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1. Introduction 

Gur motivation for determining the set of all interpolants of arbitrarily-given 
sentences <p and i¡/ is twofold, both originating in computer science. 

Firstly, according to the well-known method of Floyd—Hoare in the theory 
of program verification, a program (or more precisely, a program schema) must be 
associated by so called assertions, which are, actually, first order open formulae. 
This association can be partially mechanized; the difficulty arises in associating 
assertions to loops. If <p is the assertion immediately before the loop and \j/ is the 
_one_ immediately _after it, then the assertion associated to the loop is not so easy 
to look for. One possible escape is provided by the theory of interpolation :< the 
assertion to be associated to the loop must be an interpolant of q> and ip; The 
celebrated model theoretic result of W. Craig states the existence of an interpolant 
if cp and are first order sentences and cp is a logical consequence of V- In. the 
above mentioned problem, however, one needs more than one (possibly, all of the) 
interpolants to support the choice of the loop-assertion, on the one hand, and then, 
obviously, he must generalize to open formulae. At the first stage of this process, 
we aim the investigation of the set of all interpolants of any two first order sentences 
<p and t¡J. Our method is traditional: we reduce cp and \p into the zero order 
language, where matters are very much smoother; Thus, algorithmic generation 
of the set of all zero order interpolants of any two zero order sentences, the topic 
of the present paper, is a part of our treatment of the first order case. 

Our second motivation can be paraphrased as follows: on the zero order level, 
an interpolant of cp and t¡/ can be considered as a generalization (or a relativization) 
of the well-known concept of "implicant". Indeed, taking cp as the false formula, 
the set of interpolants of <p and ij/ concides with the set of implicants of- \p. This 
observation provides us with the possibility to consider "implicants of ip. relative 
to cp", which, in turn, may yield to a better understanding of synthesis problems 
of truth-functions and automata. 

These considerations, however, will remain in the background in the present 
paper and will be published elsewhere. Our purpose here is much simpler: to 
investigate the case of zero order sentences and to present an algorithm which returns 
the set of all interpolants of arbitrarily given zero order.'sentences. 
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The method employed here is based on the isomorphism between the zero order 
Lindenbaum—Tarski algebra and the Boolean algebra of truth-functions associated 
to the equivalence classes of zero order sentences. 

By an interpolant of q> and ip, we mean a zero order sentence / which is an 
interpolant in the sense of Craig [1] and x is equivalent neither to (p nor to \jj; 
i.e. x is proper. According to this strengthening, Craig's Theorem on the existence 
of (proper) interpolants no longer holds without additional assumptions: it may 
well happen, that for fixed (p and ij/, no proper interpolant exists : i.e. any inter-
polant (which exists in the sense of Craig) is equivalent to either (p or t/i. 

To study the Boolean algebra of truth functions, we shall use trees. To every 
truth function, we associate a binary tree, the "valuation tree" of the function at 
hand. The valuation tree associated to a function is a compressed form of the truth-
table of that function. Being so, the tree contains every information (up to logical 
equivalence) about the function [2]; and since interpolants are defined by means 
of logical consequence, the trees associated to (the arbitrarily given) q> and ip 
contain every information about the set of their interpolants. On the other hand, 
the "geometrical content" of trees gives us the possibility of expressing semantical 
properties of functions, and in particular, of interpolants in a simple and "visualiz-
able" way. Additionally, an easy method is imposed to calculate the exact number 
as well as the number and length of maximal chains of equivalence classes of inter-
polants. The conditions under which proper interpolants exist are formulated in 
terms of trees; they have, however, a natural and easily comprehensible meaning 
for sentences, too. 

