On the lattice of clones acting bicentrally

By László Szabó

1. Introduction

For a set F of operations on a set A the centralizer F^{*} of F is the set of operations on A commuting with every member of F. If $F=F^{* *}$ then we say that F acts bicentrally. The sets of operations on A acting bicentrally forms a complete lattice \mathscr{L}_{A} with respect to \subseteq.

The sets of operations acting bicentrally were characterized in [5] and [11]. For $|A|=3$ the lattice \mathscr{L}_{A} is completely described in [2] and [3]. The aim of this paper is to investigate the lattice \mathscr{L}_{A}. Among others we show that for any set A there exists a single operation f such that $\{f\}^{* *}$ is the set of all operations of A (Theorem 5). Furthermore, it is proved that if $B \subseteq A$ then \mathscr{L}_{B} can be embedded into $\mathscr{L}_{\boldsymbol{A}}$ (Corollary 7).

2. Preliminaries

Let A be an at least two element set which will be fixed in the sequel. The set of n-ary operations on A will be denoted by $O_{A}^{(n)}(n \geqq 1)$. Furthermore, we set $O_{A}=\bigcup_{n=1}^{\infty} O_{A}^{(n)}$. A set $F \subseteq O_{A}$ is said to be a clone if it contains all projections and is closed with respect to superpositions of operations. Denote by [F] the clone generated by F. Let f and g be operations of arites n and m, respectively. If M is an $m \times n$ matrix of elements of A, we can apply f to each row of M to obtain a column vector consisting of m elements, which will be denoted by $f(M)$. Similarly, we can apply g to each column of M to obtain a row vector of n elements, which will be denoted by $(M) g$. We say that f and g commute if for every $m \times n$ matrix M over A, we have $(f(M)) g=f((M) g)$.

By the centralizer of a set $F \subseteq O_{A}$ we mean the set $F^{*} \subseteq O_{A}$ consisting of all operations on A that commute with every member of F. It can be shown by a simple computation that $F^{*}=[F]^{*}=\left[F^{*}\right]$ for every $F \subseteq O_{A}$. The mapping $F \rightarrow F^{*}$ defines a Galois-connection between the subsets of O_{A}. Indeed, $F_{1} \subseteq F_{2}$ implies $F_{1}^{*} \supseteq F_{2}^{*}$ and $F \cong\left(F^{*}\right)^{*}=F^{* *}$ for every $F_{1}, F_{2}, F \cong O_{A}$. From this
it follows that $F^{*}=F^{* * *}$ for every $F \subseteq O_{A}$. Thus the mapping $F \rightarrow F^{* *}$ is a closure operator on the subsets of O_{A}. The set $F^{* *}$ is called the bicentralizer of F. If $F=F^{* *}$ then we say that F acts bicentrally. The sets of operations on A acting bicentrally form a complete lattice with respect to \subseteq. Denote by \mathscr{L}_{A} this lattice. In \mathscr{L}_{A} we have $\bigwedge_{i \in I} F_{i}=\bigcap_{i \in I} F_{i}, \bigvee_{i \in I} F_{i}=\left(\bigcup_{i \in I} F_{i}\right)^{* *}$ and $\left(\bigvee_{i \in I} F_{i}\right)^{*}=\bigwedge_{i \in I} F_{i}^{*},\left(\wedge_{i \in I} F_{i}\right)^{*}=$ $=\bigvee_{i \in I} F_{i}^{*}$. It follows that the mapping $F \rightarrow F^{*}\left(F \in \mathscr{L}_{A}\right)$ is.a dual automorphism of \mathscr{L}_{A}.

The set of all projections, and the set of all injective unary operations on A will be denoted by P_{A} and S_{A}, respectively. An operation $f \in F$ is said to be homogeneous if $f \in S_{A}^{*}$. The symbol H_{A} denotes the set of all homogeneous operations, i.e., $H_{A}=S_{A}^{*}$.

We say that an operation $f \in O_{A}$ is parametrically expressible or generated by a set $F \subseteq O_{A}$ if the predicate $f\left(x_{1}, \ldots, x_{n}\right)=y$ is equivalent to a predicate of the form

$$
\left(\exists i_{1}\right) \ldots\left(\exists i_{1}\right)\left(\left(\dot{A}_{1}=\bar{B}_{1}\right) \wedge \ldots \wedge\left(A_{m}=B_{m}\right)\right)
$$

where A_{i} and B_{i} contain only operation symbols from F, variables x_{1}, \ldots, x_{n}, y, t_{1}, \ldots, t_{l}, commas and round brackets.

