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Introduction 

The Helsinki Language Processor (HLP) system was designed originally [7] 
for description of programming languages and for automatic generation of compilers. 
Saving the descriptional metalanguages different implementations have a great 
freedom with respect to the applications of parsing, semantic evaluation and soft-
ware generation technics. Our implementation chooses SIMULA 67 [1] as base 
language which influences the collection of semantic functions usable for description 
of semantic features and the structure of the generated compiler too. 

This text follows the steps of the generating process. A source language L is 
assumed which has a lexical description on the lexical metalanguage and a syntactic-
semantic description on that metalanguage of the HLP. 

There are two hand-written lexical analyzers for the metalanguages. One of 
them receives the lexical description of L and produces the input for the generator 
of the lexical analyzer of L. This will be constructed as a finite automaton. The 
other works on the syntactic-semantic description of L fundamentally in the form 
of an attribute grammar, producing the input for the semantic evaluator and for 
the pure syntax constructor. Because there may be different token class names and 
terminal strings in the lexical and syntactical description, unification of the symbol 
table of the generated lexical analyzer must be executed after that two lexical analysis. 
In the semantic description of L we can use attributes as SIMULA types involving 
simple types, classes, expressions, functions, statements and predefined standard 
procedures. 

Having the pure syntax of L, the parser generator checks the grammar being 
of type LR (1) [2]. If it is so it constructs the table of the optimal parser of type 
LR (1), LALR (1), SLR (1) or LR (0). 

We can choose one of the modified strategies ASE [3] or OAG [4] for computing 
the necessary passes and order of the evaluation of the attribute values in the gene-
rated compiler. For each syntax rule a SIMULA class is constructed, which contains 
the actions of parsing and evaluation decomposed to passes, anywhere this rule is 
applied in a derivation. One-pass compilation is possible if we have only synthesized 
attributes and it means, that the values of all attribute occurences are evaluable 
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during parsing bottom up. This is a sufficient condition and so a proposition with 
respect to the formulation of the grammar. 

By this means we have all components of the combined parser and semantic 
evaluator. Working under the control of the parsing table new objects of types 
predefined in the above SIMULA classes are created and connected as the deriva-
tion tree. Subsequent passes are executed by reactivating and deactivating the objects 
as the inner structures of the classes prescibe the evaluation order. 

The generators have the same structure as the generated compiler so there are 
possibilities to generate new variations of the lexical analysers and the parser by 
the system itself. We have written these parts of the HLPin the metalanguages of 
its own. 

Structure of the generated compiler 

The nucleus of the generated compiler (GC) consists of a parser based on a gram-
mar G from the class or subclass of the LR (1) grammars. It constructs the deriva-
tion tree in the grammar G from the token stream produced from the incoming 
text p£L(G) by the generated lexical analyzer GL. The nodes of the derivation 
tree are the SIMULA objects of types (SIMULA classes) representing the rewriting 
rules in the grammar G. Local pointers inside the objects ensure the connections 
— edges — toward the nodes on a lower level of the tree. 

The objects contain the local variables of the attribute occurrences too together 
with the calling sequence, which represents the attribute evaluation strategy pre-
defined from the attribute dependencies of the grammar G by one of the algorithms 
ASE or OAG. During parsing, when a new object is activated not only a new node 
is generated in the derivation tree (bottom up) but those attributes are evaluated, 
which depend on previously evaluated attributes. After that the object — the 
procedural part of the object — detaches itself while accessing the contents of the 
variables of the attribute occurrences just evaluated is possible. These are usable by 
the objects on a higher level of the derivation tree. Reactivating an object a new 
package of attribute occurences not evaluated yet is evaluable. Of course during 
evaluation this object activates other objects too- going up or down in the tree in the 
order of the strategy. After finite number of activating-deactivating action pairs 
an object together with all the objects on the lower levels have no attribute occurences 
not evaluated. This part of the tree is unnecessary so it is destroyed. Finally we 
have only the root of the derivation tree together with one or more attributes of 
the initial nonterminal of the grammar G. Generally these attributes serve the 
purposes of the target code generation. 

