
An implementation of the HLP

B y T . GYIMOTHY*, E . SIMON*, A . MAKAY**

Introduction

The Helsinki Language Processor (HLP) system was designed originally [7]
for description of programming languages and for automatic generation of compilers.
Saving the descriptional metalanguages different implementations have a great
freedom with respect to the applications of parsing, semantic evaluation and soft-
ware generation technics. Our implementation chooses SIMULA 67 [1] as base
language which influences the collection of semantic functions usable for description
of semantic features and the structure of the generated compiler too.

This text follows the steps of the generating process. A source language L is
assumed which has a lexical description on the lexical metalanguage and a syntactic-
semantic description on that metalanguage of the HLP.

There are two hand-written lexical analyzers for the metalanguages. One of
them receives the lexical description of L and produces the input for the generator
of the lexical analyzer of L. This will be constructed as a finite automaton. The
other works on the syntactic-semantic description of L fundamentally in the form
of an attribute grammar, producing the input for the semantic evaluator and for
the pure syntax constructor. Because there may be different token class names and
terminal strings in the lexical and syntactical description, unification of the symbol
table of the generated lexical analyzer must be executed after that two lexical analysis.
In the semantic description of L we can use attributes as SIMULA types involving
simple types, classes, expressions, functions, statements and predefined standard
procedures.

Having the pure syntax of L, the parser generator checks the grammar being
of type LR (1) [2]. If it is so it constructs the table of the optimal parser of type
LR (1), LALR (1), SLR (1) or LR (0).

We can choose one of the modified strategies ASE [3] or OAG [4] for computing
the necessary passes and order of the evaluation of the attribute values in the gene-
rated compiler. For each syntax rule a SIMULA class is constructed, which contains
the actions of parsing and evaluation decomposed to passes, anywhere this rule is
applied in a derivation. One-pass compilation is possible if we have only synthesized
attributes and it means, that the values of all attribute occurences are evaluable

316 T. Gyim6thy, E. Simon, A. Makay

during parsing bottom up. This is a sufficient condition and so a proposition with
respect to the formulation of the grammar.

By this means we have all components of the combined parser and semantic
evaluator. Working under the control of the parsing table new objects of types
predefined in the above SIMULA classes are created and connected as the deriva-
tion tree. Subsequent passes are executed by reactivating and deactivating the objects
as the inner structures of the classes prescibe the evaluation order.

The generators have the same structure as the generated compiler so there are
possibilities to generate new variations of the lexical analysers and the parser by
the system itself. We have written these parts of the HLPin the metalanguages of
its own.

Structure of the generated compiler

The nucleus of the generated compiler (GC) consists of a parser based on a gram-
mar G from the class or subclass of the LR (1) grammars. It constructs the deriva-
tion tree in the grammar G from the token stream produced from the incoming
text p£L(G) by the generated lexical analyzer GL. The nodes of the derivation
tree are the SIMULA objects of types (SIMULA classes) representing the rewriting
rules in the grammar G. Local pointers inside the objects ensure the connections
— edges — toward the nodes on a lower level of the tree.

The objects contain the local variables of the attribute occurrences too together
with the calling sequence, which represents the attribute evaluation strategy pre-
defined from the attribute dependencies of the grammar G by one of the algorithms
ASE or OAG. During parsing, when a new object is activated not only a new node
is generated in the derivation tree (bottom up) but those attributes are evaluated,
which depend on previously evaluated attributes. After that the object — the
procedural part of the object — detaches itself while accessing the contents of the
variables of the attribute occurrences just evaluated is possible. These are usable by
the objects on a higher level of the derivation tree. Reactivating an object a new
package of attribute occurences not evaluated yet is evaluable. Of course during
evaluation this object activates other objects too- going up or down in the tree in the
order of the strategy. After finite number of activating-deactivating action pairs
an object together with all the objects on the lower levels have no attribute occurences
not evaluated. This part of the tree is unnecessary so it is destroyed. Finally we
have only the root of the derivation tree together with one or more attributes of
the initial nonterminal of the grammar G. Generally these attributes serve the
purposes of the target code generation.