For $3 \leqq n \leqq|A|$ denote by l_{n} the n-ary near-projection, i.e. the n-ary operation defined as follows:

$$
l_{n}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}x_{1}, & \text { if } x_{i} \neq x_{j}, \quad 1 \leqq i<j \leqq n \\ x_{n} & \text { otherwise }\end{cases}
$$

We need the ternary dual discriminator-function d which is defined in the following way:

$$
d(x, y, z)=\left\{\begin{array}{lll}
x & \text { if } & y \neq z \\
z & \text { if } & y=z
\end{array}\right.
$$

If $f \in O_{A}$ and $B \subseteq A$ then f_{B} denotes the restriction of f to B.

3. Results

First we give two examples. For every subset $X \subseteq A$ let C_{X} be the set of all unary constant operations with value belonging to X. Furthermore, let I_{X} be the set of all operations $f \in O_{A}$ for which $f(x, \ldots, x)=x$ for every $x \in X$.

Example 1. For every subset $X \subseteq A$ we have $C_{X}^{*}=I_{X}$ and $I_{X}^{*}=\left[C_{X}\right]$. In particular, $P_{A}^{*}=O_{A}$ and $O_{A}^{*}=P_{A}$.

Proof. $C_{X}^{*}=I_{X}$ and $I_{X}^{*} \supseteq\left[C_{X}\right]$ are obvious. Now let $f \in I_{X}^{*}$ be an n-ary operation and suppose that $f \sharp\left[C_{X}\right]$. Then f is neither a projection nor a constant operation with value belonging to X. Therefore there are elements $a_{i 1}, \ldots, a_{i n} \in A$, $i=1, \ldots, n+2$, such that $a_{i}=f\left(a_{i 1}, \ldots, a_{i n}\right) \neq a_{i i}, i=1, \ldots, n$, and $\left(a_{n+1}, a_{n+2}\right)=$ $=\left(f\left(a_{n+1,1} \ldots, a_{n+1, n}\right), f\left(a_{n+2,1}, \ldots, a_{n+2, n}\right)\right) \notin\{(x, x) \mid x \in X\}$. Let $M=\left(a_{i j}\right)_{(n+2, \times n}$. Since $\left(a_{1}, \ldots, a_{n+2}\right) \notin\{(x, \ldots, x) \mid x \in X\}$, and $\left(a_{1}, \ldots, a_{n+2}\right)$ is distinct from each column of M, there exists an $(n+2)$-ary operation $g \in I_{X}$ such that $(f(M)) g=$ $=g\left(a_{1}, \ldots, a_{n+2}\right) \neq f((M) g)$, showing that f and g do not commute and $f \notin I_{X}^{*}$. This contradiction shows that $I_{X}^{*} \subseteq\left[C_{X}\right]$. Hence $I_{X}^{*}=\left[C_{X}\right]$.

Finally if $X=\emptyset$ then we have $I_{X}=O_{A}$ and $\left[C_{X}\right]=[\emptyset]=P_{A}$.
Example 2. If $|A| \geqq 3$ then $\left(S_{A} \cup C_{A}\right)^{*}=H_{A}$ and $H_{A}^{*}=\left[S_{A} \cup C_{A}\right]$.
Proof. It is well known that $H_{A} \subseteq I_{A}$ if $|A| \geqq 3$ (see e.g. [1]). Therefore $\left(S_{A} \cup C_{A}\right)^{*}=S_{A}^{*} \cap C_{A}^{*}=H_{A} \cap I_{A}=H_{A}$. In [10] it is proved that $\left[S_{A} \cup C_{A}\right]$ acts bicentrally. Thus $H_{A}^{*}=\left(\left(S_{A} \cup C_{A}\right)^{*}\right)^{*}=\left[S_{A} \cup C_{A}\right]^{* *}=\left[S_{A} \cup C_{A}\right]$.

For $|A|=2$, E. Post [8] described the lattice of clones over A. Using this result the lattice \mathscr{L}_{A} can be determined by routine. Figure 1 is the diagram of \mathscr{L}_{A} in case $|A|=2$. (We use the notation of [9]).

Fig. 1.