Of course we can describe and so generate not only a compiler for a programming 
language by an attribute grammar — as the metalanguage of the system — but other 
special purpose systems based on context-free languages too: schemes of data bases, 
machine architectures, picture description and processing, and so on. The common 
feature of these tasks is, that there exist a class of very similar algorithms, each of 
which we can specify by a context-free grammar together with several special 
attributes. The result is, that we have a generated software system specialized to one 
task only and the gain is in time or space complexity. It is the case of a compiler 
too: GC has a parser for one grammar and one strategy for the evaluation of a given 
attribute set. 
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Although it is possible to describe the generation of the target code by an attribute 
in the metalanguage too, we recommend a final pass for it based on the other attribute 
values evaluated earlier. Several procedures well defined for this purpose can help 
the users in that —. target language dependent — job. So far we have neglected 
this aspect because we need experiences in large-sized and complicated languages. 

Lexical metalanguage 

The lexical metalanguage is used to describe the lexical structure of the source 
language for automatic construction of the lexical analyzer which forms tokens from 
the character strings of the source program. A description on the lexical meta-
language consists of five parts. In the first part a collection of character sets is 
defined. Specification of token classes by regular expressions can be found in the 
second part. The description of transformations concerns characters and token 
classes too. Transformations are performed during the isolation of a character 
or tokens. In action blocks the scanning sequence, screening of keywords from token 
classes and the way the isolated tokens are sent to the syntax analyzer, are given. 

To give an idea of what a lexical description looks like we refer to the de-
scription of a simple block structured language called BLOCK HLP given in 
Appendix. 

The syntactic and semantic metalanguage 

The definition of an attribute grammar is divided into five parts. First the 
inherited and synthesized attributes must be defined by SIMULA types. It should 
be noted that the concept of global attributes was not implemented. Global 
attributes can be replaced by SIMULA objects. In nonterminal declaration those 
nonterminals are declared which appear in the production list as the left-hand side 
of at least one production. Each nonterminal declaration has a possibly empty 
attribute list associated with it. An attribute from this list is associated with all 
nonterminals appering in the nonterminal list. The third part of the description 
is the declaration of the start symbol. We assume the grammar to be reduced. The 
auxiliary SIMULA variables, classes, functions and procedures which are used in 
the semantic rules and code generation are declared in the procedure declaration 
part. 

As in the original HLP system we employ BNF (Backus Naur Form) description 
method for the syntax of the source language. Semantic rules and code generation 
are built in the productions. Note that if the semantic part is empty for one produc-
tion, then the use of ECF (Extended Context Free) description [5] on the right-
hand side is allowable. According to the SIMULA features the original notation 
of an attribute occurence is modified. In a production, if an attribute is associated 
to the left-hand side nonterminal, then only the attribute name must occur. Other 
attribute occurences are denoted by 

nonterminal name • attribute name. 
In Appendix the syntactic semantic description of the language BLOCK HLP can be 
found too. 
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Attribute grammars 

An attribute grammar (AG) can be considered as an extension of a context 
free (CF) grammar with attributes and semantic rules defining values of attributes. 
These attributes serve to describe the semantic features of the language elements. 

An AG is a 3-tuple 

AG = (G, A, F), 

where G=(VN, VT,P, S) is a reduced CF grammar, VN, VT,P and S denote 
the nonterminals, terminals, productions and the start symbol of the grammar 
respectively. 

A production p£P has the form 

p: X0^X1...XHp, where np 3= 0, X0£VN, X£V„\JVT (1 ^ i ^ np). 
The finite set A is the set of attributes. There is a fixed set A(X) associated with 
each nonterminal X£VN denoting the attributes of X. For an X£VN, p£P and 
a£A(X) X- a denotes an attribute occurrence in p. An attribute can be either 
inherited or synthesized, so each A(X) is partitioned into two disjoint subsets, 
I(X) and SOO-

The set 

Ap = (j U 
i=0 o€vi(X|) 

denotes all attribute occurrences in a syntactic rule p. 
The set F consists of semantic rules associated with syntactic rules too. A se-

mantic rule is a function type defined on attribute occurrences as argument types. 
For each attribute we have a set of attribute values (the domain of attribute) and 
for each semantic rule a semantic function defined on the sets which are related to 
its type. Formally, let us denote by Fp the rules associated with syntactic rule 
p, then 

F=[JFp. 
piP 

We classify the set Ap into an output attribute occurrence set 

OAp = {A'; • a |(i = 0 and a£S(X,)) or ( i > 0 and a€ /№))} 

and an input attribute occurrence set [6]. 

