On identities preserved by general products of algebras

By Z. ÉsIK

Equational classes of automata (i.e. unoids) obtained by general product were characterized in [1]. Here we present similar results for tree automata, i.e., arbitrary algebras. We show that the main result $K^{* *}=H S P_{g}(K)=H S P_{a_{0}}(K)=H S P P_{f a_{0}}(K)$ in [1] remains valid in this generality, too.

First we briefly introduce the basic notions to be used. For all unexplained notions coming from universal algebra and tree-automata theory the reader is referred to [3] and [2].

By a rank-type we mean an arbitrary subset R of the set of nonnegative integers. A type corresponding to a rank-type R is a collection of operational symbols $F=\mathbb{\Perp}\left(F_{k} \mid k \geqq 0\right)$ such that $F_{k} \neq \varnothing$ if and only if $k \in R$. In the sequel we fix a ranktype R and by a type always mean a type corresponding to R.

Algebras of type F constitute a similarity class \mathscr{K}_{F}. An algebra $\mathfrak{H} \in \mathscr{K}_{F}$ is a pair $\left(A,\left\{f_{\mathfrak{2}} \mid f \in F\right\}\right)-(A, F)$ for short -, where $f_{\mathfrak{A}}$ is a k-ary operation on the nonvoid set A for any $f \in F_{k}$. By a class of algebras we shall mean an arbitrary nonvoid class of algebras.

We are going to deal with certain products of algebras. Let I be a nonvoid set linearly ordered by \leqq. Given a system $\mathfrak{A}_{i}=\left(A_{i}, F_{i}\right)(i \in I)$ of algebras, by a general product we mean an algebra $\mathfrak{A}=(A, F)=\Pi\left(\mathfrak{H}_{i}, \varphi \mid i \in I\right)$, where $A=$ $=\Pi\left(A_{i} \mid i \in I\right), \varphi$ is a family of mappings of $\left(\Pi\left(A_{i} \mid i \in I\right)\right)^{k} \times F_{k}$ into $\Pi\left(\left(F_{i}\right)_{k} \mid i \in I\right)$, and finally, the operations in \mathfrak{A} are defined in accordence with φ as follows. Let $a_{1}, \ldots, a_{k}, a \in A, f \in F_{k}$. Then, $f_{\mathfrak{n}}\left(a_{1}, \ldots, a_{k}\right)=a$ if and only if $a_{i}=\left(f_{i}\right)_{\mathscr{I}_{i}}\left(a_{1 i}, \ldots, a_{k i}\right)$ holds for every $i \in I$ with $f_{i}=\left(\varphi\left(a_{1}, \ldots, a_{k}, f\right)\right)_{i}=\varphi_{i}\left(a_{1}, \ldots, a_{k}, f\right)$. If for every nonnegative integer $k, \varphi_{i}\left(a_{1}, \ldots, a_{k}, f\right)$ depends on f and $a_{1 j}, \ldots, a_{k j}$ with $j<i$ only, then \mathfrak{A} is a so called α_{0}-product of the \mathfrak{A}_{i}-s. We shall denote by P_{g} and $P_{\alpha_{0}}$ the operators corresponding to the formations of general and α_{0}-products, resp. $P_{f \alpha_{0}}$ will denote the formation of finite α_{0}-products. Finite α_{0}-products will be written as $\Pi\left(\mathfrak{U}_{1}, \ldots, \mathfrak{U}_{n}, \varphi\right)$ where $I=\{1, \ldots, n\}$ with the usual ordering. The operators H, S and P have their usual meaning.

Also we fix a countable set $X=\left\{x_{1}, x_{2}, \ldots\right\}$ of variables and treat polynomial symbols of type F as trees built on X and $F . T_{F}$ will denote the set of all trees of type F. If $\mathfrak{H} \in \mathscr{K}_{F}$ and $p \in T_{F}$ then $p_{\mathfrak{A}}: A^{\omega} \rightarrow A$ is the polynomial induced by \dot{p} in \mathfrak{U}. If a_{1}, a_{2}, \ldots is an ω-sequence of elements of A then $p_{\mathfrak{U}}\left(a_{1}, a_{2}, \ldots\right)$ denotes the value of $p_{\mathfrak{A}}$ on a_{1}, a_{2}, \ldots If \mathfrak{A} is the general product described
previously then we can view φ as a mapping of $\left(\Pi\left(A_{i} \mid i \in I\right)\right)^{\infty} \times T_{F}$ into $\Pi\left(T_{F_{i}} \mid i \in \eta\right)$ in a natural way. For each index $i \in I$ we shall denote by φ_{i} the i-th componentmap of φ, as well.