Considering the diagram we can observe the following facts: if $|A|=2$ then \mathscr{L}_{A} has 25 elements, six atoms $\left(O_{4}, O_{5}, O_{6}, S_{1}, P_{1}, L_{4}\right)$, and six dual atoms ($D_{3}, C_{2}, C_{3}, S_{6}, P_{6}, L_{1}$). Remark that the dual automorphism $F \rightarrow F^{*}$ coincides with the reflection of the diagram with respect to the axis $S_{3}-P_{3}$.

For $|A|=3, \mathscr{L}_{A}$ is a finite lattice of power 2986 and it has 44 atoms and dual atoms (see [2], [3] and [4]).

In general we have the following.
Theorem 3. If A is a finite set, then the closure operator $F \rightarrow F^{* *}$ is algebraic, and \mathscr{L}_{A} is an atomic and dually atomic algebraic lattice. If A is infinite, then the closure operator $F \rightarrow F^{* *}$ is not algebraic.

Proof. First let A be a finite set. A. V. Kuznecov showed in [5] that $F=F^{* *}$ if and only if F contains every operation parametrically generated by F. From this it follows that the closure operator $F \rightarrow F^{* *}$ is algebraic. Thus \mathscr{L}_{A} is an algebraic lattice. It is well-known that there are finite sets $F \cong O_{A}$ such that $F^{* *}=O_{A}$ (see e.g. [4]). Therefore \mathscr{L}_{A} is dually atomic. Since \mathscr{L}_{A} is dually isomorphic to itself, it is atomic, too.
A. F. Danil'cenko proved in [4] that if $|A| \geqq 3$ then every dual atom of \mathscr{L}_{A} is of the form $\{f\}^{*}$ where $f \in O_{A}$ is an at most $|A|$-ary operation. From this it follows that $\mathscr{L}_{\boldsymbol{A}}$ has finitely many dual atoms and atoms (the numbers of atoms and dual atoms are equal).

Now let A be an infinite set and let $x_{1}, x_{2}, \ldots \in A$ be pairwise distinct elements. Put $X_{i}=\left\{x_{i}, x_{i+1}, \ldots\right\}, i=1,2, \ldots$. Then, by Example $1, I_{X_{i}} \in \mathscr{L}_{A}, i=1,2, \ldots$ and clearly $I_{X_{1}} \subseteq I_{X_{2}} \subseteq \ldots$. Furthermore $\bigcup_{i=1}^{\infty} I_{X_{i}} \neq O_{A}$ and $\left(\bigcup_{i=1}^{\infty} I_{X_{i}}\right)^{* *}=\left(\bigcap_{i=1}^{\infty} I_{i_{i}}^{*}\right)^{*}=$ $=\left(\bigcap_{i=1}^{\infty}\left[C_{X_{i}}\right]\right)^{*} P_{A}^{*}=O_{A}$. It follows that the closure operator $F \rightarrow F^{* *}$ is not algebraic.

