathfrak{A} are defined in accordence with φ as follows. Let $a_1, \ldots, a_k, a \in A, f \in F_k$. Then, $f_{\mathfrak{A}}(a_1, \ldots, a_k) = a$ if and only if $a_i = (f_i)_{\mathfrak{A}_i}(a_{1i}, \ldots, a_{ki})$ holds for every $i \in I$ with $f_i = (\varphi(a_1, \ldots, a_k, f))_i = \varphi_i(a_1, \ldots, a_k, f)$. If for every nonnegative integer k, $\varphi_i(a_1, \ldots, a_k, f)$ depends on f and a_{1j}, \ldots, a_{kj} with j < i only, then \mathfrak{A} is a so called α_0 -product of the \mathfrak{A}_i -s. We shall denote by P_g and P_{α_0} the operators corresponding to the formations of general and α_0 -products, resp. $P_{f\alpha_0}$ will denote the formation of finite α_0 -products. Finite α_0 -products will be written as $\Pi(\mathfrak{A}_1, \ldots, \mathfrak{A}_n, \varphi)$ where $I = \{1, \ldots, n\}$ with the usual ordering. The operators H, S and P have their usual meaning.

Also we fix a countable set $X = \{x_1, x_2, ...\}$ of variables and treat polynomial symbols of type F as trees built on X and F. T_F will denote the set of all trees of type F. If $\mathfrak{A} \in \mathscr{K}_F$ and $p \in T_F$ then $p_{\mathfrak{A}} : \mathcal{A}^{\omega} \to \mathcal{A}$ is the polynomial induced by p in \mathfrak{A} . If $a_1, a_2, ...$ is an ω -sequence of elements of \mathcal{A} then $p_{\mathfrak{A}}(a_1, a_2, ...)$ denotes the value of $p_{\mathfrak{A}}$ on $a_1, a_2, ...$ If \mathfrak{A} is the general product described previously then we can view φ as a mapping of $(\Pi(A_i|i\in I))^{\omega} \times T_F$ into $\Pi(T_{F_i}|i\in I)$ in a natural way. For each index $i\in I$ we shall denote by φ_i the *i*-th componentmap of φ , as well.

The notion of subtrees of a tree p as well as the height h(p) of a tree will be used in an unexplained but obvious way. A subtree q of a tree p is called proper if $q \neq p$. sub (p) denotes the set of all proper subtrees of p. Also we shall in a natural way speak about an occurence of a subtree in a tree, and about the substitution of a tree for occurences of a subtree in a tree. If p is a tree then rt (p) denotes the root of p.

By a relabeling we mean any mapping $\varphi: T_F \rightarrow T_{F'}$ with the following properties:

(i) if $p \in F_0$ then $\varphi(p) \in F'_0$,

(ii) if $p \in X$ then $\varphi(p) = p$,

(iii) if $p=f(p_1,...,p_k)$ with $f \in F_k$, k > 0, $p_1,...,p_k \in T_F$ then there exist an $f' \in F'_k$ such that $\varphi(p) = f'(\varphi(p_1),...,\varphi(p_k))$.

Now we are in the position to give the most fundamental definitions. Let K be an arbitrary class of algebras. Then $K^* = \{K_F^*|F \text{ is a type}\}$, where K_F^* is the set of all identities p = q $(p, q \in T_F)$ such that $\varphi(p) = \varphi(q)$ is in the usual sence a valid identity in $K \cap \mathscr{X}_F$, for any relabeling $\varphi: T_F \to T_{F'}$. An algebra $\mathfrak{A} \in \mathscr{X}_F$ is in K^{**} if and only if all identities belonging to K_F^* are valid in \mathfrak{A} . Thus, $K^{**} \cap \mathscr{X}_F$ is an equational class of algebras. If $p, q \in T_F$, we write $K^* \models p = q$ to mean that $K_F^* \models p = q$.

If we consider unoids, i.e. we take $R = \{1\}$, then for any type F and $p, q \in T_F$ we have $p = q \in K_F^*$ if and only if p = q is valid in the equational class $HSP_{\alpha_0}(K) \cap \mathscr{K}_F$. Consequently, $K^{**} = HSP_{\alpha_0}(K)$, or even, $K^{**} = HSP_g(K) = HSP_{\alpha_0}(K) = HSPP_{f\alpha_0}(K)$ (cf. [1]).