The organization of the paper is as follows. In the next section, we concretize 
our terminology and notations. In Section 3 we give conditions which are equi-
valent to the existence of proper interpolants. The method developed there will be 
applied to obtain our main results in Section 4 on the number of interpolants and 
chains of interpolants, respectively. We conclude a next to trivial consequence on 
the algebraic structure of interpolants in Section 5. Finally, we reformulate our 
results for sentences in terms of model theory, in Section 6. -

2. Preliminaries 

- Throughout the paper we keep fixed a countably infinite set S, which will 
play the role of sentence symbols when we are dealing with formulae, while in case 
of truth functions, S will be considered as a set of variables. 

2.1. Let F be the set of zero order sentences over S. Let = denote thé logical 
equivalence relation on F. Clearly, = is an equivalence relation indeed ; let us 
dénoté by [(p] the equivalence class containing <p (<p£ F). It is well-known, that 

F /= , A, V, - i , 0,1) is a Boolean algebra, the so called Lindenbaum—Tarski 
algebra of F, [1], where 0 denotes the class of unsatisfiablè elements of F while 
1 stands for the class of valid ones ; the operations being defined in the natural way : 

[<p]W]=[cpAil>), [<p]VM=[«pV./0 . 
2.2. Let B= \J Bn, where Bn={f\f: 2 " - 2 ; 2={0, 1}}, the set of Boolean 

functions of finite number of variables taken from S. By an assignment we mean 
an element of the set m2={<i0, ...>|£i€ {0, 1} for fÇto}. The value of f£B 
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under an assignment (in notation: /(£)) is obtained firstly, by substituting 
for all /6 co, the /-th component of £ for the /-th variable (£S) everywhere 
in f provided s,- occurs in / (otherwise the /-th component of £ has no effect 
on the value of / ) and secondly, by calculating that value. We say, that / and 
g(ZB) are equivalent, in notation: f~g, i f f f ( £ ) = g ( 0 for all It follows, 
that ~ is an equivalence relation over B\ the equivalence classes are denoted as 
those in F: i.e. for f£B, the equivalence class containing / is denoted by [ / ] . 
We shall use the symbols 0 and 1 in B, too: 0 = { / | / ( £ ) = 0 for all £€<°2} 
and l = { / | / ( 0 — 1 f° r all ^€"2}. For g,f£B, we can define the operations 
+ , - , and -(bar) as follows: for i € ^ , / ( f ) + g ( 0 = max ( / f t ) , * (£)} . / ( f ) - f ( f ) = 
= min {/(£,), g(£)} and f(£)=l— g(£), respectively. Since ~ is compatible with 
these operations, we can carry them over classes in : [ / ] = [/], [ / ] • [g] = [f -g], 
[ / ] + [g] = [ / + g]. What is-obtained is the well-known Boolean algebra = 
=(Bj ~ , + , - , 0 , 1). Obviously, J^ is isomorphic to 3ft. For the sake of simplicity, 
from now on, when we speak about functions, we shall tacitly mean the equi-
valence classes they do represent, and we shall omit brackets in notations, i.e. / £ SB 
is always to be understood as [ / ]6-8 /~ . Legality of this seemingly abuse of ter-
minology will be justified in Section 5, Theorem 14. 

2.3. By a full binary tree of level n (n£co) we mean an ordered pair T=(V, E) 
where V, the set of vertices is defined by 

^ U U W 
J = 0 fc=l 

and E, the set of edges is 
E={(Vjk, Vtl)\t.=j+.l, 1=2 -.k — P where 1}}. 

In particular, if n = 0, then V={V01}, E=0, i.e. the full binary tree of level 0 is 
a point. The indices /', k of a vertex VJk(z V mean that Vjk is the k-th point of 
T on the /-th level. We shall label the edge (VJk, F0+1)(2fe_/))) by Note, 
that the label does not depend on k. 