Of course we can describe and so generate not only a compiler for a programming
language by an attribute grammar — as the metalanguage of the system — but other
special purpose systems based on context-free languages too: schemes of data bases,
machine architectures, picture description and processing, and so on. The common
feature of these tasks is, that there exist a class of very similar algorithms, each of
which we can specify by a context-free grammar together with several special
attributes. The result is, that we have a generated software system specialized to one
task only and the gain is in time or space complexity. It is the case of a compiler
too: GC has a parser for one grammar and one strategy for the evaluation of a given
attribute set.

An implementation of the HLP 317

Although it is possible to describe the generation of the target code by an attribute
in the metalanguage too, we recommend a final pass for it based on the other attribute
values evaluated earlier. Several procedures well defined for this purpose can help
the users in that —. target language dependent — job. So far we have neglected
this aspect because we need experiences in large-sized and complicated languages.

Lexical metalanguage

The lexical metalanguage is used to describe the lexical structure of the source
language for automatic construction of the lexical analyzer which forms tokens from
the character strings of the source program. A description on the lexical meta-
language consists of five parts. In the first part a collection of character sets is
defined. Specification of token classes by regular expressions can be found in the
second part. The description of transformations concerns characters and token
classes too. Transformations are performed during the isolation of a character
or tokens. In action blocks the scanning sequence, screening of keywords from token
classes and the way the isolated tokens are sent to the syntax analyzer, are given.

To give an idea of what a lexical description looks like we refer to the de-
scription of a simple block structured language called BLOCK HLP given in
Appendix.

The syntactic and semantic metalanguage

The definition of an attribute grammar is divided into five parts. First the
inherited and synthesized attributes must be defined by SIMULA types. It should
be noted that the concept of global attributes was not implemented. Global
attributes can be replaced by SIMULA objects. In nonterminal declaration those
nonterminals are declared which appear in the production list as the left-hand side
of at least one production. Each nonterminal declaration has a possibly empty
attribute list associated with it. An attribute from this list is associated with all
nonterminals appering in the nonterminal list. The third part of the description
is the declaration of the start symbol. We assume the grammar to be reduced. The
auxiliary SIMULA variables, classes, functions and procedures which are used in
the semantic rules and code generation are declared in the procedure declaration
part.

As in the original HLP system we employ BNF (Backus Naur Form) description
method for the syntax of the source language. Semantic rules and code generation
are built in the productions. Note that if the semantic part is empty for one produc-
tion, then the use of ECF (Extended Context Free) description [5] on the right-
hand side is allowable. According to the SIMULA features the original notation
of an attribute occurence is modified. In a production, if an attribute is associated
to the left-hand side nonterminal, then only the attribute name must occur. Other
attribute occurences are denoted by

nonterminal name • attribute name.
In Appendix the syntactic semantic description of the language BLOCK HLP can be
found too.

318 T. Gyim6thy, E. Simon, A. Makay

Attribute grammars

An attribute grammar (AG) can be considered as an extension of a context
free (CF) grammar with attributes and semantic rules defining values of attributes.
These attributes serve to describe the semantic features of the language elements.

An AG is a 3-tuple

AG = (G, A, F),

where G=(VN, VT,P, S) is a reduced CF grammar, VN, VT,P and S denote
the nonterminals, terminals, productions and the start symbol of the grammar
respectively.

A production p£P has the form

p: X0^X1...XHp, where np 3= 0, X0£VN, X£V„\JVT (1 ^ i ^ np).
The finite set A is the set of attributes. There is a fixed set A(X) associated with
each nonterminal X£VN denoting the attributes of X. For an X£VN, p£P and
a£A(X) X- a denotes an attribute occurrence in p. An attribute can be either
inherited or synthesized, so each A(X) is partitioned into two disjoint subsets,
I(X) and SOO-

The set

Ap = (j U
i=0 o€vi(X|)

denotes all attribute occurrences in a syntactic rule p.
The set F consists of semantic rules associated with syntactic rules too. A se-

mantic rule is a function type defined on attribute occurrences as argument types.
For each attribute we have a set of attribute values (the domain of attribute) and
for each semantic rule a semantic function defined on the sets which are related to
its type. Formally, let us denote by Fp the rules associated with syntactic rule
p, then

F=[JFp.
piP

We classify the set Ap into an output attribute occurrence set

OAp = {A'; • a |(i = 0 and a£S(X,)) or (i > 0 and a€ /№))}

and an input attribute occurrence set [6].