In general, the first statement fails to hold. Indeed, take $R = \{1, 2\}$ and for every type F let $K \cap \mathscr{H}_F$ be the equational class determined by the identities $g(x_1) = h(x_1)$ $(g, h \in F_1)$. Supposing $f \in F_2$, identity $f(g(x_1), g(x_1)) = f(h(x_1), h(x_1))$ is obviously valid in $HSP_{\alpha_0}(K) \cap \mathscr{H}_F$, but this identity is not in K_F^* . However, we still have a somewhat weaker result:

Theorem 1. Let $p, q \in T_F$ be arbitrary trees of type F. Then p=q is a valid identity in an equational class $HSP_{a_n}(K) \cap \mathscr{K}_F$ if and only if $K^* \models p = q$.

Proof. Sufficiency follows by observing that general product preserves K^* , that is, $P_q(K) \subseteq K^{**}$. Therefore, also $HSP_{\alpha_0}(K) \subseteq K^{**}$. In order to prove the necessity of our Theorem, let Σ contain those valid identities p=q of the equational class $HSP_{\alpha_0}(K) \cap \mathscr{K}_F$ for which our statement does not hold. Supposing $\Sigma \neq \emptyset$, choose $p=q \in \Sigma$ in such a way that $|\operatorname{sub}(p) \cup \operatorname{sub}(q)|$ is minimal.

Now take an algebra $\mathfrak{A} = (A, F)$ freely generated by the sequence $a_1, a_2, ...$ in the equational class $HSP_{\alpha_0}(K) \cap \mathscr{K}_F$. First we show that if we have $r_{\mathfrak{A}}(a_1, a_2, ...) = = s_{\mathfrak{A}}(a_1, a_2, ...)$ for some trees $r, s \in \operatorname{sub}(p) \cup \operatorname{sub}(q)$, then r = s, i.e., the trees r and s coincide. Assume to the contrary that there exist different trees $r, s \in \operatorname{sub}(p) \cup \operatorname{sub}(q)$ with $r_{\mathfrak{A}}(a_1, a_2, ...) = s_{\mathfrak{A}}(a_1, a_2, ...)$. Let us fix a tree $r \in \operatorname{sub}(p) \cup \operatorname{sub}(q)$ with the property that if $\overline{r} \in \operatorname{sub}(p) \cup \operatorname{sub}(q)$ and $\overline{r}_{\mathfrak{A}}(a_1, a_2, ...) = r_{\mathfrak{A}}(a_1, a_2, ...) = s_{\mathfrak{A}}(a_1, a_2, ...) = r_{\mathfrak{A}}(a_1, a_2, ...) = s_{\mathfrak{A}}(a_1, a_2, ...)$. Given r, choose a different tree $s \in \operatorname{sub}(p) \cup \operatorname{sub}(q)$ such that $r_{\mathfrak{A}}(a_1, a_2, ...) = s_{\mathfrak{A}}(a_1, a_2, ...)$, and $h(\overline{s}) \leq h(s)$ whenever $\overline{s} \in \operatorname{sub}(p) \cup \operatorname{sub}(q)$ and $r_{\mathfrak{A}}(a_1, a_2, ...) = s_{\mathfrak{A}}(a_1, a_2, ...)$. $s_{\mathfrak{A}}(a_1, a_2, \ldots) = \bar{s}_{\mathfrak{A}}(a_1, a_2, \ldots)$. Obviously, we have $h(r) \leq h(s)$. If $s \in \operatorname{sub}(p)$ then let us substitute r for any occurrence of s in p, and denote the resulting tree by \bar{p} . If $s \notin \operatorname{sub}(p)$ then put $\bar{p} = p$. Similar procedure when applied to q will produce the tree \bar{q} . Of course we have $\operatorname{sub}(\bar{p}) \cup \operatorname{sub}(\bar{q}) \subseteq \operatorname{sub}(p) \cup \operatorname{sub}(q)$, or even, the choise of r and s garantees that $s \notin \operatorname{sub}(\bar{p}) \cup \operatorname{sub}(\bar{q})$. Thus, $|\operatorname{sub}(\bar{p}) \cup$ $\cup \operatorname{sub}(\bar{q})| < |\operatorname{sub}(p) \cup \operatorname{sub}(q)|$. Similarly, $|\operatorname{sub}(r) \cup \operatorname{sub}(s)| < |\operatorname{sub}(p) \cup \operatorname{sub}(q)|$.