The notion of subtrees of a tree p as well as the height $h(p)$ of a tree will be used in an unexplained but obvious way. A subtree q of a tree p is called proper if $q \neq p$. sub (p) denotes the set of all proper subtrees of p. Also we shall in a natural way speak about an occurence of a subtree in a tree, and about the substitution of a tree for occurences of a subtree in a tree. If p is a tree then $\mathrm{rt}(p)$ denotes the root of p.

By a relabeling we mean any mapping $\varphi: T_{F} \rightarrow T_{F}$, with the following properties:
(i) if $p \in F_{0}$ then $\varphi(p) \in F_{0}^{\prime}$,
(ii) if $p \in X$ then $\varphi(p)=p$,
(iii) if $p=f\left(p_{1}, \ldots, p_{k}\right)$ with $f \in F_{k}, k>0, p_{1}, \ldots, p_{k} \in T_{F}$ then there exist an $f^{\prime} \in F_{k}^{\prime}$ such that $\varphi(p)=f^{\prime}\left(\varphi\left(p_{1}\right), \ldots, \varphi\left(p_{k}\right)\right)$.

Now we are in the position to give the most fundamental definitions. Let K be an arbitrary class of algebras. Then $K^{*}=\left\{K_{F}^{*} \mid F\right.$ is a type $\}$, where K_{F}^{*} is the set of all identities $p=q\left(p, q \in T_{F}\right)$ such that $\varphi(p)=\varphi(q)$ is in the usual sence a valid identity in $K \cap \mathscr{K}_{F^{\prime}}$ for any relabeling $\varphi: T_{F} \rightarrow T_{F}$, An algebra $\mathfrak{N} \in \mathscr{K}_{F}$ is in $K^{* *}$ if and only if all identities belonging to K_{F}^{*} are valid in \mathfrak{A}. Thus, $K^{* *} \cap \mathscr{K}_{F}$ is an equational class of algebras. If $p, q \in T_{F}$, we write $K^{*} \vDash p=q$ to mean that $K_{F}^{*} \vDash p=q$.

If we consider unoids, i.e. we take $R=\{1\}$, then for any type F and $p, q \in T_{F}$ we have $p=q \in K_{F_{*}}^{*}$ if and only if $p=q$ is valid in the equational class $H S P_{\alpha_{0}}(K) \cap \mathscr{K}_{F}$. Consequently, $K^{* *}=H S P_{\alpha_{0}}(K)$, or even, $K^{* *}=H S P_{g}(K)=H S P_{\alpha_{0}}(K)=H S P P_{f a_{0}}(K)$ (cf. [1]).

In general, the first statement fails to hold. Indeed, take $R=\{1,2\}$ and for every type F let $K \cap \mathscr{K}_{F}$ be the equational class determined by the identities $g\left(x_{1}\right)=h\left(x_{1}\right)\left(g, h \in F_{1}\right)$. Supposing $f \in F_{2}$, identity $f\left(g\left(x_{1}\right), g\left(x_{1}\right)\right)=f\left(h\left(x_{1}\right), h\left(x_{1}\right)\right)$ is obviously valid in $H S P_{\alpha_{0}}(K) \cap \mathscr{K}_{F}$, but this identity is not in K_{F}^{*}. However, we still have a somewhat weaker result:

Theorem 1. Let $p, q \in T_{F}$ be arbitrary trees of type F. Then $p=q$ is a valid identity in an equational class $H S P_{a_{0}}(K) \cap \mathscr{K}_{F}$ if and only if $K^{*} \vDash p=q$.