IAp = Ap—OAp
We assume, that for each Xr OAp there is exactly one semantic rule fdFp the
function related to it defines the value of Xt • a. An AG is in normal form provided
that only input occurrences appear as arguments of the semantic rules.

An implementation of the HLP 319

Evaluation of attribute values

Denote by i a derivation tree in the grammar G. If a node of t is labeled
by X, then we can augment it by the attribute occurrences of X and their semantic
rules defined by two syntactic rules. One of these is applied on the level over X in
t and defines the inherited occurrences, while the other on the level under X deter-
mines the synthesized ones. Naturally, the root has no inherited and the leaves have
no synthesized occurrences. (Leaves have attributes defined by the lexical analyzer
which can be considered as synthesized ones.) A rule p, so an attribute occurrence
may occur several times in t. We distinguish them and if it would be confusing
we say occurrence in a tree t. Denote by TAG the set of the augmented derivation
trees in AG.

Let be given the set of semantic functions F associated with F. The value of
each attribute occurrence in t is computed by one of these functions and it is
computable only if the argument values are computed. Therefore we have de-
pendencies among attribute occurrences in the tree t. We denote by (Xt •a—Xj-b)
the fact, that the function defining the value of Xj • b in t has the value of Xra
as an argument. We say that Xj • b depends on Х{-а in t. By this relation the
set F and the tree t induce a dependency graph D,. If D, has no cycle it deter-
mines an evaluation order for the computation of the values of all attribute occur-
rences in t. An attribute grammar is noncircular if there is no derivation tree with
dependency graph containing a cycle. The decision whether an AG is noncircular
requires algorithms of exponential complexity.

To determine the dependency graph to each derivation is time-consuming
during compilation. For several subclasses of AG's it is possible to determine an
evaluation strategy based on the grammar only. Such a strategy consists of an
ordering of the attribute occurrences in the rules of the grammar in the form of
a dependency graph D and means, that wherever an occurrence X • a appears
in any tree t, it is computable if the occurrences on which it depends by D are
already evaluated. The problem is determine D from the AG. During compila-
tion we have to follow the evaluation order defined by D for each derivation tree.
Naturally it is a tree traversal strategy and one travers may be seen as a pass of
the compilation.

Two subclasses of AG's are considered in our system in accordance with them
two algorithms, ASE and OAG serve to generate evaluation strategies.

ASE

The ASE algorithm is based on a fixed tree traversal strategy. An AG is ASE
if any td G is evaluable during m alternating depht-first, left-to-right (L—R)
and depht-first right-to-left (R—L) tree traversal passes.

The attribute evaluation during an L—R traversal can be illustrated for a syn-
tactic rule p: X^X-l ... X„p as follows.

PROCEDURE TRAVERSE (X0);
BEGIN
FOR i : = 1 STEP 1 UNTIL np DO

320 T. Gyim6thy, E. Simon, A. Makay

BEGIN EVAL (/(Z,)); TRAVERSE (X¡) END;
EVAL (S(Z0));
END OF TRAVERSE;

During an R—L pass the FOR statement above has the form
FOR i : = n„ STEP - 1 UNTIL 1 DO

The ASE algorithm makes a membership test for an AG by this traversal procedure,
and assigns attributes to passes. By the EVAL procedure we denoted the computa-
tion of the values of the attributes. The different instances of the same attribute
is evaluated during the same pass.

Our experiences show that the ASE subclass is large enough and can be applied
well in a compiler writing system. But it needs some modification in the original
algorithm to use it in a practical system. For example we need not traverse a subtree
during the ¡th pass if there is no evaluable attribute in this subtree. It can be decided
by the following test.

