
On the lattice of clones acting bicentrally 

B y LÁSZLÓ SZABÓ 

1. Introduction 

For a set F of operations on a set A the centralizer F* of F is the set of 
operations on A commuting with every member of F. If F = F** then, we say 
that F acts bicentrally. The sets of operations on A acting bicentrally forms 
a complete lattice &A with respect to Q. 

The sets of operations acting bicentrally were, characterized in [5] and [11]. 
For \A\=3 the lattice ¿¡?A is completely described in [2] and [3]. The aim of this 
paper is to investigate the lattice ¡£A. Among others we show that for any set 
A there exists a single operation / such that {/}** is the set of all operations of 
A (Theorem 5). Furthermore, it is proved that if BQA then JS?B can be embedded 
into &A (Corollary 7). 

2. Preliminaries 

Let A be an at least two element set which will be fixed in the sequel. The set 
of «-ary operations on A will be denoted by 0(/> (ns 1). Furthermore, we set 

0A= U 0\in)- A set FQOA is said to be a clone if it contains all projections and 
n = l 

is closed with respect to superpositions of operations. Denote by [F] the clone 
generated by F. Let / and g be operations of arites n and m, respectively. 
If M is an mXn matrix of elements of A, we can apply / to each row of M to 
obtain a column vector consisting of m elements, which will be denoted by f(M). 
Similarly, we can apply g to each column of M to obtain a row vector of n ele-
ments, which will be denoted by ( M ) g . We say that / and g commute if for every 
mXn matrix M over A, we have (f(M))g—f((M)g). 

By the centralizer of a set FQ 0A we mean the set F*QOA consisting of all 
operations on A that commute with every member of F. It can be shown by 
a simple computation that F*=[F]*=[F + ] for every FQ 0A. The mapping 
F—F* defines a Galois-connection between the subsets of 0A. Indeed, F j g F 2 
implies F * 3 F * and FQ(F*)* = F** for every F l 5 F2 , F ^ O A . From this 
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it follows that F* — F*** for every FQ 0A. Thus the mapping F^F** is a closure 
operator on the subsets of 0A. The set F** is called the bicentralizer of F. If 
F=F** then we say that F acts bicentrally. The sets of operations on A acting 
bicentrally form a complete lattice with respect to Q . Denote by this lattice. 
In <gA we have A F ^ f ] ^ , V / \ = ( U F,-)** and (V Fi)* = A F,*, (A F,)* = 

¡€I iil ¡ZI >£/ '(.I '(.I ¡(.1 
= V F f . It follows that the mapping F^F*(F£H?A) is .a dual automorphism 

i€/ 

The set of all projections, and the set of all injective unary operations on A 
will be denoted by PA and SA, respectively. An operation / € F is said to be 
homogeneous if fkSA. The symbol HA denotes the set of all homogeneous opera-
tions, i.e., HA = SA. 

We say that an operation f^O A is parametrically expressible or generated by 
a set FQOa if the predicate / (x , , ..., xn)=y is equivalent to a predicate of the form 

Oh) ••• (3f|) ((A! = BjA... A(Am = BJ) 
where At and Bi contain only operation symbols from F, variables x, , ..., x„, 
y, tx, ..., commas and round brackets. 

For denote by /„ the n-ary near-projection, i.e. the «-ary operation 
defined as follows: 

"v 1 (x„ otherwise. 

We need the ternary dual discriminator-function d which is defined in the following 
way: 

fx if y ^ z, 
(z if y — z. 

If fZOA and BQA then fB denotes the restriction of / to B. 

3. Results 

First we give two examples. For every subset XQ A let Cx be the set of all 
unary constant operations with value belonging to X. Furthermore, let Ix be 
the set of all operations f£0A for which / (x , . . . , x )=x for every x£X. 

Example 1. For every subset XQA we have Cx=Jx and /*=[CX]. In parti-
cular, PA=0A and 0*A=PA. 