Let T = {V,E) be a full binary tree of level n. By a path p in T we mean 
a sequence of vertices V0ko,Vlkl, ..., Vnkn such that /c0=l andforall 1), 
(Vjkj* The set of paths in T will be denoted by PT. Clearly, 
card PT=2". If PQPT, then P determines in the natural way a subtree of T. 
If we write "7\ is a tree of level «", then we always mean, that 7\ is determined 
by a subset pf paths P of a full binary tree T of level n. Similarly, "7\ is a sub-
tree of T2" is to be understood, as both, Tx and T2 are determined by subsets 
Pj and P2 of a full binary tree T such that Px<gP2 (i.e. 7\ , T2 and T are of 
the same level). The set of all subtrees of a full binary tree T will be denoted by 
Sub T, and in each element of Sub T, the vertices will be indexed by the same 
indices as they were in T. If J ^ S u b J and T^T, then we write Txc.T. Similar 
notation applies to arbitrary binary tree. Obviously, if T is a full binary tree of 
level n, then card (Sub T)=22". 

Let T=(V,E) be a full binary tree of level n and (Voko, ..., Vjkj, ..., Vnkn) 
be a path of T. By FBT (VJk) we mean a subtree of T, the vertices of which is 
determined by the set 

kfi'-i 
{Kk0,-,VJkj} U U U {Vtr} 

7» 
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and the set of edges is defined in the natural way; in other words, FBT (VJk) is 
determined by those paths of T, the initial segment of which is (Kk0j •••, VJkj) 
and are continued in all possible ways allowed by T. 

2.4. Let n£u> and T be a full binary tree of level n. We can define a mapping 
Tx: BJ~ — Sub T by the following recurrence. Let sfi=si if af = l and other-
wise J?' = S(. 

(i) T1(O)=0, T1(1) = T . 
(ii) If /=j?> • ... then let p={V0l, ..., V„kJ be that path of T for 

which (VJkj,Vu+D(iy+1) is labelled by sf/^ for all j(0sj^n-l) and define 

(iii) Let g=/1+/2+ ••• +/m where each f} is of the form s/^ • ... • sjJ
n" and 

define 
m 

Tl(g) = U (/})• 
j = l 

t 
Since the cardinalities of BJ~ and Sub T are equal, and every g€2?„ has a form, 
determined uniquely up to the ordering of the variables, required by the clauses 
of the recursion, it follows that rx is one-one and onto. 

Let us define z0: BJ —'Sub T by T 0 ( / ) = T1(/) where Tx(/) denotes a subtree 
of T determined by all paths of T which is not contained in 11(/); i.e. by the 
complement of i x ( f ) with respect to PT. We have immediately, 

Lemma 1. For all f£BJ~ 
(i) Tp(/) = ! , ( / ) , 

(ii) t 1 ( / ) = T 1 ( / ) . 

Lemma 2 [4, Theorem 1]. Let Sub T and assume, that 7\ is determined 
by the set of paths {px, ..., pr) and let sly, ..., s"]J be the labels associated to the 
edges in p}. Then, 

r n 
We call T1

_1(7t
1)= 2 (II ^¡L") the function to which 7\ is associated. Using 

fc=i j=1 
Lemma 1 above, the dual of this assertion is easily obtained. In the sequel when 
speaking about associating a tree T to a function f^3S it will always mean the 
tree assigned by tx . (The duals of the assertions will not be mentioned because 
of being obtainable immediately.) 

2.5. L e t , W e say, that / does not depend on the variable Sj£S, in other 
words, Sj is dummy for / , iff Sj occurs in / and for all £ , ' ^2 for which 

= t j and if k ^ j we have f(£)=/(?')• It is easy to construct an 
algorithmic function <5, such that for all f£38, 5 ( f ) is the set of variables occuring 
in / which are not dummy for f Clearly, dummy variables do not effect the values 
of functions and thus they can freely be omitted or introduced when necessary. Let 
Pi=(vok0, Vjkj, V(J+i)kjtl, KO a n d />2=<*o*„, Vjkj, Vu+1)/j+1, . . . , FnJn) b e 
two paths in a full binary tree T. We say, that px and p2 are amicable paths 
w.r.t. j iff all pairs of edges of the form (Vrkr, V(r+1)kr+1) and (Vrlr, F(r+1)(r+1> 
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are labelled by the same label (which, of course depends on r) provided r^j 
and either lj + 1 = k:+1+l or kJ + 1 = lJ+1 +1. 

