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1. Introduction 

In the literature a number of extensions of context-free languages have been 
proposed. The motivation for this is to describe certain constructs of piogramming 
languages which are not context-free. An impoitant class of such an extension are 
the indexed languages introduced by Aho [1]. 

In the area of context-free languages, the LL(/c) languages are of special interest. 
In [10] and [11] proposals have been made to generalize this notion to the indexed case. 

Indexed languages coincide with the IO-macro languages introduced in [2]. In 
[6], Mehlhorrt defined the notion of a strong LL(/c) macro grammar and investigated 
this class of grammars. Furthermore he defined the notion of a general LL(&) macro 
grammar and stated the following problems for these classes of grammars: 

(a) Is the class of languages defined by the strong LL(fc) condition equal to the 
class of languages defined by the general LL(/c) condition? 

(b) Is the general LL ( k ) condition decidable for a given kl 
In [10], Sebesta and Jones gave a positive answer to question (b) for indexed 

grammars without ^-productions in the case k=\. 
In this paper we will answer completely these two questions for indexed LL(&) 

grammars. 
In Section 2, basic notions and definitions will be given and compared with those 

introduced in [10] and [11]. 
In Section 3 it will be proved that the strong indexed LL(/c) property is decidable 

for a given k. 
In Section 4 we will show that the strong indexed LL(/c) languages are determi-

nistic indexed languages which were introduced in [7]. In Section 5 deterministic 
context-free languages will be characterized as right linear strong indexed LL(1) 
languages. 

In Section 7 the main result of this paper, namely the decidability of the general 
indexed LL(/c) property will be proved. This will be shown by using a general transfor-
mation on indexed grammars given in Section 6. This transformation converts an 
arbitrary indexed grammar into an equivalent grammar which is a strong indexed 
LL(/c) grammar iff the original one is a general indexed LL(/c) grammar. This answers 
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the question (a) posed above. The decidability of the strong indexed LL(fc) property 
then implies the decidability of the general indexed LL(A) property, which answers 
question (b). 

2. Definitions of indexed LL(/c) grammars 

In this section we will consider subclasses of indexed grammars. Aho [1] intro-
duced indexed grammars and languages. We will state these notions in the following 
form: 

Definition 2.1. An indexed grammar is a 5-tuple G=(N, T, / , P, S), where 
(1) N, T, I are finite pairwise disjoint sets; the sets of variables, terminals, and 

indices, respectively. 
(2) P is a finite set of pairs (Af a), A£N, /€/U{<?}, a £ ( N I * U T)*, the set of 

productions. (Af, a) is denoted by Af—a. 
(3) S£N, the start variable.' 

Let a = u1Bipiu2B;ip2...Bkpkuk+1 with u£T* for /'€[1: &+1], and Bj£N, 
Pj£l* for ye[ 1: k] with kSO be an element of (NI*UT)* and let y£l*. Then we 
set 

<x:y = UxB^yu^B^y ... Bkfikyuk+1. 

For u, v£(NI*[JT)* we set u=>v iff u — cp^^Afycp2, v = (p1(a:y)(p2 with q>i,<p2£ 
£(NI*[JT)* and Af—aL^P. => is the «-fold product and is the reflexive, transitive 
closure of =>•. 

The language L(G) generated by an indexed grammar G=(N, T, I, P, S) is 
the set L(G) = {w\w£T* and A language L is called an indexed language 
iff L=L(G) for an indexed grammar G. 

The subclasses of indexed grammars considered in this paper are the indexed 
LL(/c) — and strong indexed LL(fc) grammars, whose definitions are generalizations 
of the corresponding context-free notions. Furthermore we will compare these defini-
tions with the corresponding definitions introduced in [10] and [11]. First we will 
introduce some basic notions. 

Let I be an alphabet and let fcsl be an integer. denotes the set of all 
words w over I with \w\sk, where |w| denotes the length of w. The function 
(*);£*—<*)£* is the identity on (k)L* and assigns to each w£I* with the 
prefix of w of length k. 

Now let G—(N, T, I, P, S) be an indexed grammar. Let x: Af-*p be a pro-
duction, let 1, and let y£I*. Then we set 

Firstfc (;0 = { « h | S *=> wAa wu}, 

First* (n, y) = {<-*>u\Ay *=> e *=> w}, 

where vv, w(| T*, and where *=> and "=>• are leftmost derivations. Furthermore we 
set for 9£(NI*UT)* 

Firstfc (6) = *=> «} with u£T*. 