Proof. CX=IX and IX^[CX] are obvious. Now let / £ / £ be an «-ary opera-
tion and suppose that /(£[Cx]. Then / is neither a projection nor a constant opera-
tion with value belonging to X. Therefore there are elements aa, ..., ain£A, 
i = l , . . . ,n+2, such that a ,= / (a a , ..., a j ^a ; , - , i = l , ..., n, and (an + 1 , a„ + 2) = 
=(f(an+lil. ...,an+1J, /(a„ + 2 j l , ..., a„ + 2 j)${(x, x)| x€X}. Let. M=(au)(n+2)Xn. 
Since («!, ...,aB+2)${(x, ...,x)\x£X}, and (a l t ..., a„+2) is distinct from each 
column of M, there exists an (w+2)-ary operation g£lx such that ( f ( M ) ) g = 

an+2)9£f({M)g), showing that / and g do not commute and 
This contradiction shows that Hence I x=[Cx\ . 
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Finally if X=Q then we have IX = 0A and [CX]=[®\=PA. • 

Example 2. If then (SAUCA)*=HA and / / ^ [ S ^ U C J . 

Proof. It is well known that HAQIA if \A\^3 (see e.g. [1]). Therefore 
(SA\JCA)* = S$ncZ=HAMA=HA. In [10] it is proved that [ S ^ U C J acts 
bicentrally. Thus H* = {(SA U CAf)*=[S* U C J * * = U C J . • 

For \A\=2, E. Post [8] described the lattice of clones over A. Using this result 
the lattice Z£A can be determined by routine. Figure 1 is the diagram of Z£A in 
case \A\=2. (We use the notation of [9]). 

C , = O X 

Fig. 1. 



384 L. Szabó 

Considering the diagram we can observe the following facts: if \A\—2 then 
<£a has 25 elements, six atoms (04, 05, Oe, Slt Plt L4), and six dual atoms 
(D3,C2,C3,S6,Pe,L1). Remark that the dual automorphism F—F* coincides 
with the reflection of the diagram with respect to the axis S3—P3. 

For \A\=3, 3?A is a finite lattice of power 2986 and it has 44 atoms and dual 
atoms (see [2], [3] and [4]). 

In general we have the following. 

Theorem 3. If A is a finite set, then the closure operator F—F** is algebraic, 
and Z£a is an atomic and dually atomic algebraic lattice. If A is infinite, then the 
closure operator F—F** is not algebraic. 

Proof. First let A be a finite set. A. V. Kuznecov showed in [5] that F = F** 
if and only if F contains every operation para metrically generated by F. From 
this it follows that the closure operator F—F** is algebraic. Thus i£A is an al-
gebraic lattice. It is well-known that there are finite sets FQGA such that F** = OA 

(see e.g. [4]). Therefore 3?A is dually atomic. Since S£A is dually isomorphic to 
itself, it is atomic, too. 

A. F. Danil'cenko proved in [4] that if then every dual atom of 
is of the form {/}* where f ^ O A is an at most |^|-ary operation. From this it 
follows that has finitely many dual atoms and atoms (the numbers of atoms 
and dual atoms are equal). 

- Now let A be an infinite set and let xlt x2, ...£A be pairwise distinct elements. 
Put J r—fo.Xj+i , ...}, 1 = 1 , 2 , . . . . Then, by Example 1, / = 1 , 2 , . . . 

and clearly - - Furthermore U and ( Q IX)**=(C\I$,)*= 
;=i ¡=i i=I 

= ( f l [Cx$)*PZ=0A. It follows that the closure operator F - F * * is not 
¡=i 

algebraic. • 

Theorem 4. If \A\S5, then HA is an atom and [S^ U C J is a dual atom in Z£A. 