A path p=(V0ko, ..., VLkj, ..., V„ikn) goes through Vr<kr iff for some 
./ (0=j =n) r=j. 

By definitions, we have 
Lemma 3 [2, Special case of Theorem 15]. Let / 6 and assume that T1 = 

=(Vi, E,) is the tree associated to / . Then, for some j (1 ̂  Sj is dummy 
for / iff for all k such that V(j-i)k£Vi, all amicable paths w.r.t. j— 1 going 
through V(j-1)k are paths of 7\ . 

2.6. Let f,g^3§. We shall use,the. following notations: Afg for <5(/)fl<5(g), 
the set of variables which are not dummy in both / and g. Let <Pfg=d(f) — Afg 
and rfg = d(g) — Afg, the sets of variables which are not dummy for f but do not 
occur in g and for g but do not occur in / , respectively. For the sake of con-
venience, we shall denote the elements of ASg by x0, ..., the elements of i>/9 
by y0, y}, ... and the elements of f f g by z0, zx, ... throughout the paper; e.g. 
any appearence of x} will always be meant as an element of AfgC\S e.t.c. Moreover, 
we tacitly assume that an ordering is fixed on these sets. 

Since for given the case when Afg—& is of no interest from our 
point of view, i.e. from the point of view of interpolants, we shall suppose that 
Afg^& and distinguish the following four cases: 

Case 1: <Pfg=rfg = $. 
Case 2: 4>fg^Q, r f g = d. 
Case 3: 4>fg = 0, rfg^Q. 
Case4: $fg?i<d,rfg7i®. 

~ - Let We shall supply both / and -g with all variables from Afg{J<PfgU 
U rfg. One can distinguish the functions obtained in this way by / and g, however, 
such distinction is not necessary. Indeed, by definition, the variables of <Pfg will 
be dummy for g (and that of rfg for / ) , hence / and / (similarly, g and g) 
do represent the same equivalence class, thus, by our agreement on terminology, 
we can choose / as the representative of that class. In fact, we shall do, and simply 
write / for / (gfor g). We shall fix an ordering of the variables occuring in / and 
g as follows: all elements of Afg precede all elements of <Pfg which, in turn, 
precede all elements of r f g while we keep the previously fixed orderings inside 
Afg, <Pfg and r f g . By this fixing of ordering, the construction of trees associated 
to / and g will be definitive. 

Let n=card(AfgU<P/gL)rfg) and /=card Afg (recall, that A/g^0, hence 
1 ^ / S n follows) and consider a full binary tree T of level n. For / , let Tf = 
= (Vf,Ef) be that subtree of T which is associated to / . We introduce the follow-
ing notations: 

n f ) = {Vik\VikdVf,lsk^2% 
® ( f ) = {Vik\Vikmf) and FBT(Vik)iSubTf, I ^ k ^ 2'} 

M N = L R ( F ) ~ ^ ( F ) PR O V I D E D 1 ^ (J> \ - r ( f ) otherwise. 
In the rest of the paper we shall keep the reference of the (lower case) letter 

i fixed, namely, /=card Afg and every occurence of i not in English words will 
always refer to this cardinality. 
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3. Existence of interpolants 

3.1. Let f,g£3&. We write f ^ g iff and for all &a2,f(£)=\ entails 
g(i)=l; and iff f ^ g but / V g . The following assertion is immediate 
by definitions. 

Lemma 4. Let f,g£8& and assume that 7} and Ta are the trees associated 
to / and g, respectively. Then f ^ g iff 7}£Sub7^; in particular, / < g iff 
TfczTg. 

From now on, we shall fix (arbitrarily) f ,g^3S such that g ^ 1. 
All assertions in the rest are valid under these assumptions only, but, for the sake 
of being short we shall omit them everywhere when stating lemmata or theorems 
formally. Accordingly, every formal assertion is to be read as "If / , g£88 , f<g , 
f ^ O , g ^ l then" followed by the assertion written as such. This remark applies 
also for definitions. 