As $r_{\mathfrak{A}}(a_1, a_2, \ldots) = s_{\mathfrak{A}}(a_1, a_2, \ldots)$, it follows that r=s is a valid identity in $HSP_{\alpha_0}(K) \cap \mathscr{K}_F$. As $|\operatorname{sub}(r) \cup \operatorname{sub}(s)| < |\operatorname{sub}(p) \cup \operatorname{sub}(q)|$ also $K^* \models r=s$. As r=s is a valid identity in $HSP_{\alpha_0}(K) \cap \mathscr{K}_F$, also the equalities $p_{\mathfrak{A}}(a_1, a_2, \ldots) = \bar{p}_{\mathfrak{A}}(a_1, a_2, \ldots)$ and $q_{\mathfrak{A}}(a_1, a_2, \ldots) = \bar{q}_{\mathfrak{A}}(a_1, a_2, \ldots)$ are satisfied. Since p=q was a valid identity in $HSP_{\alpha_0}(K) \cap \mathscr{K}_F$ and \mathfrak{A} is freely generated by a_1, a_2, \ldots , also $\bar{p}=\bar{q}$ is a valid identity in $HSP_{\alpha_0}(K) \cap \mathscr{K}_F$. As $|\operatorname{sub}(\bar{p}) \cup \operatorname{sub}(\bar{q})| < |\operatorname{sub}(p) \cup \operatorname{sub}(q)|$, by the choise of the identity p=q, we obtain that $K^* \models \bar{p}=\bar{q}$. The construction of the trees \bar{p} and \bar{q} shows that $\{r=s, \bar{p}=\bar{q}\} \models p=q$. We have already seen that $K^* \models r=s$, thus, $K^* \models p=q$. This is a contradiction.

So far we have shown that the equality $r_{\mathfrak{A}}(a_1, a_2, \ldots) = s_{\mathfrak{A}}(a_1, a_2, \ldots)$ is satisfied by trees $r, s \in \operatorname{sub}(p) \cup \operatorname{sub}(q)$ if and only if r=s. Next we are going to prove that $p=q \in K_F^*$. As $K^* \models p=q$ holds in this case evidently, this would again be a contradiction.

Assume that $p = q \notin K_F^*$. Then there is a type F' and a relabeling $\varphi: T_F \to T_{F'}$ such that $\varphi(p) = \varphi(q)$ is not a valid indentity in the class $K \cap \mathscr{X}_{F'}$. Therefore, there is an algebra $\mathfrak{B} = (B, F') \in K$ and elements $b_1, b_2, \ldots \in B$ with

$$\varphi(p)_{\mathfrak{B}}(b_1, b_2, \ldots) \neq \varphi(q)_{\mathfrak{B}}(b_1, b_2, \ldots).$$

Let $\mathfrak{C} = (C, F)$ be any α_0 -product $\Pi(\mathfrak{A}, \mathfrak{B}, \psi)$ with ψ satisfying the following conditions for every $f \in F_k$ $(k \ge 0)$:

(i) $\psi_1(f) = f$, (ii) $\psi_2((p_1)_{\mathfrak{A}}(a_1, a_2, ...), ...(p_k)_{\mathfrak{A}}(a_1, a_2, ...), f) = \operatorname{rt}(\varphi(f(p_1, ..., p_k)))$

if $f(p_1, ..., p_k)$ is a subtree of p or q.

In order to show that such an α_0 -product exists, it is enough to see that whenever both $f(p_1, ..., p_k)$ and $f(q_1, ..., q_k)$ are subtrees of p or q and $(p_i)_{\mathfrak{A}}(a_1, a_2, ...) = (q_i)_{\mathfrak{A}}(a_1, a_2, ...)$ (i=1, ..., k) then $\operatorname{rt}(\varphi(f(p_1, ..., p_k))) =$ $=\operatorname{rt}(\varphi(f(q_1, ..., q_k)))$. But this can be seen immediately as φ is a mapping and $(p_i)_{\mathfrak{A}}(a_1, a_2, ...) = (q_i)_{\mathfrak{A}}(a_1, a_2, ...)$ implies that $p_i = q_i$.

As $HSP_{\alpha_0}(K)$ is closed under α_0 -products, we get $\mathfrak{C}\in HSP_{\alpha_0}(K)\cap \mathscr{K}_F$. On the other hand, $\varphi(p)_{\mathfrak{B}}(b_1, b_2, \ldots) \neq \varphi(q)_{\mathfrak{B}}(b_1, b_2, \ldots)$ implies that $p_{\mathfrak{C}}((a_1, b_1), (a_2, b_2), \ldots) \neq q_{\mathfrak{C}}((a_1, b_1), (a_2, b_2), \ldots)$, contrary to our assumption that p=q is valid in $HSP_{\alpha_0}(K)\cap \mathscr{K}_F$.