Theorem 4. If $|A| \geqq 5$, then H_{A} is an atom and $\left[S_{A} \cup C_{A}\right]$ is a dual atom in \mathscr{L}_{A}.
Proof. First we show that if d is the ternary dual discriminator and $l_{n}(3 \leqq n \leqq|A|)$ is a near-projection then $\{d\}^{*}=\left\{l_{n}\right\}^{*}=\left[S_{A} \cup C_{A}\right]$. The inclusions $\{d\}^{*} \supseteqq\left[S_{A} \cup C_{A}\right]$ and $\left\{l_{n}\right\}^{*} \supseteqq\left[S_{A} \cup C_{A}\right]$ are obvious. Let $f \in O_{A} \backslash\left[S_{A} \cup C_{A}\right]$ be an m-ary operation. If f depends on one variable only then we can assume without loss of generality that f is a unary operation. Since f is non-injective and nonconstant, there are pairwise distinct elements $a, b, c \in A$ such that $f(a) \neq f(b)=f(c)$. Furthermore choose elements $x_{4}, \ldots, x_{n} \in A$ such that $a, b, c, x_{4}, \ldots, x_{n}$ are pairwise distinct. Then $f(d(a, b, c))=f(a) \neq f(c)=d(f(a), f(b), f(c))$ and $f\left(l_{n}\left(a, b, x_{4}, \ldots\right.\right.$ $\left.\left.\ldots, x_{n}, c\right)\right)=f(a) \neq f(c)=l_{n}\left(f(a), f(b), f\left(x_{4}\right), \ldots, f\left(x_{n}\right), f(c)\right)$ showing that f does not commute with d and l_{n}, i.e. $f \ddagger\{d\}^{*}$ and $f \ddagger\left\{l_{n}\right\}^{*}$. Now suppose that f depends on at least two variables, among others on the first. Therefore there are elements $a_{2}, \ldots, a_{n} \in A$ such that the unary operation $g(x)=f\left(x, a_{2}, \ldots, a_{n}\right)$ is not a constant. If f takes on at most $n-1$ elements from A then g is not injective. Therefore $g \notin\{d\}^{*}$ and $g \notin\left\{l_{n}\right\}^{*}$. From this it follows that $f \ddagger\{d\}^{*}$ and $f \notin\left\{l_{n}\right\}^{*}$. Finally suppose that f takes on at least $n(\geqq 3)$ values. Since f depends on at least two variables, there are elements $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m}, a, b, c \in A$ such that a, b and c are pairwise distinct and $a=f\left(a_{1}, \ldots, a_{m}\right), b=f\left(b_{1}, a_{2}, \ldots, a_{m}\right), c=f\left(a_{1}, b_{2}, \ldots, b_{m}\right)$
(see e.g. [6]). Then $d\left(f\left(a_{1}, b_{2}, \ldots, b_{m}\right), f\left(b_{1}, a_{2}, \ldots, a_{m}\right), f\left(a_{1}, \ldots, a_{m}\right)\right)=d(c, b, a)=$ $=c \neq a=f\left(a_{1}, \ldots, a_{m}\right)=f\left(d\left(a_{1}, b_{1}, a_{1}\right), d\left(b_{2}, a_{2}, a_{2}\right), \ldots, d\left(b_{m}, a_{m}, a_{m}\right)\right)$ showing that $f \notin\{d\}^{*}$. Finally, since f takes on at least n values, there are elements $x_{i 1}, \ldots, x_{i m} \in A$, $i=4, \ldots, n$, such that $a, b, c, x_{4}, \ldots, x_{n}$ are pairwise distinct elements where $x_{i}=f\left(x_{i 1}, \ldots, x_{i m}\right)$. Now consider the following $n \times m$ matrix M.

$$
M=\left(\begin{array}{ccc}
x_{41} & \ldots & x_{4 m} \\
\vdots & & \vdots \\
x_{n 1} & \ldots & x_{n m} \\
a_{1} & a_{2} & \ldots \\
b_{1} & a_{m} & \ldots \\
a_{1} & b_{2} & \ldots
\end{array} a_{m}, .\right.
$$

Then $(f(M)) l_{n}=l_{n}\left(x_{4}, \ldots, x_{n}, a, b, c\right)=x_{4} \neq c=f\left(a_{1}, b_{2}, \ldots, b_{m}\right)=f\left((M) l_{n}\right)$ showing that f and l_{n} do not commute. This completes the proof of the equalities $\{d\}^{*}=$ $=\left[S_{A} \cup C_{A}\right]$ and $\left\{l_{n}\right\}^{*}=\left[S_{A} \cup C_{A}\right]$.

Now we are ready to prove the theorem. Since $H_{A}^{*}=\left[S_{A} \cup C_{A}\right]$, it is enough to show that H_{A} is an atom in \mathscr{L}_{A}, i.e. for any nontrivial operation $f \in H_{A}$ we have $\{f\}^{* *}=H_{A}$ or equivalently $\{f\}^{*}=\left[S_{A} \cup C_{A}\right]$. In [1] and [7] it is shown that if $|A| \geqq 5$ then every non-trivial clone of homogeneous operations contains the dual discriminator or a near-projection. Therefore, if $f \in H_{A}$ is a non-trivial operation and $d \in[\{f\}]$ then $\left[S_{A} \cup C_{A}\right] \subseteq\{f\}^{*}=[\{f\}]^{*} \subseteq\{d\}^{*}=\left[S_{A} \cup C_{A}\right]$. If $l_{n} \in[\{f\}]$ for some $n \geqq 3$, then $\left[S_{A} \cup C_{A}\right] \subseteq\{f\}^{*}=[\{f\}]^{*} \subseteq\left\{l_{n}\right\}^{*}=\left[S_{A} \cup C_{A}\right]$. Hence $\{f\}^{*}=\left[S_{A} \cup C_{A}\right]$, which completes the proof.