First we set -Ifa={h\k£@,f^h, and 5(k)QAfg}. We say, that 
is an interpolant of / and g iff h£Ifg. By Lemma 4, we have 

Corollary 5. Let and 7}, Tg, Th be the trees associated to / , g, h, 
respectively. Then, 
(1) h£lfg implies TfczThczTg, and 
(2) TfczThczTg and W{H)=-V(K) together imply h£lfg. 

The following two lemmata readily follow from definitions by Lemma 4 and 
Corollary 5. 

Lemma 6. Let and h£I f g . Then, 
(1) nmnh), 
(2) iV~(f)ciiV(K), 
(3) r(h)=ir(h), 
(4) iT(h)Qir(g), and 
(5) f № c f ( g ) . 

Lemma 7. Let If 
(1) tr(f)<z1T(h), 
(2) •T(h) = W(h), and 
(3) ^(A)ciT(g). 

are satisfied, then h£I f g . 
3.2. Recall that <Pfg=rfg=<d in Case 1; rfg=0 in Case 2; <Pfg=&, 

r f g ^ Q in Case 3; and <Pfg^0, r f g ^ Q in Case 4. 

Lemma 8. 
0 ) ® ( / ) = ® ( s ) = 0 in Case 1. 
(2) tec in Cases 2 and 4, 

® ( / ) = 0 in Case 3. 
(3) in Cases 3 and 4, 

4f(g)=0 in Case 2. 
(4) ifr{g)=r(g) in Cases 1 and 2. 
(5) iV{f)=nf) in Cases 1 and 3. 
(6) iV(g)--r{f)7±<d in Case 1. 
(7) in Cases 3 and 4. 
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Proof. All statements exept (7) in Case 4 readily follow from Lemma 3 by 
definitions. 

For proving (7) in Case 4, let us suppose, that ^{g) —T^"(/) = 0 and let VijdW (g). 
We have either V^C^tf) or V ^ i V i f ) , immediately. Let us suppose first, that 
Vij£<%(f) and let fc=card <Pfg. Since / does not depend on elements of r f g , 
there exists an I ( l s / s 2 i + * ) , by Lemma 3, such that FBT(^ i + f t ) 1)^Sub 7} 
(where 7} is the tree associated to / ) . On the other hand, since g does depend 
on elements of r f g , it is impossible, again by Lemma 3, that the same is true for 
Tg (Tg being associated to g); i.e. there exist some vertices in FBT(V(i+k)l) which 
are not contained in Tg. It follows, that 7} <£ Tg, a contradiction to Lemma 4. 
If Vijd'W(f) then, using a similar argument, the assertion follows. 

The next theorem gives necessary and suificiant conditions under which proper 
interpolants exist. 

Theorem 9. Ifg^0 iff card (iV(g) —"V(fwhere a = 2 in Case 1, a = l 
in Cases 2 and 3 and a = 0 in Case 4. 

Proof. Let 7} and Tg be the trees associated to / and g, respectively. 
For Cases 2 and 4, let 7i be the tree obtained from 7} by adjoining. FBT 

(Vij) for all VifJUif) to 7}. By Lemma 8 (2), we have ^ ( / V - 0 and hence, 
T}c-Tx in both cases. In Case 4, TxaTg follows from Lemma 8 (7). In Case 2, 
1fr(g) — 'V~(f)?iV> by assumption, thus 7ic7^. Let h be the function to which 
71 is associated. By the construction of 7i, we have iV{h)=ir(h), hence h£Jfg, 
by Corollary 5 (2). 