A set of identities $\Delta \subseteq T_F^2$ is called closed if whenever $\Delta \models p = q$ is valid for trees $p, q \in T_F$ then $p = q \in \Delta$. It is known from universal algebra that Δ is closed if and only if the following five conditions are satisfied by Δ :

- (i) $x_i = x_i \in \Delta$ (*i* = 1, 2, ...),
- (ii) $p = q \in \Delta$ implies that $q = p \in \Delta$,
- (iii) $p=q, q=r\in\Delta$ implies that $p=r\in\Delta$,

1

(iv) if $p_i = q_i \in \Delta$ for all i = 1, ..., k ($k \ge 0$) and $f \in F_k$ then $f(p_1, ..., p_k) = = f(q_1, ..., q_k) \in \Delta$,

(v) if $p=q\in\Delta$ and we get p' and q' from p and q by substituting all occurences of a variable x_i by an arbitrary tree $r\in T_F$ then $p'=q'\in\Delta$.

By virtue of the previous Theorem, if K_F^* is closed for every type \dot{F} , then whenever p=q is a valid identity in an equational class $HSP_{\alpha_0}(K) \cap \mathscr{K}_F$ then $p=q\in K_F^*$. Conversely, if $p=q\in K_F^*$ then p=q is a valid identity in $HSP_{\alpha_0}(K) \cap \mathscr{K}_F$. As K_F^* always satisfies conditions from (i) to (v) above except (iv), a necessary and sufficient condition for K_F^* to be closed is to satisfy condition (iv). In this way we get the following

Corollary. Assume that K_F^* satisfies condition (iv) for every type F. Then an identity p=q is valid in an equational class $HSP_{\alpha_0}(K) \cap \mathscr{K}_F$ if and only if $p=q\in K_F^*$. Conversely, if we have the equivalence p=q is valid in an equational class $HSP_{\alpha_0}(K) \cap \mathscr{K}_F$ if and only if $p=q\in K_F^*$ then K_F^* satisfies condition (iv). Further on we shall need the following

Lemma. Let $\mathfrak{A} = (A, F) = \Pi(\mathfrak{A}_i, \varphi)|i \in I)$ be an arbitrary infinite α_0 -product of algebras $\mathfrak{A}_i = (A_i, F_i)$ and let $J \subseteq I$ and $T \subseteq T_F$ be finite sets. For every sequence $a_1, a_2, \ldots \in A$ there is a finite α_0 -product $\mathfrak{B} = (B, F) = \Pi(\mathfrak{A}_i, \psi|i \in J_1)$ with $J \subseteq J_1$ and such that $\psi_i(a_{1J_1}, a_{2J_1}, \ldots, p) = \varphi_i(a_1, a_2, \ldots, p)$ for any $p \in T$

and $i \in J^1$

Proof. Put $h=\max\{h(p)|p\in T\}$. If h=0 then our statement is obviously valid. We proceed by induction on h. Let h>0 and assume that the proof is done for h-1. For every k>0 and $f\in F_k$ set

$$U_f = \{p | p \in T, \quad h(p) = h, \quad \text{rt}(p) = f\},$$
$$V_f = \{p | p \in \bigcup (\text{sub}(q) | q \in T) \cup T, \quad \text{rt}(p) = f\}.$$

Let $(p, q, i) \in U_f \times V_f \times J$ — say $p = f(p_1, ..., p_k)$, $q = f(q_1, ..., q_k)$ — be arbitrary. If $\varphi_i(p_{1q_i}(a_1, a_2, ...), ..., p_{kq_i}(a_1, a_2, ...), f) \neq \varphi_i(q_{1q_i}(a_1, a_2, ...), ..., q_{kq_i}(a_1, a_2, ...), f)$ then choose an index $i_0 < i$ with $(p_{tq_i}(a_1, a_2, ...))_{i_0} \neq (q_{tq_i}(a_1, a_2, ...))_{i_0}$ for some $t \in \{1, ..., k\}$. Denote by I_0 the set of indices obtained in this way, and put $J' = J \cup I_0$, $T' = \cup (\text{sub } (p) \mid p \in T) \cup \{p \in T \mid h(p) < h\}$. By the induction hypothesis, there exist a finite set J'_1 and an α_0 -product $\mathfrak{B}' = (B', F) = \Pi(\mathfrak{A}_i, \psi' \mid i \in J'_1)$ with $J' \subseteq J'_1$ and satisfying $\psi'_i(a_{1_{J'_1}}, a_{2_{J'_1}}, ..., p) = \varphi_i(a_1, a_2, ..., p)$ for each $p \in T'$ and $i \in J'_1$.