Theorem 5. There exists a function $f \in O_{A}$. such that $\{f\}^{* *}=O_{A}$.
Proof. If A is a finite set then let $f \in O_{A}$ be a Sheffer function, i.e. an operation f for which $[\{f\}]=O_{A}$. Then $\left[\{f\}^{* *}=[\{f\}]^{* *}=O_{A}^{* *}=O_{A}\right.$.

Now let A be an infinite set. In [12] it is proved that there exists a binary rigid relation ϱ on A (ϱ is rigid if the identity operation is the only unary operation preserving ϱ). Choose a rigid relation ϱ and define a binary operation h as follows: $h(x, y)=x$ if $(x, y) \in \varrho$ and $h(x, y)=y$ if $(x, y) \notin \varrho$. We show that $\{h\}^{*} \cap S_{A}=$ $=\left\{i d_{A}\right\}$. Indeed, let $t \in S_{A}$ and $t \neq i d_{A}$. Then there is a pair $(x ; y) \in \varrho$ such that $(t(x), t(y)) \nsubseteq \varrho$. Clearly $x \neq y$, since otherwise the unary constant operation $A \rightarrow\{x\}$ preserves ϱ. It follows that $t(h(x, y))=t(x) \neq t(y)=h(t(x), t(y))$ and $t \notin\{h\}^{*}$.

Let $g \in O_{A}$ be a fixed point free permutation whose cycles are all infinite. Furthermore, let $a, b \in A$ with $a \neq b$.

Now we are ready to define an operation f such that $\{f\}^{* *}=O_{A}$. Let

$$
f(x, y, z, u)= \begin{cases}g(x) & \text { if } x=y=z=u \\ d(y, z, u) & \text { if } y=g(x), \\ h(z, u) & \text { if } x=g(y), \\ a & \text { if } y=g(g(x)), \\ b & \text { if } x=g(g(y)) \\ x & \text { otherwise. }\end{cases}
$$

Denote by c_{a} and c_{b} the unary constant operations with values a and b, re spectively. Then $g, d, h, c_{a}, c_{b} \in[\{f\}]$ since $f(x, x, x, x)=g(x), f(x, g(x), y, z)=$ $=d(x, y, z), f(g(x), x, x, y)=h(x, y), f(x, g(g(x)), x, x)=c_{a}(\dot{x})$ and $f(g(g(x))$,
$x, x, x)=c_{b}(x)$. If $t \in\{f\}^{*}$ then $t \in\left\{d, h, c_{a}, c_{b}\right\}^{*}$. Since $t \in\{d\}^{*}$, by Theorem 4, $t \in\left[S_{A} \cup C_{A}\right]$. We can suppose that t is unary. If $t \in S_{A}$ then $t \in\{h\}^{*}$ implies $t=i d_{A}$. If $t \in C_{A}$, i.e. t is a constant operation with value x_{0} then we have that $a=c_{a}(t(a))=$ $=t\left(c_{a}(a)\right)=x_{0}=t\left(c_{b}(a)\right)=c_{b}(t(a))=b$ which is a contradiction. Thus we have $\{f\}^{*}=P_{A}$ and $\{f\}^{* *}=P_{A}^{*}=O_{A}$.

Let $B \subseteq A(B \neq \emptyset)$ and let s be a mapping from A onto B such that $s(b)=b$ for every $b \in B$. For any operation $f \in O_{B}^{(n)}, n \geqq 1$, let us define an operation $f^{s} \in O_{A}$ as follows: $f^{s}\left(a_{1}, \ldots, a_{n}\right)=f\left(s\left(a_{1}\right), \ldots, s\left(a_{n}\right)\right)$ for any $a_{1}, \ldots, a_{n} \in A$. For any $F \subseteq O_{B}$ let $F^{S}=P_{A} \cup\left\{f^{S} \mid f \in F\right\}$.

Theorem 6. Let $F \subseteq O_{B}$ such that $i d_{B} \in F$. Then $\left(F^{S}\right)^{* *}=\left(F^{* *}\right)^{S}$. In particular, if $F=F^{* *}$ then $F^{s}=\left(F^{S}\right)^{* *}$.

Proof. We shall prove the theorem through some statements:
(1) $s \in F^{s}$ and $s \in\left(F^{S}\right)^{*}$.