From now on, all derivations are assumed to be leftmost derivations. 
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Now we define the notion of an indexed LL(&) grammar (ILL(A:) grammar). 
This notion corresponds to the context-free LL(/c) grammars. 

Definition 2.2. Let G=(N, T, I, P, S) be an indexed grammar and let 
be an integer. G is called an ILL(k) grammar if the following holds: 
Let 

S *=> wAya. "=> w01 *=> wx and 

S *=> wAya *'=> w02 *=>'wy 
be two leftmost derivations with A£N,y£I*, a£(NI*{JT)*, and w, x, T*. 
Then (k>x=(k)y imphes n — n'. 

{Note: 1=9 yields the context-free LL(/c) grammars.) 

Remark. Let G be an ILL(/c) grammar. Then for each word w£Z,(G) there is 
exactly one leftmost derivation according to G. 

Example 2.1. Consider the indexed grammar G=(N, T, I, P, S) with N= 
= {£, A, B, C}, T= {a, b, c} and / = {/, g}. The productions in P are nt: S-*aAf, 
Jt2: S—bAg, 7r3: A—B, 7r4: A—C, TZ&: Bf—a, n6: Cf—b, n1: Cg-*a, and ne: 
Bg—c. Only the following derivations are possible: 

S =>• aAf => aBf =>• aa, 

S => aAf =>• aCf => ab, 

- - S => bAg => bBg => be, 

S ^-bAg^-bCg^ba. 

Obviously G is an ILL(/) grammar. 
As for the context-free case it is possible to define the notion of a strong ILL(&) 

grammar. 

Definition 2.3. Let G=(N, T,I,P, S) be an indexed grammar and let k^ 1 
be an integer. G is called a strong ILL(k) grammar if First* (7t)n First* (7r')=0 holds 
for all productions n ^ n ' which possess the same lefthand side or are of the form 
it: A—a, %': Af—a' with / 6 / . 

(Note: / = 0 yields the context-free strong LL(/c) grammars.) 

Remark. It is easy to see that strong YLL(k) grammars are ILL(/c) grammars. 
The ILL(l) grammar G of Example 2.1 is not a strong ILL(l) grammar because 
First1(;is) = {a, c} and F i r s t { a , b}. This shows that an ILL(A:) grammar is 
not necessarily a strong ILL(/c) grammar even for k—\. This differs from the con-
text free case. 

We can state: 

Theorem 2.1. 1) A strong lLL(/c) grammar is an ILL (k ) grammar. 2) An ILL(l) 
grammar is not necessarily a strong ILL(l) grammar. 

We will call a language a (strong) ILL(k) language if there exists a (strong) 
ILL(fc) grammar generating this language. 

3» 
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We will now compare our definition of ILL(fc) — and strong ILL(fc) grammars 
with the definitions of indexed LL2(&) — and indexed LLl(/c) grammars introduced 
in [10]. 

Obviously, an ILL(&) grammar is an indexed LL2(&) grammar. On the other 
hand consider the indexed grammar given by the productions 7^: S—Af n2: A—a, 
and 7t3: Af—a. The two possible leftmost derivations 

S "i=> Af «•=» a, 

S "i=> Af "3=> a 

of the same word a according to this grammar show that it is not an ILL(l) grammar, 
but the LL2(1) condition is still satisfied. 

The notion of a strong ILL(&) grammar and that of an LL1(A:) grammar are in-
comparable. 

The indexed grammar G1 given by the productions nx\ S-*aAf S-»bAg, 
7r3: Af—ab, and 7t4: Ag—ac is obviously a strong ILL(l) grammar. 

Gx is not an indexed LL1(1) grammar, since BASE(Gi) (see [10]) is not a context-
free strong LL(1) grammar. This stems from the fact that in leftmost derivations 
according to Glt applicability of n3 excludes applicability of 7r4 and vice versa. On the 
other hand consider the indexed grammar G2 given by the productions : S-*Af, 
7t2: S—Ag, and n3: A—a in P. <j2 is not a strong ILL(l) grammar, since 
First1(^i)nFirst1(7r2)= {a}. G2 obviously is an indexed LL1(1) grammar. 

Furthermore, G2 is not an indexed LL2(1) grammar, which shows that Theorem 
4 in [10] is false. 