Proof. Sufficiency follows by observing that general product preserves K^{*}, that is, $P_{g}(K) \subseteq K^{* *}$. Therefore, also $H S P_{\alpha_{0}}(K) \subseteq K^{* *}$. In order to prove the necessity of our Theorem, let Σ contain those valid identities $p=q$ of the equational class $H S P_{\alpha_{0}}(K) \cap \mathscr{H}_{F}$ for which our statement does not hold. Supposing $\Sigma \neq \varnothing$, choose $p=q \in \Sigma$ in such a way that $\mid \operatorname{sub}(p) \cup$ sub $(q) \mid$ is minimal.

Now take an algebra $\mathfrak{X}=(A, F)$ freely generated by the sequence a_{1}, a_{2}, \ldots in the equational class $H S P_{a_{0}}(K) \cap \mathscr{K}_{F}$. First we show that if we have $r_{q_{1}}\left(a_{1}, a_{2}, \ldots\right)=$ $=s_{\mathrm{a}}\left(a_{1}, a_{2}, \ldots\right)$ for some trees $r, s \in \operatorname{sub}(p) \cup \operatorname{sub}(q)$, then $r=s$, i.e., the trees r and s coincide. Assume to the contrary that there exist different trees $r, s \in$ $\in \operatorname{sub}(p) \cup \operatorname{sub}(q)$ with $r_{\mathfrak{I}}\left(a_{1}, a_{2}, \ldots\right)=s_{\mathfrak{q}}\left(a_{1}, a_{2}, \ldots\right)$. Let us fix a tree $r \in \operatorname{sub}(p) \cup$ $\cup \operatorname{sub}(q)$ with the property that if $\bar{r} \in \operatorname{sub}(p) \cup \operatorname{sub}(q)$ and $\bar{r}_{\mathfrak{I I}}\left(a_{1}, a_{2}, \ldots\right)=r_{\mathfrak{I}(1)}\left(a_{1}, a_{2}, \ldots\right)$ then $h(r) \leqq h(r)$, and there is a distinct tree $s \in \operatorname{sub}(p) \cup$ sub (q) with $r_{r_{4}}\left(a_{1}, a_{2}, \ldots\right)=$ $=s_{\mathfrak{Z}}\left(a_{1}, a_{2}, \ldots\right)$. Given r, choose a different tree $s \in \operatorname{sub}(p) \cup \operatorname{sub}(q)$ such that $r_{\mathfrak{I}}\left(a_{1}, a_{2}, \ldots\right)=s_{\mathfrak{I}}\left(a_{1}, a_{2}, \ldots\right)$, and $h(\bar{s}) \leqq h(s)$ whenever $\bar{s} \in \operatorname{sub}(p) \cup \operatorname{sub}(q)$ and
$s_{\mathfrak{I}}\left(a_{1}, a_{2}, \ldots\right)=\bar{s}_{\mathfrak{I}}\left(a_{1}, a_{2}, \ldots\right)$. Obviously, we have $h(r) \leqq h(s)$. If $s \in \operatorname{sub}(p)$ then let us substitute r for any occurrence of s in p, and denote the resulting tree by \bar{p}. If $s \notin \operatorname{sub}(p)$ then put $\bar{p}=p$. Similar procedure when applied to q will produce the tree \bar{q}. Of course we have $\operatorname{sub}(\bar{p}) \cup \operatorname{sub}(\bar{q}) \subseteq \operatorname{sub}(p) \cup \operatorname{sub}(q)$, or even, the choise of r and s garantees that $s \notin \operatorname{sub}(\bar{p}) \cup \operatorname{sub}(\bar{q})$. Thus, $\mid \operatorname{sub}(\bar{p}) \cup$ $\cup \operatorname{sub}(\bar{q})|<|\operatorname{sub}(p) \cup \operatorname{sub}(q)|$. Similarly, $| \operatorname{sub}(r) \cup \operatorname{sub}(s)|<|\operatorname{sub}(p) \cup \operatorname{sub}(q)|$.