Denote H(X) the set of nonterminals which can be derived from an Xd VN.
It is easy to generate these sets by the transitive closure using P.

Let K(X) = (J A(Y), and denote by A} the set of attributes which can be
YÍHÍX)

evaluated during the jth pass.
If (K(X)US{X))C)Aj=0, then for an X¡=X we will not call the TRA-

VERSE (X¡) during the jth pass.
In the ASE algorithm the tree traversal and the attribute evaluation starts from

the root of the derivation tree. In our system we use bottom-up tree constructor
and many synthesized attributes can be evaluated interleaved with the construction
of the derivation tree. These synthesized attributes can be easily assigned by the
TRAVERSE procedure often decreasing the number of evaluation passes of an AG.

We can ensure an efficient space management technique for a generated compiler
by using an extended version of ASE algorithm. We test for each p £ P whether
after the rth pass the attributes of the subtrees which can be derived from p are
computed or not. If each of them are computed we generate a statement for the
rule p which releases these subtrees. This technique is based on a garbage collector
and is very efficient, because large parts of a derivation tree are released during
the construction of the tree.

The ASE algorithm is pessimistic in the sense that it considers all dependencies
for an attribute a. E. g. there are dependencies for an attribute a in the rules p and
q, but there is no derivation tree containing the rules p and q together. Generally
this does not occur in practical programming languages but it causes problems in
some types of languages. Whether there is a derivation tree containing the rules
p and q together may be decided by a simple algorithm using the sets H(x).

OAG

In this section we give a short description of the OAG algorithm using some
notations of [4]. We modified this algorithm, so an attribute evaluation strategy
is given for a larger subclass of noncircular AG's. The time needed for the modified
algorithm does not significantly differ from the time needed for the original algorithm.

An implementation of the H L P 321

As opposed to ASE algorithm in the OAG algorithm there is not a predefined
tree traversal strategy. For each AG6 OAG an attribute evaluation strategy is
generated, and all derivation trees of the AG can be evaluated by this strategy. The
OAG algorithm for each X£ VN constructs a partial order over the set A(X),
such that in any derivation tree containing X its attributes are evaluable in that
order.

Denote by DS (X) the partial order over the A(X), and let

D S = U DS(JT)

be the set of these partial orders.
We define dependency graphs over the attribute occurrences of syntactic rules

and over the attributes of nonterminals, finally we construct DS using these graphs.
The dependency graph DP p contains the direct dependencies between attribute

occurrences associated to a syntactic rule p.

DPp = {(Xt • a — Xj • b) | there is an f£Fp defining Xj-b depending on Xi • a}

DP = U DPP
Pi?

The dependency graph IDP can be constructed from the DP

IDPp = DP^ U {(Xi • a - Xi • b)\Xt occurs in rules p and

-q, (Xra-+Xrb)eIDP+},

where IDP+ denotes the nonreflexive, transitive closure of IDP,.

IDP = U IDP,
piP

The graph IDP comprises the direct and indirect dependencies of attribute oc-
currences. For an Xf VN the dependency graph IDS (X) contains the induced
dependencies between attributes of X

IDS (X) = {(Z- a^X-b) | there is an Xt = X in a rule p and

(Xra -+Xi-b)elDPp}

IDS = |J IDS(Z).
xzVn

The set DS can be constructed using IDS. For an Xd VN the set A(X) is partitioned into
disjoint subsets A(X)h and DS (X) defines a linear ordering over these subsets. The
sets A(X)i are determined such that for an a£A(X)i if (X • a-~X • b)£lDS (X)
and b£A(X)k, then k^i. The sets A(X)i consist of either synthesized or inherited
attributes only. The DS (X) defines an alternating sequence of the synthesized and
inherited sets A(X)i.

DS(X) = I D S ^ U P ' a - X- b)\X- a£A(X)k, X- beA(X)kh, 2 S k ^ MX},

322 T. Gyim6thy, E. Simon, A. Makay

where mx is the number of the sets А(Х)(. The extended dependency graph EDP
is defined by IDP and DS.