In [11], three types of indexed LL ( k ) grammars, the a, /?, y-ILL(&) grammars 
were introduced. It is easy to see that the definitions of a-ILL(/c)- and ILL(fc) gram-
mars and those of JS-ILL(k)- and strong ILL(A:) grammars coincide. These notions 
are defined but are not investigated further in [11], where only y-ILL(£) grammars 
are investigated. These grammars do not even include all context-free L L ( k ) gram-
mars. 

3. Properties of strong ILL(£) grammars and languages 

In this section we will first show that, given an indexed grammar G and a pro-
duction 7i the language First* (n) can be given effectively. This result implies 
that it is decidable whether a given indexed grammar is a strong ILL(fc) grammar for 
a given k. Furthermore, we will call an indexed grammar "reduced", if each produc-
tion occurs in at least one derivation of a terminal word. With the aid of First* (n), 
we can construct, given an indexed grammar G, an equivalent reduced indexed 
grammar. 

Theorem 3.1. Let an indexed grammar G=(N, T, / , P, S), a production 
7i£P, and an integer k ^ l be given. Then an indexed grammar G" with L(G") = 
= First* (7t) can be constructed effectively. 

Proof Construct the indexed grammar G'=(N, T', / , P\ S) with T' = 
= r U { # } , and Pr—PU{ft7} where n'\ Af-~#a. if n\ Af-a. It is easy to con-
struct a finite transducer M with M ( L ( C ) )=First* (7r). Here we use the notion 
"finite transducer" as given in [1]. 
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From Theorem 3.1 and Lemma 3.2 in [1] it follows that we can construct effecti-
vely an indexed grammar G" with L (G " ) = M ( L (G') )=First* (rc). 

Now we can state 

Corollary 3.1. Let G=(N, T, I, P, S) be an indexed grammar, n a production 
of G, A:§=1 an integer, y£I*, and 0£(NI*{JT)*. Given a vewT* it is decidable 
whether 

(1) u6Firstt(7i), (2) u€Firstfc (0), (3) u^First^ (tt, y) holds. 

Proof. (1) Construct an indexed grammar G" with L(G") = Firstk(Tr). In [5] 
it is shown that the membership problem for indexed languages is decidable. 

(2) With the aid of G construct the indexed grammar G'=(N U {S"}, T, I, P', S') 
where S' is a new start variable and P'—PU {it'} where n'\ S'—d is a new produc-
tion. Then we have First t(0)=Firsts(ji '). 

(3) Let Afbz the lefthand side of the production n. If n cannot be applied to Ay, 
then we have Firstfc(7t, y)—&. If Ay "=>0, then Firsts (re, }>)=Firsts (0) holds. 

Corollary 3.2. Let G=(N, T, I, P, S) b e a n indexed grammar and k^l be 
an integer. It is decidable whether G is a strong ILL (k) grammar. 

Since the language Firstfc(7i) can be given effectively for an indexed grammar G, 
it is possible to single out all productions of G which never appear in derivations 
of terminal words. We will call an indexed grammar without such productions 
"reduced". 

Definition 3.1. An indexed grammar G=(N, T, I, P, S) with L(G)^0 is 
called reduced if for each n£P there exists a derivation of a terminal word in which 
n is applied. 

Theorem 3.2. Let G=(N,T,I,P, S) be an indexed grammar with 
Then it is possible to construct a reduced indexed grammar G'=(N, T, I, P', S) 
which is equivalent to G. 

Proof. Determine for each production n the language First^Tt). If First1(7r)=0 
then remove the production. The grammar G' obtained in this way is reduced and 
obviously L(G)—L(G') holds. 

4. Strong ILL(/c) languages are deterministic indexed languages 

In [7] an indexed pushdown automaton (IPDA) has been defined, and it has been 
i shown that these automata accept exactly the indexed languages. 

Furthermore, a deterministic IPDA (d-IPDA) has been introduced in [7]. The 
class of languages accepted by these automata is called the class of deterministic 
indexed languages (DIL's). This class has properties similar to those of the class of 
deterministic context-free languages [7, 8]. In this section we will show that the strong 
ILL(/c) languages form a subclass of the DIL's. 

Theorem 4.1. If G=(N, T, I, P, S) is a strong ILL(&) grammar then L(G) 
is a deterministic indexed language. 
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Proof. We will construct a d-IPDA K which accepts the language L(G)$k 

where $ is an endmarker not in T. Since the deterministic indexed languages are closed 
under right quotient with regular sets [8], the language L(G) is a DIL. 