As $r_{\mathfrak{I}}\left(a_{1}, a_{2}, \ldots\right)=s_{\mathfrak{g}}\left(a_{1}, a_{2}, \ldots\right)$, it follows that $r=s$ is a valid identity in $H S P_{\alpha_{0}}(K) \cap \mathscr{K}_{F}$. As $|\operatorname{sub}(r) \cup \operatorname{sub}(s)|<|\operatorname{sub}(p) \cup \operatorname{sub}(q)| \quad$ also $\quad K^{*} \models r=s$. As $r=s$ is a valid identity in $H S P_{\alpha_{0}}(K) \cap \mathscr{K}_{F}$, also the equalities $p_{21}\left(a_{1}, a_{2}, \ldots\right)=$ $=\bar{p}_{\mathfrak{I}}\left(a_{1}, a_{2}, \ldots\right)$ and $q_{श_{1}}\left(a_{1}, a_{2}, \ldots\right)=\bar{q}_{\mathfrak{I}}\left(a_{1}, a_{2}, \ldots\right)$ are satisfied. Since $p=q$ was a valid identity in $H S P_{a_{0}}(K) \cap \mathscr{K}_{F}$ and \mathfrak{A} is freely generated by a_{1}, a_{2}, \ldots, also $\bar{p}=\bar{q}$ is a valid identity in $H S P_{\alpha_{0}}(K) \cap \mathscr{K}_{\boldsymbol{F}}$. As $|\operatorname{sub}(\bar{p}) \cup \operatorname{sub}(\bar{q})|<|\operatorname{sub}(p) \cup \operatorname{sub}(q)|$, by the choise of the identity $p=q$, we obtain that $K^{*} \vDash \bar{p}=\bar{q}$. The construction of the trees \bar{p} and \bar{q} shows that $\{r=s, \bar{p}=\bar{q}\} \models p=q$. We have already seen that $K^{*} \models r=s$, thus, $K^{*} \models p=q$. This is a contradiction.

So far we have shown that the equality $r_{12}\left(a_{1}, a_{2}, \ldots\right)=s_{\mathfrak{2 l}}\left(a_{1}, a_{2}, \ldots\right)$ is satisfied by trees $r, s \in \operatorname{sub}(p) \cup \operatorname{sub}(q)$ if and only if $r=s$. Next we are going to prove that $p=q \in K_{F}^{*}$. As $K^{*} \vDash p=q$ holds in this case evidently, this would again be a contradiction.

Assume that $p=q \ddagger K_{F}^{*}$. Then there is a type F^{\prime} and a relabeling $\varphi: T_{F} \rightarrow T_{F}$, such that $\varphi(p)=\varphi(q)$ is not a valid indentity in the class $K \cap \mathscr{K}_{F^{\prime}}$. Therefore, there is an algebra $\mathfrak{B}=\left(B, F^{\prime}\right) \in K$ and elements $b_{1}, b_{2}, \ldots \in B$ with

$$
\varphi(p)_{\mathfrak{B}}\left(b_{1}, b_{2}, \ldots\right) \neq \varphi(q)_{\mathfrak{B}}\left(b_{1}, b_{2}, \ldots\right)
$$

Let $\mathfrak{C}=(C, F)$ be any α_{0}-product $\Pi(\mathfrak{H}, \mathfrak{B}, \psi)$ with ψ satisfying the follo wing conditions for every $f \in F_{k}(k \geqq 0)$:
(i) $\psi_{1}(f)=f$,
(ii) $\psi_{2}\left(\left(p_{1}\right)_{\mathfrak{N}}\left(a_{1}, a_{2}, \ldots\right), \ldots\left(p_{k}\right)_{\mathfrak{R}}\left(a_{1}, a_{2}, \ldots\right), f\right)=\operatorname{rt}\left(\varphi\left(f\left(p_{1}, \ldots, p_{k}\right)\right)\right)$
if $f\left(p_{1}, \ldots, p_{k}\right)$ is a subtree of p or q.
In order to show that such an α_{0}-product exists, it is enough to see that whenever both $f\left(p_{1}, \ldots, p_{k}\right)$ and $f\left(q_{1}, \ldots, q_{k}\right)$ are subtrees of p or q and $\left(p_{i}\right)_{\mathfrak{H}}\left(a_{1}, a_{2}, \ldots\right)=\left(q_{i}\right)_{\mathfrak{N}}\left(a_{1}, a_{2}, \ldots\right) \quad(i=1, \ldots, k)$ then $\operatorname{rt}\left(\varphi\left(f\left(p_{1}, \ldots, p_{k}\right)\right)\right)=$ $=\operatorname{rt}\left(\varphi\left(f\left(q_{1}, \ldots q_{k}\right)\right)\right)$. But this can be seen immediately as φ is a mapping and $\left(p_{i}\right)_{\mathfrak{M}}\left(a_{1}, a_{2}, \ldots\right)=\left(q_{i}\right)_{\mathfrak{M}}\left(a_{1}, a_{2}, \ldots\right)$ implies that $p_{i}=q_{i}$.