Proof. First we show that if d is the ternary dual discriminator and 
/„ (3shs|V4|) is a near-projection then {<i}* = {/„}*=[S^UCJ. The inclusions 
{ i /}* i [S A UCJ and { / „ } * i [ ^ U C J are obvious. Let / e O W S * U C J b e a n 
m-ary operation. If / depends on one variable only then we can assume without 
loss of generality that / is a unary operation. Since / is non-injective and non-
constant, there are pairwise distinct elements a, b, c£A such that / ( a )^ / ( i>)= / (c ) . 
Furthermore choose elements x4, ..., x„£A such that a, b, c, x4, ..., x„ are pairwise 
distinct. Then f(d(a,b,c))=f(a)^m=d(f(a),f(b),f(c)) and f(ln(a,b, x4, ... 
...,x„, c))=f(d)^f(c)=ln(f(a), f(b),f(x4), . . . ,/(x„),/(c)) showing that / does not 
commute with d and /„, i.e. f${d}* and /${/„}*. Now suppose that / depends on 
at least two variables, among others on the first. Therefore there are elements 
a2, ..., a„£A such that the unary operation g(x)— f(x, a2, ..., a„) is not a constant. 
If / takes on at most n — 1 elements from" A then g is not injective. Therefore 
g${d}* and {/„}*. From this it follows that {d}* and /${/„}*. Finally suppose 
that / takes on at least n ( ^ 3 ) values. Since / depends on at least two variables, 
there are elements a1, ...,am,b1, ...,bm,a,b,c£A such that a, b and c are 
pairwise distinct and a=f{a1,...,am), b=f(b1,a2,...,am), c = / ( a l 5 b2, ..., bm) 
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X41 ... x4m 

x n l . . . Xfim 
a2. ••«m 

£>1 a2. 
ax b 2 . •bm 

(see e.g. [6]). Then d{f{a itb2, ..., bm), f(bu a2, ..., a J , / (a l 5 ..., am))=d(c, b, a) = 
= c^a =f{a1, ..., am) =f(d(a1, bt, ax), d(b2, a2, a2),..., d(bm, am, a j ) showing that 

f${d}*. Finally, since / takes on at least n values, there are elements xa, ...,xim£A, 
i=4, ...,«, such that a, b, c, x4, ..., x„ are pairwise distinct elements where 
xi=/(xa, ..., xim). Now consider the following nXm matrix M. 

M = 

Then ( f ( M ) % = / „ ( x 4 , ..., xn, a, b, c)=x4^c =f(al, b2, ..., bm) =f((M)l„) showing 
that / and /„ do not commute. This completes the proof of the equalities {d}* = 
= [ S a V C a ] and 

Now we are ready to prove the theorem. Since HA=[SA\JCJI\, it is enough 
to show that IIA is an atom in £CA, i.e. for any nontrivial operation fdHA we have 
{ff*=HA or equivalently { / T M S ^ U C J . In [1] and [7] it is shown that if 
then every non-trivial clone of homogeneous operations contains the dual discrimi-
nator or a near-projection. Therefore, if f£HA is a non-trivial operation and 
de[{f}] then [SA\JCA]Q{f}*=[{f}rc{d}*=[sA{JCA}. If /„€[{/}] for some 
«S3, then [SAUCA]Q { /}*=[{ /} f^ { 4 r = [ ^ U C J . Hence 
which completes the proof. • 

- Theorem 5. There exists a function f^OA such that {f}** = 0A. 

Proof. If A is a finite set then let f£0A be a Sheffer function, i.e. an operation 
/ for Which [{f}] = 0A. Then [{/}**=[{/}}**=OT=0A. 

Now let A be an infinite set. In [12] it is proved that there exists a binary rigid 
relation Q on A (Q is rigid if the identity operation is the only unary operation 
preserving Q). Choose a rigid relation Q and define a binary operation h as follows ; 
h(x,y) — x if (x,y)£q and h(x,y) = y if (x, We show that {h}*C]SA = 
= {idA}. Indeed, let t£SA and t^idA. Then there is a pair (x, y)^Q such that 
(t(x), q. Clearly x^y, since otherwise the unary constant operation A-*{x} 
preserves q. It follows that t(h(x, y)) = i(x)^t(y)=h{t(x), t{y)) and {h}*. 