IAp = Ap—OAp 
We assume, that for each Xr OAp there is exactly one semantic rule fdFp the 
function related to it defines the value of Xt • a. An AG is in normal form provided 
that only input occurrences appear as arguments of the semantic rules. 
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Evaluation of attribute values 

Denote by i a derivation tree in the grammar G. If a node of t is labeled 
by X, then we can augment it by the attribute occurrences of X and their semantic 
rules defined by two syntactic rules. One of these is applied on the level over X in 
t and defines the inherited occurrences, while the other on the level under X deter-
mines the synthesized ones. Naturally, the root has no inherited and the leaves have 
no synthesized occurrences. (Leaves have attributes defined by the lexical analyzer 
which can be considered as synthesized ones.) A rule p, so an attribute occurrence 
may occur several times in t. We distinguish them and if it would be confusing 
we say occurrence in a tree t. Denote by TAG the set of the augmented derivation 
trees in AG. 

Let be given the set of semantic functions F associated with F. The value of 
each attribute occurrence in t is computed by one of these functions and it is 
computable only if the argument values are computed. Therefore we have de-
pendencies among attribute occurrences in the tree t. We denote by (Xt •a—Xj-b) 
the fact, that the function defining the value of Xj • b in t has the value of Xra 
as an argument. We say that Xj • b depends on Х{-а in t. By this relation the 
set F and the tree t induce a dependency graph D,. If D, has no cycle it deter-
mines an evaluation order for the computation of the values of all attribute occur-
rences in t. An attribute grammar is noncircular if there is no derivation tree with 
dependency graph containing a cycle. The decision whether an AG is noncircular 
requires algorithms of exponential complexity. 

To determine the dependency graph to each derivation is time-consuming 
during compilation. For several subclasses of AG's it is possible to determine an 
evaluation strategy based on the grammar only. Such a strategy consists of an 
ordering of the attribute occurrences in the rules of the grammar in the form of 
a dependency graph D and means, that wherever an occurrence X • a appears 
in any tree t, it is computable if the occurrences on which it depends by D are 
already evaluated. The problem is determine D from the AG. During compila-
tion we have to follow the evaluation order defined by D for each derivation tree. 
Naturally it is a tree traversal strategy and one travers may be seen as a pass of 
the compilation. 

Two subclasses of AG's are considered in our system in accordance with them 
two algorithms, ASE and OAG serve to generate evaluation strategies. 

ASE 

The ASE algorithm is based on a fixed tree traversal strategy. An AG is ASE 
if any td G is evaluable during m alternating depht-first, left-to-right (L—R) 
and depht-first right-to-left (R—L) tree traversal passes. 

The attribute evaluation during an L—R traversal can be illustrated for a syn-
tactic rule p: X^X-l ... X„p as follows. 

PROCEDURE TRAVERSE (X0); 
BEGIN 
FOR i : = 1 STEP 1 UNTIL np DO 
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BEGIN EVAL (/(Z,)); TRAVERSE (X¡) END; 
EVAL (S(Z0)); 
END OF TRAVERSE; 

During an R—L pass the FOR statement above has the form 
FOR i : = n„ STEP - 1 UNTIL 1 DO 

The ASE algorithm makes a membership test for an AG by this traversal procedure, 
and assigns attributes to passes. By the EVAL procedure we denoted the computa-
tion of the values of the attributes. The different instances of the same attribute 
is evaluated during the same pass. 

Our experiences show that the ASE subclass is large enough and can be applied 
well in a compiler writing system. But it needs some modification in the original 
algorithm to use it in a practical system. For example we need not traverse a subtree 
during the ¡th pass if there is no evaluable attribute in this subtree. It can be decided 
by the following test. 

Denote H(X) the set of nonterminals which can be derived from an Xd VN. 
It is easy to generate these sets by the transitive closure using P. 

Let K(X) = (J A(Y), and denote by A} the set of attributes which can be 
YÍHÍX) 

evaluated during the jth pass. 
If (K(X)US{X))C)Aj=0, then for an X¡=X we will not call the TRA-

VERSE (X¡) during the jth pass. 
In the ASE algorithm the tree traversal and the attribute evaluation starts from 

the root of the derivation tree. In our system we use bottom-up tree constructor 
and many synthesized attributes can be evaluated interleaved with the construction 
of the derivation tree. These synthesized attributes can be easily assigned by the 
TRAVERSE procedure often decreasing the number of evaluation passes of an AG. 

We can ensure an efficient space management technique for a generated compiler 
by using an extended version of ASE algorithm. We test for each p £ P whether 
after the rth pass the attributes of the subtrees which can be derived from p are 
computed or not. If each of them are computed we generate a statement for the 
rule p which releases these subtrees. This technique is based on a garbage collector 
and is very efficient, because large parts of a derivation tree are released during 
the construction of the tree. 