As $H S P_{\alpha_{0}}(K)$ is closed under α_{0}-products, we get $\mathbb{C} \in H S P_{\alpha_{0}}(K) \cap \mathscr{K}_{F}$. On the other hand, $\varphi(p)_{\mathfrak{B}}\left(b_{1}, b_{2}, \ldots\right) \neq \varphi(q)_{\mathfrak{B}}\left(b_{1}, b_{2}, \ldots\right)$ implies that $p_{\mathbb{C}}\left(\left(a_{1}, b_{1}\right)\right.$, $\left.\left(a_{2}, b_{2}\right), \ldots\right) \neq q_{\mathfrak{C}}\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{\mathfrak{z}}\right), \ldots\right)$, contrary to our assumption that $p=q$ is valid in $H S P_{\alpha_{0}}(K) \cap \mathscr{K}_{F}$.

A set of identities $\Delta \subseteq T_{F}^{2}$ is called closed if whenever $\Delta \vDash p=q$ is valid for trees $p, q \in T_{F}$ then $p=q \in \Delta$. It is known from universal algebra that Δ is closed if and only if the following five conditions are satisfied by Δ :
(i) $x_{i}=x_{i} \in \Delta(i=1,2, \ldots)$,
(ii) $p=q \in \Delta$ implies that $q=p \in \Delta$,
(iii) $p=q, q=r \in \Delta$ implies that $p=r \in \Delta$,
(iv) if $p_{i}=q_{i} \in \Delta$ for all $i=1, \ldots, k(k \geqq 0)$ and $f \in F_{k}$ then $f\left(p_{1}, \ldots, p_{k}\right)=$ $=f\left(q_{1}, \ldots, q_{k}\right) \in \Delta$,
(v) if $p=q \in \Delta$ and we get p^{\prime} and q^{\prime} from p and q by substituting all nccurences of a variable x_{i} by an arbitrary tree $r \in T_{F}$ then $p^{\prime}=q^{\prime} \in \Delta$.

By virtue of the previous Theorem, if K_{F}^{*} is closed for every type \dot{F}, then whenever $p=q$ is a valid identity in an equational class $H S P_{\alpha_{0}}(K) \cap \mathscr{K}_{F}$ then $p=q \in K_{F}^{*}$. Conversely, if $p=q \in K_{F}^{*}$ then $p=q$ is a valid identity in $H S P_{z_{0}}(K) \cap \mathscr{K}_{F}$. As K_{F}^{*} always satisfies conditions from (i) to (v) above except (iv), a necessary and sufficient condition for K_{F}^{*} to be closed is to satisfy condition (iv). In this way we get the following

Corollary. Assume that K_{F}^{*} satisfies condition (iv) for every type F. Then an identity $p=q$ is valid in an equational class $H S P_{\alpha_{0}}(K) \cap \mathscr{K}_{F}$ if and only if $p=q \in K_{F}^{*}$. Conversely, if we have the equivalence $p=q$ is valid in an equational class $H S P_{z_{0}}(K) \cap \mathscr{K}_{F}$ if and only if $p=q \in K_{F}^{*}$ then K_{F}^{*} satisfies condition (iv).