EDP, = IDPpU • a - X, • b)\(X-a — X- DS (X),

Xi = X and Xt occurs in rule p}

EDP = (J EDPp.
per

A given AG is an OAG iff the EDP is noncircular. We implemented the OAG
algorithm as a part of our compiler writing system. We have favourable experiences
using the algorithm, but we have found simple attribute grammars (occurring in
practical applications, see Fig. 1), where the IDP is noncircular but the EDP is
circular. We modified the OAG algorithm so that in these cases we generate a new
EDP.

The graphs DP, IDP, IDS. DS are computed using the original algorithm.
In the next step for each X£VN and (X- a—X- b)£DS (X)—IDS (X) we add
(X-a^X-b) to IDPp , if X occurs in rule p, and construct IDP+. If a (Yc^Yd)
is induced in IDP+, then

(a) if (Y<f-y-c)(EDS(Y)—IDS(Y), then we add (Y c^Y-d) to IDS (Y)
and generate a new DS (Y) using the modified IDS (Y),

(b) if (Yrf— Yc)6 lDS (Y), then the algorithm is finished and the given
AG is not an OAG,

(c) otherwise we have (Y c—Y-d) out of consideration.
If each (Z-a -Z-6)£DS(Z)—IDS(Z) is added for an X£VN, then the

set DS (X) is not changed later on.
In Fig. 1 we show an AG which is neither ASE nor OAG but for which an

attribute evaluation strategy can be generated using the modified OAG algorithm.
We denote by о an inherited attribute and by • a synthesized one.

The dependencies in rule 2 show that AG $ ASE. We construct the sets A(Y)t
and A(Z\ using the rules 1, 3, 5. The sets A(Y)1 = 0, A(Y)2 = {e,g}, A(Y)z={f)
and A(Z)1 = {/}, A(Z)2={e} imply that (У-/—Г-e)£DS (У) and (Z - e - Z - /) €
6DS(Z). If we construct EDP3 by DS (y) and DS (Z) it will be circular, so
AG $ OAG. Using the modified algorithm, if we add (Y-f^Ye) to IDP3,
then (Z- /—Z-e) is induced in IDS(Z). The new DS (Z) is constructed from
the sets A(Z\ = 0, A(Z)2={e), A(Z)3={f} and the EDP is generated by this
DS (Z) will be noncircular. It is easy to prove that for an AG£OAG the modified
algorithm does not change the set DS and graph EDP. The OAG algorithm for
each p£P generates a visit-sequence VSP using the graph EDPp . Each VSP is
linear sequence of node visits and attribute evaluations and it is easy to generate
an attribute evaluation strategy using the sets VSP.

An implementation of the HLP 323

1. -XY
a b c
o

X

e f g
O {J

Y-+IZ
Y

4. X ^ t
a b c
u °

x
5. Z-W

z * /

Fig. 1

Construction of the parser

In the present paragraph the logical description of parsing automata constructor
modul is given. This modul serves to compute the state transitions for finite state
and stack automaton too. The definition of the token classes by regular expressions
and the description of an ECF grammar are coded uniform manner. Consequently
the procedure which computes the parsing states can be controlled at the job control
level to generate finite, ELR (1), ELALR (1), ESLR (1) or ELR (0) [2] states too.
The states are represented by SIMULA objects based on the following declarations.

CLASS ITEM (NO, DOT, RSET);
INTEGER NO, DOT; REF (SET) RSET;

BEGIN
REF (ITEM) LINK;
END ITEM;

CLASS SET (BOUND);
INTEGER BOUND ;

BEGIN INTEGER ARRAY TSET [0: BOUND];
END SET;

It is easy to see that this representation has two advantages. The finite and LR (0)
states which have no follower set can be stored uniform manner. Secondly, those

7 Acta Cybernetics VI/3

324 T. Gyim6thy, E. Simon, A. Makay

items which have the same follower sets store only one SIMULA reference to an
object in which the followers have been written. If the computed state is equal
to a state which has been computed earlier then the SIMULA run-time system releases
the space by calling the garbage collector. For each computed state there is a table
which contains a set of ordered pairs. The first element describes the state number
from which this state has been derived. The second element contains the symbol
code used to compute the considered state.