The ASE algorithm is pessimistic in the sense that it considers all dependencies 
for an attribute a. E. g. there are dependencies for an attribute a in the rules p and 
q, but there is no derivation tree containing the rules p and q together. Generally 
this does not occur in practical programming languages but it causes problems in 
some types of languages. Whether there is a derivation tree containing the rules 
p and q together may be decided by a simple algorithm using the sets H(x). 

OAG 

In this section we give a short description of the OAG algorithm using some 
notations of [4]. We modified this algorithm, so an attribute evaluation strategy 
is given for a larger subclass of noncircular AG's. The time needed for the modified 
algorithm does not significantly differ from the time needed for the original algorithm. 
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As opposed to ASE algorithm in the OAG algorithm there is not a predefined 
tree traversal strategy. For each AG6 OAG an attribute evaluation strategy is 
generated, and all derivation trees of the AG can be evaluated by this strategy. The 
OAG algorithm for each X£ VN constructs a partial order over the set A(X), 
such that in any derivation tree containing X its attributes are evaluable in that 
order. 

Denote by DS (X) the partial order over the A(X), and let 

D S = U DS(JT) 

be the set of these partial orders. 
We define dependency graphs over the attribute occurrences of syntactic rules 

and over the attributes of nonterminals, finally we construct DS using these graphs. 
The dependency graph DP p contains the direct dependencies between attribute 

occurrences associated to a syntactic rule p. 

DPp = {(Xt • a — Xj • b) | there is an f£Fp defining Xj-b depending on Xi • a} 

DP = U DPP 
Pi? 

The dependency graph IDP can be constructed from the DP 

IDPp = DP^ U {(Xi • a - Xi • b)\Xt occurs in rules p and 

-q, (Xra-+Xrb)eIDP+}, 

where IDP+ denotes the nonreflexive, transitive closure of IDP,. 

IDP = U IDP, 
piP 

The graph IDP comprises the direct and indirect dependencies of attribute oc-
currences. For an Xf VN the dependency graph IDS (X) contains the induced 
dependencies between attributes of X 

IDS (X) = {(Z- a^X-b) | there is an Xt = X in a rule p and 

(Xra -+Xi-b)elDPp} 

IDS = |J IDS(Z). 
xzVn 

The set DS can be constructed using IDS. For an Xd VN the set A(X) is partitioned into 
disjoint subsets A(X)h and DS ( X ) defines a linear ordering over these subsets. The 
sets A(X)i are determined such that for an a£A(X)i if (X • a-~X • b)£lDS (X) 
and b£A(X)k, then k^i. The sets A(X)i consist of either synthesized or inherited 
attributes only. The DS (X) defines an alternating sequence of the synthesized and 
inherited sets A(X)i. 

DS(X) = I D S ^ U P ' a - X- b)\X- a£A(X)k, X- beA(X)kh, 2 S k ^ MX}, 
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where mx is the number of the sets А(Х)(. The extended dependency graph EDP 
is defined by IDP and DS. 

EDP, = IDPpU • a - X, • b)\(X-a — X- DS (X), 

Xi = X and Xt occurs in rule p} 

EDP = (J EDPp. 
per 

A given AG is an OAG iff the EDP is noncircular. We implemented the OAG 
algorithm as a part of our compiler writing system. We have favourable experiences 
using the algorithm, but we have found simple attribute grammars (occurring in 
practical applications, see Fig. 1), where the IDP is noncircular but the EDP is 
circular. We modified the OAG algorithm so that in these cases we generate a new 
EDP. 

The graphs DP, IDP, IDS. DS are computed using the original algorithm. 
In the next step for each X£VN and (X- a—X- b)£DS (X)—IDS (X) we add 
(X-a^X-b) to IDPp , if X occurs in rule p, and construct IDP+. If a (Yc^Yd) 
is induced in IDP+, then 

(a) if (Y<f-y-c)(EDS(Y)—IDS(Y), then we add (Y c^Y-d) to IDS (Y) 
and generate a new DS (Y) using the modified IDS (Y), 

(b) if (Yrf— Yc)6 lDS (Y), then the algorithm is finished and the given 
AG is not an OAG, 

(c) otherwise we have (Y c—Y-d) out of consideration. 
If each (Z-a -Z-6 )£DS(Z)—IDS(Z) is added for an X£VN, then the 

set DS (X) is not changed later on. 
In Fig. 1 we show an AG which is neither ASE nor OAG but for which an 

attribute evaluation strategy can be generated using the modified OAG algorithm. 
We denote by о an inherited attribute and by • a synthesized one. 