For Cases 1 and 3, let 7\ be constructed from 7} by adding to 7} the tree 
FBT(^j) for some Vij^ir(g)-"r(f). Since iV(g)-Y{f) is not empty by as-
sumption, we have immediately, that 7}c7 i (recall, that F B T ( ^ ) is the path 
ending in Vij in Case 1). In Case 3, Tx<^Tg is obtained by Lemma 8 (7), while 
in Case 1, this proper inclussion is entailed by the assumption, namely, by the fact, 
that if(g)—T^X/) — {Vij} (where Vy is the vertex used in the construction 
of 7Y). Again, denoting by h the function to which T1 is associated, h£lfg 
follows from Corollary 5 (2) since iV(K) = ir(h). 

To prove the converse, let //¡,5^0 and assume that h£lfg. 

Case 1. card ( " T ( g ) - r ( h ) ) S 1 and card {T(h) - -T{f)) S 1 thus card (W(g) -
- l T ( / ) ) s 2 by Lemma 8 (4). 

Case 2. ir(f)<^ir(h) = i(r{h) by Lemma 6 (1 and 3); -r(h)czf(g) by Lemma 6 
(5) and y(g)=^iii(g) by Lemma 8(4). Summarizing up, 'f(f)c:Hr{g) and hence 
card ( i T ( g ) - T r ( / ) ) s l . 

Case3. V ( f ) = W(f) by Lemma 8 (5), iV(f)zLiV{h) = Y(h) by Lemma 6 
(2 and 3) and finally, W(h)^iT(g) by Lemma 6 (4). We have then Y~{f)czir(g) 
which implies card ( 7 r ( g ) - f ( / ) ) = 

3.3. We present here some counterexamples thus illustrating the very nature 
of proper interpolants. 

Let the following functions be given: f1=xl-x2, g1=x1-x2+x1-x2; f% = 
=x1-'x2- g2=x x-x2, and f3 = x1-x2, g3=x1- x2 + xt - x2 - zx. The trees associated 
to these functions are indicated in bold line by Figs 1, 2 and 3, respectively. 
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Fig. I 

Fig. 2 

Fig. 3 

It is clear, that 4 > f i g = r f i g = 0 - r ( g x ) ~ ^ ( f , ) = and 
card gi)—T^C/i)) = 1, nevertheless / / l 9 l = 0 . Similarly, <Pfl9={yx}, r / 2 j 2 = 0 
and n g 2 ) - n f 2 ) = i n g J - n f 2 ) = 9 and I f292 = Q. Finally, 4 > f 3 g = 0 , r f J 3 = { Z x } 
and i n g 3 ) ~ n f 3 ) = 0, thus 7/sffs = 0. /S9S 
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4. The number of interpolants 

4.1. -

Theorem 10. Let m=card (iT(g)-Tr(/)). Then, 

card (Ifg) = 2m-a 

where a=2 in Case 1, a=l in Cases 2 and 3 and a = 0 in Case 4. 
Proof. Let M='W(g)—ir(f). In all cases, if A/V0 (M=0 can occur in 

Cases 2, 3 and 4 only, by Lemma 8 (6)), then the whole set I f g can be constructed 
by the following recurrence. 

Let us denote by 7\ the tree obtained by adjoining FBT (Vik) to the tree 2} 
associated to / for all Vik£<%(f). Obviously, TfQTt. 

Let T2 be a tree such that TxQT2QTg and T2 is associated to an inter-
polant h2 of / and g (or, to / if T2=TX = TS) and suppose, that Let 
T3 be constructed from T2 by adding FBT (Vi}) to T2. Clearly, Tf<^T3QTg 
and, for the function h3 to which T3 is associated, /W(h3)=ir(h3). It follows 
from Corollary 5, that h 3 £l f i iff T3czTg, and from Lemma 4, that h 2^h 3 . Let 
MX=M— {Vij} and repeat this procedure with Va^Ml and with T3 (in place 
of T2) until M is emptied. 