Further on we shall need the following
Lemma. Let $\left.\mathfrak{A}=(A, F)=\Pi\left(\mathfrak{A}_{i}, \varphi\right) \mid i \in I\right)$ be an arbitrary infinite α_{0}-product of algebras $\mathfrak{H}_{i}=\left(A_{i}, F_{i}\right)$ and let $J \subseteq I$ and $T \subseteq T_{F}$ be finite sets. For every sequence $a_{1}, a_{2}, \ldots \in A$ there is a finite α_{0}-product $\mathfrak{B}=(B, F)=\Pi\left(\mathscr{H}_{i}, \psi \mid i \in J_{1}\right)$ with $J \subseteq J_{1}$ and such that $\psi_{i}\left(a_{1 J_{1}}, a_{2 J_{1}}, \ldots, p\right)=\varphi_{i}\left(a_{1}, a_{2}, \ldots, p\right)$ for any $p \in T$ and $i \in J .{ }^{1}$

Proof. Put $h=\max \{h(p) \mid p \in T\}$. If $h=0$ then our statement is obviously valid. We proceed by induction on h. Let $h>0$ and assume that the proof is done for $h-1$. For every $k>0$ and $f \in F_{k}$ set

$$
\begin{gathered}
U_{f}=\{p \mid p \in T, \quad h(p)=h, \quad \operatorname{rt}(p)=f\} \\
V_{f}=\{p \mid p \in \cup(\operatorname{sub}(q) \mid q \in T) \cup T, \quad \operatorname{rt}(p)=f\}
\end{gathered}
$$

Let $(p, q, i) \in U_{f} \times V_{f} \times J$ - say $p=f\left(p_{1}, \ldots, p_{k}\right), q=f\left(q_{1}, \ldots, q_{k}\right)$ - be arbitrary. If $\varphi_{i}\left(p_{19}\left(a_{1}, a_{2}, \ldots\right), \ldots, p_{k{ }^{21}}\left(a_{1}, a_{2}, \ldots\right), f\right) \neq \varphi_{i}\left(q_{19}\left(a_{1}, a_{2}, \ldots\right), \ldots, q_{k_{19}}\left(a_{1}, a_{2}, \ldots\right), f\right)$ then choose an index $i_{0}<i$ with $\left(p_{t_{\mathrm{tg}}}\left(a_{1}, a_{2}, \ldots\right)\right)_{i_{0}} \neq\left(q_{t_{\mathrm{ta}}}\left(a_{1}, a_{2}, \ldots\right)\right)_{i_{0}}$ for some $t \in\{1, \ldots, k\}$. Denote by I_{0} the set of indices obtained in this way, and put $J^{\prime}=J \cup I_{0}$, $T^{\prime}=\cup($ sub $(p) \mid p \in T) \cup\{p \in T \mid h(p)<h\}$. By the induction hypothesis, there exist a finite set J_{1}^{\prime} and an α_{0}-product $\mathfrak{B}^{\prime}=\left(B^{\prime}, F\right)=\Pi\left(\mathfrak{H}_{i}, \psi^{\prime} \mid i \in J_{1}^{\prime}\right)$ with $J^{\prime} \subseteq J_{1}^{\prime}$ and satisfying $\psi_{i}^{\prime}\left(a_{1_{J_{1}^{\prime}}}, a_{J_{J_{1}^{\prime}}^{\prime}}, \ldots, p\right)=\varphi_{i}\left(a_{1}, a_{2}, \ldots, p\right)$ for each $p \in T^{\prime}$ and $i \in J_{1}^{\prime}$.

Set $J_{1}=J_{1}^{\prime}$ and define the α_{0}-product $\mathfrak{B}=(B, F)=\Pi\left(\mathfrak{H}_{i}, \psi \mid i \in J_{1}\right)$ so that the following two conditions are satisfied:
(i) $\psi\left(b_{1}, \ldots, b_{k}, f\right)=\psi^{\prime}\left(b_{1}, \ldots, b_{k}, f\right)$ if $f \in F_{k}(k \geqq 0)$ and there exist trees $p_{1}, \ldots, p_{k} \in T_{F}$ with $f\left(p_{1}, \ldots, p_{k}\right) \in T^{\prime}$ and $b_{t}=p_{\operatorname{tg}^{\prime}}\left(a_{J_{1}}, a_{2 J_{1}}, \ldots\right)(t=1, \ldots, k)$,
(ii) $\psi_{i}\left(b_{1}, \ldots, b_{k}, f\right)=\varphi_{i}\left(c_{1}, \ldots, c_{k}, f\right)$ if $i \in I, f \in F_{k}(k>0)$, and there exist trees $p_{1}, \ldots, p_{k} \in T_{F}$ with $f\left(p_{1}, \ldots, p_{k}\right) \in U_{f}$ and $b_{t}=p_{t \mathfrak{t g}}\left(a_{1 J_{1}}, a_{2 J_{1}}, \ldots\right), c_{t}=p_{t \underline{t}}\left(a_{1}, a_{2}, \ldots\right)$ $(t=1, \ldots, k)$.