Let gdOA be a fixed point free permutation whose cycles are all infinite. 
Furthermore, let a,b£A with afb. 

Now we are ready to define an operation / such that {/}** = 0A. Let 

g(x) if x = y = z = u, 
d(y, z, u) if y = g(x), 
h(z,u) if x = g(y), 
a , i f y - g ( g ( x ) ) , 
b if x = g(gQO). 
x otherwise.. 

f(x, y, z, u) 

Denote by ca and cb the unary constant operations with values a and b, re1 

spectively. Then g, d, h, ca, c6 €[{/}] since /(x, x, x, x)=g(x), f(x,g(x), y, z) = 
=d(x,y,z), f(g(x),x,x,y)=h(x,y), / (x , g(g(x)), x, x)=ca(x) arid ' f(g(g(xj), 
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x,x,x)=cb(x). If t£{f}* then t£{d,h,ca,cb}*. Since by Theorem 4, 
'€[5.4 UCJ. We can suppose that t is unary. If t£SA then t£ {h}* implies t=idA. 
If t£CA, i.e. t is a constant operation with value x0 then we have that a=ca(t(a)) = 
= t(ca(a))=x0=t(cb(a))—cb(t(a))=b which is a contradiction. Thus we have 
{f}*=PA and (f}**=P*=0A. • 

Let BQA(B?±Q) and let s be a mapping from A onto B such that s(b)=b 
for every b£B. For any operation f£0(

B"\ « = 1, let us define an operation fs€0A 
as follows: / s ( a l f ..., aB)=/(i(ai) , ..., J(fl„)) for any a l 5 ..., an€A. For any FQOB 
let Fs=PAU{fs\f£F}. 

Theorem 6. Let FQOB such that idB£F. Then (FS)**=(F**)S. In parti-
cular, if F = F** then FS=(F5)**. 

Proof. We shall prove the theorem through some statements: 
(1) s£Fs and ¿6(FS)*. 
Since idB£F, we have s=id%$Fs. Let F. If g£PA then, clearly, s com-

mutes with g. If g=fs for some f£F, then for any ..., andA we have 
s(g(#i, .... an)) = j ( / s ( f l i , ..., a j ) = j(/(j(«i), J(a„)) = f{s(s(ai))> •••> s{s(a*j)) = 
=g(s(a1), ...,s(an)). Hence s commutes with g and s£(Fs)*. 

(2) If g€(Fs)* then g preserves B. 
Indeed, if g is w-ary and bu ...,b„^B then g{J}x, ...,b„)=g(s(b1), ...,s(b„)) = 

(3) g£(Fs)* if and only if gB£F* and g commutes with s. 
First suppose that g€(Fs)*. Then g commutes with s, since s£Fs. If / £ F, 

then g commutes with f s . By (2), we have gB£0B, and clearly the restriction of 
f s to B coincides with / . These facts imply that gB commutes with / . Hence 
gB£F*. Now suppose that gB£F*, g commutes with s, and / S £ F S ( / £ F ) . Let 
g and / be m-ary and n-ary, respectively, and choose arbitrary elements an,..., aim 6 A, 
/=1 , ...,n. Then 

fs(g(an, •••» aim), —•> 8(am, •••> O ) = f(s(g(au, ..., almj), ...,s(g(anl, ..., anmj)) = 
= / ( ^ ( • y ( f l l l ) , •••> i(fllm)). •••> ^ ( ^ ( « n l ) , ¿ ( O ) ) = 

= gB(/(s(aii), ...,s(anl))),...,f(s(alm), ...,s(anJ) = 
= g{fs(."u, -,aHl), ...,fs(alm, ..., anJ). 

Hence g commutes with f s and g€(Fs)*. 
(4) If fdF* then / S € ( F S ) * . 

Clearly, the restriction fB to B coincides with f and f s commutes with s. 
Therefore, by (3), we have /S€(FS)*. 