Summarizing up, starting from 7\ and taking in all possible ways one, two,..., m 
distinct elements from M (provided A/V0) and proceeding as described above 
we can produce a set of functions / = ..., ir} and it follows from the construc-
tion, "that 7U{/, g}=/ /0~U{/, g}, i.e. any function which can be constructed in 
this way is either an element of I f g or of {/,g}. Since one, two, ...,m distinct 

( f f i \ (m\ m 

lJ' (2 J ' 'lwJ Po s s^ e ways'an<^ y 
= 2 m - l , we have card l~2 m . 

It remains to investigate whether / and g do or do not appear in I. This 
will be done case by case. 

Casel. We have ®( / )=0 by Lemma 8 (1), hence Tx = T f , i.e. / € / . On 
the other hand, taking all elements from M, we obviously obtain a tree identical 
to Tg, thus All the other elements of I are proper interpolants, indeed, that 
is Ifg=/- {/, g). It follows, that card (Ifg)=2m - 2. 

Case 2. By Lemma 8 (2), which entails 7}c7 \ , i.e. the function 
to which 7\ is associated is in I f g (cf. the proof of Theorem 9). Taking all elements 
from M in the procedure above, we arrive to Tg by Lemma 8 (3), hence g€/. 
We have Ifg=I-{g}, hence card (7 / 9 )=2 m - l . 

Case 3. W(f) = 0, by Lemma 8 (2), which implies 7\ = 7} and thus /£ / . 
Let Tr be the tree obtained by the procedure using all elements of M. Then by 
Lemma 8 (3) T,czTg. That is g$I, I f g = I - { f } and we have c a r d ( I f j ) = 2 m - l . 

Case 4. Since by Lemma 8 (2), we have 7 > c r 1 , i.e. / $ / . On the 
other hand, taking all elements in M and constructing the tree Tr by the procedure, 
by Lemma 8(3), TrcTg holds. We obtain, that and so IIg=I. 
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4.2. By a chain of interpolants we mean a finite sequence of distinct functions 
h0, ...,h, such that the following clauses are satisfied: 

(1) h0=f,h,=g, 
(2) hj£Ihj_ l h j + 1 for 1 < / < / . 

A chain h0,...,h, of interpolants is maximal iff for every j (O^j-^t), Ihjhj+i = 0. 
Corollary 11. Every maximal chain of interpolants of / and g has length 

ca rd(TT(g) - i r ( / ) )+ /? where /5=1 in Case 1, p=2 in Cases 2 and 3 and 0 = 3 
in Case 4. 

Proof. Immediate by the proof of Theorem 10. 
Fig. 4 below indicates all of the four cases. h t stands for the function obtained 

from T1 in the proof of the previous theorem, and hM denotes the function which 
is constructed by using the whole set M. 

Corollary 12. The set of all maximal chains of interpolants of / and g has 
cardinality given by 

(card ( - r ( g ) - T r (/)))!. 
Proof. The second (in Cases 1, 3) or the third member (in Case 2, 4) of a parti-

cular maximal chain is obtained by using exactly one element from the set M = 
= 'Mr(g)—"tr(f)', this element can; be taken in card Ai different ways. The next 
member of the chain can be taken in card M—1 different ways, and so on. The 
assertion follows by induction. 

h M = h t = g V V « h t - g 

M 

h t - g 

M 

¿ h 0 = h l = f 

<i h 

h o = f 

,, h . 

i h o = h i = f 

ih, 

l V f 

Case 1 Case 2 Case 3 

Fig. 4 

Case 4 
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5. The algebra of interpolants 

Theorem 13. The algebra J=(Ifg\J {/, g}, • , + , / , g) is a distributive sub-
lattice of the Boolean algebra ¿% = (B/~, • , + , " , 0, 1) with zero element/and unit 
element g. 

Proof. The only thing to be proved is that Ifg U {/, g} is closed under + and • . 
This is, however, obvious from the construction outlined in the proof of Theorem 10. 

It is relatively easy to show using Lemma 1 and the construction of l f g , that 
lfgU {/,. g} is not closed under negation: the algebra J is not a Boolean algebra. 