[^0]Such an α_{0}-product exist, since otherwise we would have an index $i \in I$ together with distinct trees $p=f\left(p_{1}, \ldots, p_{k}\right) \in U_{f}, q=f\left(q_{1}, \ldots, q_{k}\right) \in V_{f}\left(f \in F_{k}, k>0, p_{t}, q_{t} \in T_{F}\right)$ such that $\left(p_{t \underline{1}}\left(a_{1}, a_{2}, \ldots\right)\right)_{j}=\left(q_{t \mathfrak{1}}\left(a_{1}, a_{2}, \ldots\right)\right)_{j}(t=1, \ldots, k)$ for all $j<i$ but $\varphi_{i}\left(p_{1_{\mathfrak{I}}}\left(a_{1}, a_{2}, \ldots\right), \ldots, p_{k_{\mathfrak{Z}}}\left(a_{1}, a_{2}, \ldots\right), f\right) \neq \varphi_{i}\left(q_{1_{\mathfrak{q}}}\left(a_{1}, a_{2}, \ldots\right), \ldots, q_{k_{\mathfrak{I}}}\left(a_{1}, a_{2}, \ldots\right), f\right)$. Also the equalities $\psi_{i}\left(a_{1_{J_{1}}}, a_{2 J_{1}}, \ldots, p\right)=\varphi_{i}\left(a_{1}, a_{2}, \ldots, p\right)(i \in I, p \in T)$ follow in an easy way.

Theorem 2. $H S P P_{f \alpha_{0}}(K)=H S P_{\alpha_{0}}(K)=H S P_{g}(K)=K^{* *}$ holds for any class K of algebras.

Proof. The last two equalities immediately follow by Theorem 1 and Birkhoff's Theorem. $H S P P_{f \alpha_{0}}(K) \subseteq H S P_{\alpha_{0}}(K)$ is obvious. We claim that also $H S P_{\alpha_{0}}(K) \subseteq$ $\subseteq H S P P_{f x_{0}}(K)$. This can be seen by showing that if F is an arbitrary type and an identity $p=q$ ($p, q \in T_{F}$) is not valid in $P_{\alpha_{0}}(K) \cap \mathscr{K}_{F}$ then the same holds for $P_{f \alpha_{0}}(K) \cap \mathscr{K}_{F}$. But this is a trivial consequence of our Lemma.

Theorem 2 is in a close connection with the characterization theorem of metrically complete systems of algebras in [2]. It turns out that a system K of algebras having finite types is metrically complete if and only if K^{*} contains only trivial identities. In other words this means that K is complete (that is, $H S P_{g}(K)$ is the class of all algebras) if and only if K is metrically complete.

DEPT. OF COMPUTER SCIENCE
-A. JÓZSEF UNIVERSITY
ARADI VÉRTANUK TERE 1
SZEGED, HUNGARY
H-6720

References

[1] Ésik, Z. and F. Gécseg, General products and equational classes of automata, Acta Cybernet. v. 6, 1983, pp. 281-284.
[2] Gécseg, F., On a representation of deterministic frontier-to-root tree transformations, Acta Sci. Math. (Szeged), v. 45, 1983, pp. 177-187.
[3] Grätzer, G., Universal algebra, D. Van Nostrand Company, 1968.
(Received Jan. 18, 1983)

[^0]: ${ }^{1}$ The ordering on J_{1} is the restriction of the ordering on I to J_{1}. If $a \in \Pi\left(A_{i} \mid i \in I\right)$ then $a_{J_{1}} \epsilon$ $\in \Pi\left(A_{i} \mid i \in J_{1}\right)$ is determined by ($\left.a_{J_{1}}\right)_{i}=a_{i}$ for any $i \in J_{1}$.