By applying the next theorem from [2] to our parser constructor we can obtaine
an useful conclusion. An ELR (0) language can be parsed by a finite state automaton
iff there is no state which can be derived by a nonterminal from more than one state.
Hence, in order to generate a finite state automaton the ELR (0) states are computed
first. It is followed by performing the finite state test.

After computing the selected type of states (ELR (1), ELALR (1), ESLR (1)
and ELR (0)) a membership test will be performed together with parser code gene-
ration. If it produces true then the next type of states will be computed from the
last states. The test are performed from ELR (3) to ELR (0). Some simple optimi-
zation procedure are executed during the tests. In the present version of our imple-
mentation there is no automatic error recovery procedure. Ordering of states on
the base [8] an efficient error correcting algorithm is under development.

The states and the internal code of the lexical analyzer as a finite automaton
are generated by the same modul. Of course we need additional service routines
working in the lexical analyzers. These are written for metalanguage purposes,
but they can be used in the generated compilers in the same form too.

Appendix

% LEXICAL DESCRIPTION FOR A SIMPLE BLOCK STRUCTURED
% LANGUAGE
% CALLED BLOCKHLP
LEXICAL DESCRIPTION BLOCKHLP
CHARACTER SETS

LETTER0R_DIGIT=LETTER/DIG1T;
END OF CHARACTER SETS
TOKEN CLASSES

UNDERSCORE = ;
1DENTIFIER=LETTER (LETTERORDIGIT/UNDERSCORE) * [16];
PROPERTY = DIGIT + [2];
COMMENT * ANY* ENDOFLINE;
SPACES =SPACE* ENDOFLINE;
SPACES = S P A C E + ;

END OF TOKEN CLASSES
TRANSFORMATIONS ARE
UNDERSCORE = > ;
END OF TRANSFORMATIONS

ACTBLOCK: BEGIN
IDENTIFIER=> IDENTIFIER / KEYSTRINGS;
PROPERTY PROPERTY;
COMMENT ;
SPACES = > ;

END OF ACT BLOCK

An implementation of the HLP 325

END OF LEXICAL DESCRIPTION BLOCKHLP.
FINIS

% SYNTACTIC-SEMANTIC DESCRIPTION OF BLOCKHLP
ATTRIBUTE GRAMMAR BLOCKHLP
SYNTHESIZED ATTRIBUTES ARE

REF (SYMB) SYMREF; REF (SDECL) SEREF;
INTEGER ID, TYPE, EXTYPE;

END OF SYNTHESIZED ATTRIBUTES
INHERITED ATTRIBUTES ARE

REF (SBL) SYMT;
END OF INHERITED ATTRIBUTES
NONTERMINALS ARE

PROGRAM;
BLOCK HAS SYMT, SYMREF;
STATLIST HAS SYMT, SYMREF;
STAT HAS SYMT, SEREF;
IDECL HAS ID, TYPE;
EXDECL HAS SYMT, EXTYPE;

END OF NONTERMINALS

% PROCEDURES AND CLASSES
$$$$

CLASS SBL (A, B);
REF (SBL) A; REF (SYMB) B;
BEGIN
END OF SBL ;
CLASS SYMB (A, B) ;
REF (SYMB)A; REF (SDECL)B;
BEGIN
END OF SYMB;
CLASS SDECL (A, B);
INTEGER A, B;
BEGIN
END OF SDECL;

PROCEDURE FIND (A, B, C);
NAME A;
INTEGER A, B; REF (SBL)C;
BEGIN

% The value of A will be the type of the variable B. This type is tried to find
% in the list of identifiers defined by C • B. If B is not found in it, then C is replaced
% by C-A. Repeating until having the type of B or being the list empty, the
% requested value is done or A is undeclared.