Since $i d_{B} \in F$, we have $s=i d_{B}^{S} \in F^{S}$. Let $g \in F$. If $g \in P_{A}$ then, clearly, s commutes with g. If $g=f^{S}$ for some $f \in F$, then for any $a_{1}, \ldots, a_{n} \in A$ we have $s\left(g\left(a_{1}, \ldots, a_{n}\right)\right)=s\left(f^{S}\left(a_{1}, \ldots, a_{n}\right)\right)=s\left(f\left(s\left(a_{1}\right), \ldots, s\left(a_{n}\right)\right)=f\left(s\left(s\left(a_{1}\right)\right), \ldots, s\left(s\left(a_{n}\right)\right)\right)=\right.$ $=g\left(s\left(a_{1}\right), \ldots, s\left(a_{n}\right)\right)$. Hence s commutes with g and $s \in\left(F^{s}\right)^{*}$.
(2) If $g \in\left(F^{S}\right)^{*}$ then g preserves B.

Indeed, if g is n-ary and $b_{1}, \ldots, b_{n} \in B$ then $g\left(b_{1}, \ldots, b_{n}\right)=g\left(s\left(b_{1}\right), \ldots, s\left(b_{n}\right)\right)=$ $=s\left(g\left(b_{1}, \ldots, b_{n}\right)\right) \in B$.
(3) $g \in\left(F^{S}\right)^{*}$ if and only if $g_{B} \in F^{*}$ and g commutes with s.

First suppose that $g \in\left(F^{S}\right)^{*}$. Then g commutes with s, since $s \in F^{S}$. If $f \in F$, then g commutes with f^{S}. By (2), we have $g_{B} \in O_{B}$, and clearly the restriction of f^{s} to B coincides with f. These facts imply that g_{B} commutes with f. Hence $g_{B} \in F^{*}$. Now suppose that $g_{B} \in F^{*}, g$ commutes with s, and $f^{S} \in F^{S}(f \in F)$. Let g and f be m-ary and n-ary, respectively, and choose arbitrary elements $a_{i 1}, \ldots, a_{i m} \in A$, $i=1, \ldots, n$. Then

$$
\begin{gathered}
f^{S}\left(g\left(a_{11}, \ldots, a_{1 m}\right), \ldots, g\left(a_{n 1}, \ldots, a_{n m}\right)\right)=f\left(s\left(g\left(a_{11}, \ldots, a_{1 m}\right)\right), \ldots, s\left(g\left(a_{n 1}, \ldots, a_{n m}\right)\right)\right)= \\
=f\left(g_{B}\left(s\left(a_{11}\right), \ldots, s\left(a_{1 m}\right)\right), \ldots, g_{B}\left(s\left(a_{n 1}\right), \ldots, s\left(a_{n m}\right)\right)\right)= \\
=g_{B}\left(f\left(s\left(a_{11}\right), \ldots, s\left(a_{n 1}\right)\right)\right), \ldots, f\left(s\left(a_{1 m}\right), \ldots, s\left(a_{n m}\right)\right)= \\
=g\left(f^{S}\left(a_{11}, \ldots, a_{n 1}\right), \ldots, f^{S}\left(a_{1 m}, \ldots, a_{n m}\right)\right)
\end{gathered}
$$

Hence g commutes with f^{s} and $g \in\left(F^{s}\right)^{*}$.
(4) If $f \in F^{*}$ then $f^{s} \in\left(F^{S}\right)^{*}$.

Clearly, the restriction f_{B}^{S} to B coincides with f, and f^{S} commutes with.s. Therefore, by (3), we have $f^{s} \in\left(F^{S}\right)^{*}$.
(5) If $g \in\left(F^{S}\right)^{* *}$ then $g \in P_{A}$ or g maps into B.

Suppose $g \in\left(F^{S}\right)^{* *} \backslash P_{A}$ is an n-ary operation which takes on a value from $A \backslash B$. Since g is not a projection, for every $i \in\{1, \ldots, n\}$ there are $a_{i 1}, \ldots, a_{i n} \in A$ such that $a_{i}=g\left(a_{i 1}, \ldots, a_{i n}\right) \neq a_{i i}$. Furthermore let $a_{n+1,1}, \ldots, a_{n+1, n} \in A$ such that $g\left(a_{n+1,1}, \ldots, a_{n+1, n}\right)=a_{n+1} \notin B$. Let us define an ($n+1$)-ary operation $h \in O_{A}$ as follows:

$$
h\left(x_{1}, \ldots, x_{n+1}\right)= \begin{cases}s\left(a_{n+1}\right) & \text { if }\left(x_{1}, \ldots, x_{n+1}\right)=\left(a_{1}, \ldots, a_{n+1}\right) \\ x_{n+1} & \text { otherwise }\end{cases}
$$