Theorem 14. Let h0, / i ^ / ^ U {/, g}. Then in the Boolean algebra 3$, the 
two equivalence classes [/i„] and [/Jx] are identical iff their representatives h0 and 

are such; i.e. [/i0] = [^i] iff h0=h1. 
Proof Obvious, by Lemma 2 and the construction of If9. 

By using the isomorphism between J5" and to every (p f^ , there cor-
responds a class in 0& denoted by f , , and conversely, for f£3S one can associate 
an element <pf in 

By a zero order model A we simply mean a subset of the set of sentence sym-
bols S. Observe, that every assignment represents a zero order model in 
the sense of [1]: let A(= {ji|ji€»S' and £¡ = 1} where is the/-th component of 
The converse is also valid: every model AcS can be associated by an assignment 
£A defined by 

Clearly, for every cp and A, we have A\=cp iff / 9 ( ^ ) = 1 . We set Av= {A\AaS, 
A\=(p}. 

Let £ and £ be two assignments and We say that the models 
and A; are (^-equivalent with respect to a subset A of 5 ( f ) , the set of nondummy 
variables of f , iff Aif]A=A^i]A. This is indeed an equivalence relation and being 
so we can set for AczS, cp^ and A<^5(f): 

[A]* = {B\BaS and' B is (^-equivalent to A with respect to A}. 
Notice, that by choosing A=5(f), the class [A]^(fv) is represented by one 

path in the tree Tfv associated to fv. 
Let f,g€.88 and consider the sets of variables, Afg, <Pfg and r f g . Then, 

clearly, ca rd^( / )=card({M]^ 9 }) and similarly, card ^ (^ )=ca rd ({[A]*'/}), 
that is, r ( f ) and i^(g) identify all ^-equivalent and <pg-equivalent classes of 
models with respect to the common set of nondummy variables of / and g, Afy, 
respectively. 

By definition, ® ( / ) i l i r ( / ) = 0 , iT(f)=-T(f) and similar equations 
hold for g. If for some k, Vik£iT(g), then FBT (Vik) is a subtree of the tree Tg 
associated to g, and all paths of FBT (Vik) represent the same (^-equivalence 
class of models with respect to the set of all nondummy variables of g, 5(g), while 

6. Conclusions 

0 otherwise. 
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if Vik$if(g) and hence Vik£<%(g), then the paths of TB going through Vik will 
represent different classes (with respect to 3(g)). We say that A is a respectable 
model (for q>g) iff 

[Afy = 
Since interpolants of / and g (hence of <pf and <pg) can depend on the variables 

of A fg only, respectable models for cpg are exactly the ones which are of interest 
from the point of view of interpolants. 

The «^-equivalence classes of respectable models for <pg, however, are identified 
by elements of i ^ ig j , according to the remark above. 

Let us introduce the following notations: 
K?={[K'9°\ ^ is a respectable model for g) and A 9 = $ A $ p \ A£A9a). 

Then, the set i^'{g)—ir{f), playing a central role in our investigations, identifies 
those respectable model classes for q>g which are not models of q>f, and 
card(•W(g)—ir(f))=card(Av*p—Ay,) hence a reformulation of Theorem 9 in 
model theoretic terms can be easily obtained. 

Summing up the results of the paper, for any two zero order formulae cp and 
ip such that (pt=4>, ~i <p, ¥= we can decide whether does or does not exist a proper 
interpolant for cp and \j/ and if the answer is affirmative, we can give the number 
of equivalence classes of proper interpolants immediately, or we can construct the 
whole lattice of equivalence classes of interpolants when necessary. The method 
developed in the paper is much more effective (even if it is considered as inefficient 
in the more strict sense of [5]) than the one presented in [3]. 

Abstract 

The number of equivalence classes of interpolants for arbitrarily given two zero order sentences 
are calculated using tree-theoretic arguments. As a by-product, the number of maximal chains 
and the algebraic structure of equivalence classes of interpolants are determined. 
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