END OF FIND

% END OF PROCEDURES AND CLASSES
PRODUCTIONS ARE

%1%

7*

326 T. Gyim6thy, E. Simon, A. Makay

PROGRAM = BLOCK;
DO

BLOCK.SYMT :— NEW SBL (NONE, BLOCK.SYMREF);

END
%2%
BLOCK = STATLIST;
%3%
STATLIST = STATLIST STAT;
DO

SYMREF :— IF STAT.SEREF = / = NONE THEN
NEW SYMB (STATLIST.SYMREF, STAT.SEREF) ELSE

STATLIST.SYMREF;
END
%4%
STATLIST = STAT;
DO

SYMREF :— IF STAT.SEREF = = NONE THEN NONE
ELSE NEW SYMB (NONE, STAT.SEREF);

END
%5%
STAT = IDECL;
DO

SEREF :— NEW SDECL (IDECL.ID.IDECL.TYPE);
END

%6%
STAT = EXDECL;
DO

SEREF :— NONE;
END
%7%
STAT = BEGIN BLOCK END;
DO

BLOCK.SYMT :— NEW SBL (SYMT,BLOCK.SYMREF);
SEREF :— NONE;

END
% 8 %
IDECL = DECLARE IDENTIFIER PROPERTY;
DO

ID := IDENTIFIER.VALUE;
TYPE := PROPERTY.VALUE;

END
%9%
EXDECL = USE IDENTIFIER;
DO

An implementation of the HLP 327

EXTYPE <=FIND (EXTYPE,IDENTIFIER.VALUE,EXDECL.SYMT);
END
END OF PRODUCTIONS
END OF ATTRIBUTE GRAMMAR

% SIMULA classes associated with two nonterminals and a production in the
% generated compiler
NODE CLASS GRNODE 1;

BEGIN COMMENT PROGRAM;
END;

NODE CLASS GRNODE 2;
BEGIN COMMENT BLOCK;
REF (SBL) SYMT;
REF (SYMB) SYMREF;
END ;

GRNODE 1 CLASS P 1;
BEGIN COMMENT PROGRAM;
REF (GRNODE 2) BLOCK;

BLOCK: — POP QUA GRNODE 2;
PUSH (GOTO (1), THIS NODE);
DETACH *
BLOCK.SYMT:— NEW SBL (NONE, BLOCK.SYMREF);
CALL (BLOCK);
DETACH;
END ;

• R E S E A R C H G R O U P ON T H E O R Y O F A U T O M A T A
H U N G A R I A N A C A D E M Y O F SCIENCES
SOMOGYI U. 7
SZEGED, H U N G A R Y
H-6720

• • D E P T . O F C O M P U T E R SCIENCE
A. JÓZSEF UNIVERSITY
A R A D I V É R T A N Ú K T E R E I
SZEGED, H U N G A R Y
H-6720

References i

[1] DAHL, O . J . , B . MYHRHAUG and K . NYGAARD, S I M U L A 6 7 common base language, Nor-
wegian Computing Center, Publication No. S-2, May 1968.

[2] HEILBRUNNER, S., A parsing automata approach to LR theory, Theoret. Comput. Sci., v. 15,
1981, pp. 117—157.

[3] JAZAYERI, M. and K. G. WALTER, Alternating semantic evaluator, Proc. of the ACM 1975.
Annual Conference, Oct. 1975, pp. 230—234.

[4] KASTENS, U., Ordered attribute grammars, Acta Inform., v. 13, 1980, pp. 229—256.
[5] PURDOM , P. W . , JR . B R O W N and A . CYNTHIA , Parsing extended L R (k) grammars, Acta Inform.

v. 15 , 1 9 8 1 , p p . 1 1 5 — 1 2 7 .
[6] RAIHA, K. J., A space management technique for multi-pass attribute evaluators, University

of Helsinki, Report A-1981-4, 1981.
[7] RAIHA , K.J., M . SAARINEN, E . SOISALON—SOININEN and M . TIENARI , The compiler writing

system HLP (Helsinki Language Processor). University of Helsinki. Report A—1978—2,1978.
[8] ROHRICH, J . , Methods for the automatic construction for error correcting parsers, Acta Inform.,

v. 13. 1980, pp. 115—139.

(Received Feb. 7, 1983)