Then h commutes with s, and h_{B}, being a projection, belongs to F^{*}. Therefore, by (3), $h \in\left(F^{S}\right)^{*}$. Now $g\left(h\left(a_{11}, \ldots, a_{n+1,1}\right), \ldots, h\left(a_{1 n}, \ldots, a_{n+1, n}\right)\right)=g\left(a_{n+1,1}, \ldots, a_{n+1, n}\right)=$ $=a_{n+1} \neq s\left(a_{n+1}\right)=h\left(a_{1}, \ldots, a_{n+1}\right)=h\left(g\left(a_{11}, \ldots, a_{1 n}\right), \ldots, g\left(a_{n+1,1}, \ldots, a_{n+1, n}\right)\right)$. It follows that g does not commute with h, which is a contradiction.
(6) If $g \in\left(F^{S}\right)^{* *}$ then g preserves B.

This follows from (5)
(7) If $g \in\left(F^{S}\right)^{* *}$ then $g_{B} \in F^{* *}$.

Let $g \in\left(F^{S}\right)^{* *}$ and let f be an arbitrary operation in F^{*}. Then, by (4), we have that g commutes with f^{s}. Taking into consideration (6), this implies that $g_{B}\left(\in O_{B}\right)$ commutes with f (the restriction of f^{S} to B). It follows that $g_{B} \in F^{* *}$.

Now we are ready to prove the theorem. First let $g \in\left(F^{s}\right)^{* *}$. If $g \in P_{\boldsymbol{A}}$ then clearly $g \in\left(F^{* *}\right)^{S}$. Suppose that $g \notin P_{A}$ and let $g_{B}=f$. Taking into consideration (5), (1) and (7), we have that g maps into B, g commutes with s, and $f \in F^{* *}$. Thus if g is n-ary then for any $a_{1}, \ldots, a_{n} \in A$ we have $g\left(a_{1}, \ldots, a_{n}\right)=s\left(g\left(a_{1}, \ldots, a_{n}\right)\right)=$ $=g\left(s\left(a_{1}\right), \ldots, s\left(a_{n}\right)\right)=f\left(s\left(a_{1}\right), \ldots, s\left(a_{n}\right)\right)$ showing that $g=f^{s}$ and $g \in\left(F^{* *}\right)^{S}$. Finally let $g \in\left(F^{* *}\right)^{S}$. If $g \in P_{A}$ then $g \in\left(F^{S}\right)^{* *}$. If $g \notin P_{A}$ then there is an $f \in F^{* *}$ such that $g=f^{S}$. Take an arbitrary operation h from $\left(F^{S}\right)^{*}$. Then, by (3), h commutes with s and $h_{B} \in F^{*}$. It follows that h_{B} commutes with $f\left(h_{B} \in F^{*}=\left(F^{* *}\right)^{*}\right)$. Let g and h be m-ary and n-ary, respectively, and choose arbitrary elements $a_{i 1}, \ldots$ $\ldots, a_{i m} \in A, i=1, \ldots, n$. Now

$$
\begin{gathered}
h\left(g\left(a_{11}, \ldots, a_{1 m}\right), \ldots, g\left(a_{n 1}, \ldots, a_{n m}\right)\right)=h_{B}\left(f\left(s\left(a_{11}\right), \ldots, s\left(a_{1 m}\right)\right), f\left(s\left(a_{n 1}\right), \ldots, s\left(a_{n m}\right)\right)\right)= \\
=f\left(h_{B}\left(s\left(a_{11}\right), \ldots, s\left(a_{n 1}\right)\right), \ldots, h_{B}\left(s\left(a_{1 m}\right), \ldots, s\left(a_{n m}\right)\right)\right)= \\
-=f\left(h\left(s\left(a_{11}\right), \ldots, s\left(a_{n 1}\right)\right), \ldots, h\left(s\left(a_{1 m}\right), \ldots, s\left(a_{n m}\right)\right)\right)= \\
=f\left(s\left(h\left(a_{11}, \ldots, a_{n 1}\right)\right), \ldots, s\left(h\left(a_{1 m}, \ldots, a_{n m}\right)\right)\right)=g\left(h\left(a_{11}, \ldots, a_{n 1}\right), \ldots, h\left(a_{1 m}, \ldots, a_{n m}\right)\right) .
\end{gathered}
$$