The dependencies in rule 2 show that AG $ ASE. We construct the sets A(Y)t 
and A(Z\ using the rules 1, 3, 5. The sets A(Y)1 = 0, A(Y)2 = {e,g}, A(Y)z={f) 
and A(Z)1 = {/}, A(Z)2={e} imply that (У-/—Г-e)£DS (У) and ( Z - e - Z - / ) € 
6DS(Z). If we construct EDP3 by DS (y ) and DS (Z) it will be circular, so 
AG $ OAG. Using the modified algorithm, if we add (Y-f^Ye) to IDP3, 
then (Z- /—Z-e) is induced in IDS(Z). The new DS (Z) is constructed from 
the sets A(Z\ = 0, A(Z)2={e), A(Z)3={f} and the EDP is generated by this 
DS (Z) will be noncircular. It is easy to prove that for an AG£OAG the modified 
algorithm does not change the set DS and graph EDP. The OAG algorithm for 
each p£P generates a visit-sequence VSP using the graph EDPp . Each VSP is 
linear sequence of node visits and attribute evaluations and it is easy to generate 
an attribute evaluation strategy using the sets VSP. 
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Construction of the parser 

In the present paragraph the logical description of parsing automata constructor 
modul is given. This modul serves to compute the state transitions for finite state 
and stack automaton too. The definition of the token classes by regular expressions 
and the description of an ECF grammar are coded uniform manner. Consequently 
the procedure which computes the parsing states can be controlled at the job control 
level to generate finite, ELR (1), ELALR (1), ESLR (1) or ELR (0) [2] states too. 
The states are represented by SIMULA objects based on the following declarations. 

CLASS ITEM (NO, DOT, RSET); 
INTEGER NO, DOT; REF (SET) RSET; 

BEGIN 
REF (ITEM) LINK; 
END ITEM; 

CLASS SET (BOUND); 
INTEGER BOUND ; 

BEGIN INTEGER ARRAY TSET [0: BOUND]; 
END SET; 

It is easy to see that this representation has two advantages. The finite and LR (0) 
states which have no follower set can be stored uniform manner. Secondly, those 

7 Acta Cybernetics VI/3 
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items which have the same follower sets store only one SIMULA reference to an 
object in which the followers have been written. If the computed state is equal 
to a state which has been computed earlier then the SIMULA run-time system releases 
the space by calling the garbage collector. For each computed state there is a table 
which contains a set of ordered pairs. The first element describes the state number 
from which this state has been derived. The second element contains the symbol 
code used to compute the considered state. 

By applying the next theorem from [2] to our parser constructor we can obtaine 
an useful conclusion. An ELR (0) language can be parsed by a finite state automaton 
iff there is no state which can be derived by a nonterminal from more than one state. 
Hence, in order to generate a finite state automaton the ELR (0) states are computed 
first. It is followed by performing the finite state test. 

After computing the selected type of states (ELR (1), ELALR (1), ESLR (1) 
and ELR (0)) a membership test will be performed together with parser code gene-
ration. If it produces true then the next type of states will be computed from the 
last states. The test are performed from ELR (3) to ELR (0). Some simple optimi-
zation procedure are executed during the tests. In the present version of our imple-
mentation there is no automatic error recovery procedure. Ordering of states on 
the base [8] an efficient error correcting algorithm is under development. 

The states and the internal code of the lexical analyzer as a finite automaton 
are generated by the same modul. Of course we need additional service routines 
working in the lexical analyzers. These are written for metalanguage purposes, 
but they can be used in the generated compilers in the same form too. 

Appendix 

% LEXICAL DESCRIPTION FOR A SIMPLE BLOCK STRUCTURED 
% LANGUAGE 
% CALLED BLOCKHLP 
LEXICAL DESCRIPTION BLOCKHLP 
CHARACTER SETS 

LETTER0R_DIGIT=LETTER/DIG1T; 
END OF CHARACTER SETS 
TOKEN CLASSES 

UNDERSCORE = ; 
1DENTIFIER=LETTER (LETTERORDIGIT/UNDERSCORE) * [16]; 
PROPERTY = DIGIT + [2]; 
COMMENT * ANY* ENDOFLINE; 
SPACES =SPACE* ENDOFLINE; 
SPACES = S P A C E + ; 