Set $J_1 = J'_1$ and define the α_0 -product $\mathfrak{B} = (B, F) = \Pi(\mathfrak{A}_i, \psi | i \in J_1)$ so that the following two conditions are satisfied:

(i) $\psi(b_1, ..., b_k, f) = \psi'(b_1, ..., b_k, f)$ if $f \in F_k$ $(k \ge 0)$ and there exist trees $p_1, ..., p_k \in T_F$ with $f(p_1, ..., p_k) \in T'$ and $b_t = p_{typ'}(a_{1_{J_1}}, a_{2_{J_1}}, ...)$ (t = 1, ..., k),

(ii) $\psi_i(b_1, ..., b_k, f) = \varphi_i(c_1, ..., c_k, f)$ if $i \in I$, $f \in F_k^{-1}(k > 0)$, and there exist trees $p_1, ..., p_k \in T_F$ with $f(p_1, ..., p_k) \in U_f$ and $b_t = p_{tgt}(a_{1J_1}, a_{2J_1}, ...), c_t = p_{tgt}(a_1, a_2, ...)$ (t = 1, ..., k).

¹ The ordering on J_1 is the restriction of the ordering on I to J_1 . If $a \in \Pi(A_i | i \in I)$ then $a_{J_1} \in \Pi(A_i | i \in J_1)$ is determined by $(a_{J_1})_i = a_i$ for any $i \in J_1$.

Such an α_0 -product exist, since otherwise we would have an index $i \in I$ together with distinct trees $p = f(p_1, ..., p_k) \in U_f$, $q = f(q_1, ..., q_k) \in V_f$ $(f \in F_k, k > 0, p_t, q_t \in T_F)$ such that $(p_{tql}(a_1, a_2, ...))_j = (q_{tql}(a_1, a_2, ...))_j$ (t = 1, ..., k) for all j < i but $\varphi_i(p_{1ql}(a_1, a_2, ...), ..., p_{kql}(a_1, a_2, ...), f) \neq \varphi_i(q_{1ql}(a_1, a_2, ...), ..., q_{kql}(a_1, a_2, ...), f)$. Also the equalities $\psi_i(a_{1J_1}, a_{2J_1}, ..., p) = \varphi_i(a_1, a_2, ..., p)$ $(i \in I, p \in T)$ follow in an easy way.

Theorem 2. $HSPP_{f\alpha_0}(K) = HSP_{\alpha_0}(K) = HSP_g(K) = K^{**}$ holds for any class K of algebras.

Proof. The last two equalities immediately follow by Theorem 1 and Birkhoff's Theorem. $HSPP_{f\alpha_0}(K) \subseteq HSP_{\alpha_0}(K)$ is obvious. We claim that also $HSP_{\alpha_0}(K) \subseteq \PiSPP_{f\alpha_0}(K)$. This can be seen by showing that if F is an arbitrary type and an identity p=q $(p, q \in T_F)$ is not valid in $P_{\alpha_0}(K) \cap \mathscr{K}_F$ then the same holds for $P_{f\alpha_0}(K) \cap \mathscr{K}_F$. But this is a trivial consequence of our Lemma.

Theorem 2 is in a close connection with the characterization theorem of metrically complete systems of algebras in [2]. It turns out that a system K of algebras having finite types is metrically complete if and only if K^* contains only trivial identities. In other words this means that K is complete (that is, $HSP_g(K)$ is the class of all algebras) if and only if K is metrically complete.

DEPT. OF COMPUTER SCIENCE A. JÓZSEF UNIVERSITY ARADI VÉRTANÚK TERE 1 SZEGED, HUNGARY H-6720

References

[1] ÉSIK, Z. and F. GÉCSEG, General products and equational classes of automata, Acta Cybernet. v. 6, 1983, pp. 281–284.

- [2] GÉCSEG, F., On a representation of deterministic frontier-to-root tree transformations, Acta Sci. Math. (Szeged), v. 45, 1983, pp. 177-187.
- [3] GRÄTZER, G., Universal algebra, D. Van Nostrand Company, 1968.

(Received Jan. 18, 1983)