It follows that g commutes with h and $g \in\left(F^{S}\right)^{* *}$.
Corollary 7. The mapping $F \rightarrow F^{S}$ from \mathscr{L}_{B} into \mathscr{L}_{A} is an isomorphism.
Proof. From Theorem 6 it follows that if $F \in \mathscr{L}_{B}$ then $F^{S} \in \mathscr{L}_{A}$. Observe that $\left(F_{1} \cap F_{2}\right)^{S}=F_{1}^{S} \cap F_{2}^{S}$ and $\left(F_{1} \cup F_{2}\right)^{S}=F_{1}^{S} \cup F_{2}^{S}$ for any $F_{1}, F_{2} \in \mathscr{L}_{B}$. Therefore taking into consideration Theorem 6, for any $F_{1}, F_{2} \in \mathscr{L}_{B}$ we have that $\left(F_{1} \wedge F_{2}\right)^{S}=$ $=\left(F_{1} \cap F_{2}\right)^{S}=F_{1}^{S} \cap F_{2}^{S}=F_{1}^{S} \wedge F_{2}^{S}$ and $\left(F_{1} \vee F_{2}\right)^{S}=\left(\left(F_{1} \cup F_{2}\right)^{* *}\right)^{S}=\left(\left(F_{1} \cup F_{2}\right)^{S}\right)^{* *}=$ $=\left(F_{1}^{S} \cup F_{2}^{S}\right)^{* *}=F_{1}^{S} \vee F_{2}^{S}$. Finally, it is obvious that the mapping $F \rightarrow F^{s}$ is injective.

Corollary 8. If $s \neq i d_{A}$ then [$\left.\{s\}\right]$ is an atom in \mathscr{L}_{A}.
Proof. Let $P_{B} \subseteq O_{B}$ be the set of projections on B. Then $P_{B}^{S}=[\{s\}]$ and therefore, by Theorem $6,[\{s\}] \in \mathscr{L}_{A}$. It is trivial that $[\{s\}]$ is an atom in \mathscr{L}_{A}.

References

[1] B. Csákány and T. Gavalcová, Finite homogeneous algebras. I, Acta Sci. Math., 42 (1980), 57-63.
[2] A. F. Danil'Čenko, On the parametrical expressibility of functions of three-valued logic (in Russian), Algebra i logika, $16 / 4$ (1977), 379-494.
[3] A. F. Danil'Čenko, Parametrically closed classes of functions of three-valued logic (in Russian), Izv. Akad. Nauk Moldav. SSR, 1978, no. 2, 13-20.
[4] A. F. Danl'Cenko, On parametrical expressibility of the functions of k-valued logic, in: Finite Algebra and Multiple-valued Logic (Proc. Conf. Szeged, 1979). Colloq. Math. Soc. J. Bolyai, vol. 28, North-Holland (Amsterdam, 1981), 147-159.
[5] A. V. Kuznecov, On detecting non-deducibility and non-expressibility (in Russian), in: Logical deduction, Nauka, Moscow (1979), 5-33.
[6] A. I. Mal'cev, A strengthening of the theorems of Słupecki and Jablonskir (in Russian), Algebra i Logika 6, no. 3 (1967), 61-75.
[7] S. S. Marčenkov, On homogeneous algebras (in Russian), Dokl. Acad. Nauk SSSR, 256 (1981), 787-790.
[8] E. Post, The two-valued iterative systems of mathematical logic, Ann. Math. Studies 5, Princeton (1941).
[9] R. Pöschel und L. A. Kalužnin, Functionen- und Relationenalgebren, Ein Kapitel der diskreten Mathematik, Math. Monographien B. 15, Berlin (1979).
[10] L. Szabó, Endomorphism monoids and clones, Acta Math. Acad. Sci. Hungar., 26 (1975), 279-280.
[11] L. Szabó, Concrete representation of related structures of universal algebras. I, Acta Sci. Math., 40 (1978).
[12] P. Vopenka, A. Pultr and Z. Hedrlin, A rigid relation exists on any set, Comment. Math. Univ. Carolinae, 6 (1965), 149-155.