END OF TOKEN CLASSES 
TRANSFORMATIONS ARE 
UNDERSCORE = > ; 
END OF TRANSFORMATIONS 

ACTBLOCK: BEGIN 
IDENTIFIER=> IDENTIFIER / KEYSTRINGS; 
PROPERTY PROPERTY; 
COMMENT ; 
SPACES = > ; 

END OF ACT BLOCK 
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END OF LEXICAL DESCRIPTION BLOCKHLP. 
FINIS 

% SYNTACTIC-SEMANTIC DESCRIPTION OF BLOCKHLP 
ATTRIBUTE GRAMMAR BLOCKHLP 
SYNTHESIZED ATTRIBUTES ARE 

REF (SYMB) SYMREF; REF (SDECL) SEREF; 
INTEGER ID, TYPE, EXTYPE; 

END OF SYNTHESIZED ATTRIBUTES 
INHERITED ATTRIBUTES ARE 

REF (SBL) SYMT; 
END OF INHERITED ATTRIBUTES 
NONTERMINALS ARE 

PROGRAM; 
BLOCK HAS SYMT, SYMREF; 
STATLIST HAS SYMT, SYMREF; 
STAT HAS SYMT, SEREF; 
IDECL HAS ID, TYPE; 
EXDECL HAS SYMT, EXTYPE; 

END OF NONTERMINALS 

% PROCEDURES AND CLASSES 
$$$$ 

CLASS SBL (A, B); 
REF (SBL) A; REF (SYMB) B; 
BEGIN 
END OF SBL ; 
CLASS SYMB (A, B) ; 
REF (SYMB)A; REF (SDECL)B; 
BEGIN 
END OF SYMB; 
CLASS SDECL (A, B); 
INTEGER A, B; 
BEGIN 
END OF SDECL; 

PROCEDURE FIND (A, B, C); 
NAME A; 
INTEGER A, B; REF (SBL)C; 
BEGIN 

% The value of A will be the type of the variable B. This type is tried to find 
% in the list of identifiers defined by C • B. If B is not found in it, then C is replaced 
% by C-A. Repeating until having the type of B or being the list empty, the 
% requested value is done or A is undeclared. 

END OF FIND 

% END OF PROCEDURES AND CLASSES 
PRODUCTIONS ARE 

%1% 

7* 
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PROGRAM = BLOCK; 
DO 

BLOCK.SYMT :— NEW SBL (NONE, BLOCK.SYMREF); 

END 
%2% 
BLOCK = STATLIST; 
%3% 
STATLIST = STATLIST STAT; 
DO 

SYMREF :— IF STAT.SEREF = / = NONE THEN 
NEW SYMB (STATLIST.SYMREF, STAT.SEREF) ELSE 

STATLIST.SYMREF; 
END 
%4% 
STATLIST = STAT; 
DO 

SYMREF :— IF STAT.SEREF = = NONE THEN NONE 
ELSE NEW SYMB (NONE, STAT.SEREF); 

END 
%5% 
STAT = IDECL; 
DO 

SEREF :— NEW SDECL (IDECL.ID.IDECL.TYPE); 
END 

%6% 
STAT = EXDECL; 
DO 

SEREF :— NONE; 
END 
%7% 
STAT = BEGIN BLOCK END; 
DO 

BLOCK.SYMT :— NEW SBL (SYMT,BLOCK.SYMREF); 
SEREF :— NONE; 

END 
% 8 % 
IDECL = DECLARE IDENTIFIER PROPERTY; 
DO 

ID := IDENTIFIER.VALUE; 
TYPE := PROPERTY.VALUE; 

END 
%9% 
EXDECL = USE IDENTIFIER; 
DO 
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EXTYPE <=FIND (EXTYPE,IDENTIFIER.VALUE,EXDECL.SYMT); 
END 
END OF PRODUCTIONS 
END OF ATTRIBUTE GRAMMAR 

% SIMULA classes associated with two nonterminals and a production in the 
% generated compiler 
NODE CLASS GRNODE 1; 

BEGIN COMMENT PROGRAM; 
END; 

NODE CLASS GRNODE 2; 
BEGIN COMMENT BLOCK; 
REF (SBL) SYMT; 
REF (SYMB) SYMREF; 
END ; 

GRNODE 1 CLASS P 1; 
BEGIN COMMENT PROGRAM; 
REF (GRNODE 2) BLOCK; 

BLOCK: — POP QUA GRNODE 2; 
PUSH (GOTO (1), THIS NODE); 
DETACH * 
BLOCK.SYMT:— NEW SBL (NONE, BLOCK.SYMREF); 
CALL (BLOCK); 
DETACH; 
END ; 
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