(5) If g£(Fs)** then g£PA or g maps into B. 
Suppose g€(Fs)**\PA is an n-ary operation which takes on a value from A\B. 

Since g is not a projection, for every {1, . . . ,«} there are aa, ..., ain£A such 
that fli=g(aa, ...,ain)^aH. Furthermore let an+11, ..., an+l n<EA such that 
g(a„+i,i,..., an+hn)-an+1^B. Let us define an (n-f-l)-ary operation h£0A as 
follows: 

v N_J s ( a n+i ) (*i» •••' *n + l) = ( a u •••> an+l)> 

otherwise. 
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Then h commutes with s, and hB, being a projection, belongs to F*. Therefore, by 
(3), h£(Fs)*. Now g{h{allL, ...,a„ + 1>1), ...,h(aln, ..., an+1,nj)=g(an+1>1, ...,an+li„)= 
= an+1 ^ s(an+1) = h(a1} ...,an+1) = /i(g(an, ..., aln),..., g(a„+1>i, ..., a„+i,„)). It 
follows that g does not commute with h, which is a contradiction. 

(6) If g<E(Fs)** then g preserves B. 
This follows from (5) 
(7) If g£(Fs)** then gBdF**. 
Let g£(Fs)** and let / be an arbitrary operation in F*. Then, by (4), we have 

that g commutes with f s . Taking into consideration (6), this implies that gB (£0B) 
commutes with / (the restriction of f s to B). It follows that gB£F**. 

Now we are ready to prove the theorem. First let g€(Fs)**. If g£PA then 
clearly g£(F**)s. Suppose that g$PA and let gB=f• Taking into consideration 
(5), (1) and (7), we have that g maps into B,g commutes with s, and f£F**. 
Thus if g is w-ary then for any ax, ..., a„^A we have g(ax, ..., an)=s(g(al, ..., anj) = 
=g(s(ai), ...,j(a„)) =/(•*(%), ...,s(an)) showing that g=fs and gi(F**f. Finally 
let gC(F**)s. If g<=PA then g£(Fs)**. If g$PA then there is an /£F** such that 
g=fs. Take an arbitrary operation h from (Fs)*. Then, by (3), h commutes 
with s and hBeF*. It follows that hB commutes with / (hBeF*=(F**f). Let 
g and h be m-ary and w-ary, respectively, and choose arbitrary elements aa, ... 
..., aim£A, i=l, ..., n. Now 

h(g{a}1, ..., alm), ..., g(anl, ..., anmj) = hB(f(s(an), ..., s(almj), f(s(anl), ..., s(a„m))) = 

= f(hB(s(an), ...,s(anl)),...,hB(s(alm), ...,s(anJ)) = 

- - = f(h(s(an),..., .v(anl)), ..., h(s(alm), ..., s{a„m))) --

= f(s(h(au, ...,anl)), ..., s(h(alm, ...,a„J)) = g(h(an, ...,anl), ...,h(alm, Ji-

lt follows that g commutes with h and g£(Fs)**. • 
Corollary 7. The mapping F - - F s from SCB into SCA is an isomorphism. 

Proof. From Theorem 6 it follows that if Fe£CB then Fs££eA. Observe that 
(FJ fl F2)S = FF fl FF and {Fx U F2)S = F( U F2S for any F l 9 F^S£B. Therefore 
taking into consideration Theorem 6, for any F1? F2£I?B we have that (F1AF2)S — 
=(Fi 0 F 2 ) S =.FF n Fg = FF A F2

s a n d (F^ F2f=({F1 U F 2 )** ) S = ( ( F i U F 2 ) S )** = 
= (FF UF£)** = FF VFF. Finally, it is obvious that the mapping F—FS is injective. • 

Corollary 8. If s ̂  idA then [{J}] is an atom in i£A. 

Proof. Let PBQOB be the set of projections on B. Then F|=[{i}] and there-
fore, by Theorem 6, [{.?}]£ y A . It is trivial that [{j}] is an atom in £?A. • 
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