The states of K are the contents of a buffer of length k. This buffer contains a 
lookahead of k input symbols. Furthermore, the automaton simulates leftmost deri-
vations according to G. 

Set K=(Z, X, J \ , r 2 , <5, z0, A0, g0, F) with Z=WX*(J{zf}, * = r U { $ } , 
r 1 = / V U r U { / 4 0 } , where A0 is a new element, rs=I, z0=g0=e, F={zf}, and ô 
will be defined as follows: 

(1) For all u€X* with \u\^k-2 and a£X set 

(ua, (A0, e))£S(u, a, (A0, e)). 

For aU iieX^-», a£X set 

(ua, (S, e)(A0, e))£ô(u, a, (A0, e)). 

(2) Let TI: Af-B1y1...Bryr be a production of G, r ^O, B£NUT, and 
y,€/* for / e [ l : r ] . Then set {v,(B1,y1)...(Br,yr))^ô(v,e,(.A,f)) if \v\ = k and 

First*(7t), where v is the maximal prefix of v with vd T*. 
(3) For all b£X, a£T, and u^X*-1 set (ub, é)£ô(au, b, (a, e)). 
(4) (z„eKô($k,e,(A0, e)). 
Obviously, we have L{K)—L(G)%k. Since G is a strong ILL(A:) grammar, we 

have |<5(z, for all z£Z,x€XU{e}, B£rlt and g£/U{e}. (For 
example: S(v, e, (A, e)) with A£N can only be defined in (2). If |(5(u, e, (A, e ) ) | > l 
we have a contradiction to the strong ILL(/c) condition.) 

It is easy to see that in each configuration (z, w, 6) of K at most one move is 
possible. (For example: 8(v, e, (A, and S(v, e, in (2) for A^N 
and / € / leads to a contradiction to the strong ILL(fc) condition.) 

Therefore A! is a deterministic IPDA. 

5. Strong ILL(A:) languages and deterministic context-free languages 

Theorem 4.1. shows that the class of strong ILL(/c) languages is contained in the 
class of DIL's. The DIL's include all deterministic context-free languages, which we 
will now characterize as a special class of strong ILL(l) languages. 

Theorem 5.1. For each deterministic context-free language L there exists a 
strong ILL(l) grammar G with L=L(G). 

Proof Choose a deterministic pda K=(Z, T, r, ô, z0, A0, F) with L=L(K). 
We may assume that in a final state, K may make no e-move (see [4], p. 239). Now 
construct the following indexed grammar G=(N, T, I, P, S) with N=ZU {S} 
and I—T. The productions of G will be defined as follows: 

1) S—z0A0 is in P 
2) If <5(z, a„A)=(z',B1...Br), then the production zA-az'B1...Br is in P. 
3) For each z£F the production z—e is in P. 
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Obviously, G is a strong ILL(l) grammar generating L. 
The productions of the indexed grammar G in the foregoing proof are of a spe-

cial "right linear" form. Let us define: 

Definition 5.1. An indexed grammar G=(N, T, I, P, S) is called a right linear 
indexed grammar, if each production in P has one of the forms Af—aBy or Af—a 
with A,B£N, faUM, a£TU{<?}, and y£I*. 

Recall that an indexed grammar G=(N, T, I, P, S) is called an RIR grammar 
(right linear indexed right linear) if all productions in P are of one of the forms 
Af-aB, Af—a, or A-aBf where A, B£N, a£T(J {<?}, and /<E/U{e}. 

RIR grammars generate exactly the context-free languages, (see [1]). 
Obviously, each R I R grammar is a right linear indexed grammar. On the other 

hand, it is easy to show that for each right linear indexed grammar there is an equiv-
alent RIR grammar. 

Therefore we can state: 

Theorem 5.2. Right linear indexed grammars generate exactly the context-free 
languages. 

Now we can state: 

Corollary 5.1. Each deterministic context-free language is generated by a right 
linear strong ILL(l) grammar. 

To prove the converse of this statement, we first need the following lemma. 

Lemma 5.1. For each right linear indexed grammar G=(N, T, I, P, S) there 
exists an equivalent right linear indexed grammar G' with the following properties: 

1) There is exactly one start production. 
2) All the other productions are of the form Af—a with f ^ e . 
3) If CP is a strong ILL(k) grammar, then G' is a strong ILL \ k ) grammar. 

Proof Set G' — (N', T, /', P', S') with N'=N\J{S'}, 7 ' = / U { # } and 
P' = {S'-S#}\JP", where P" is defined as follows: 

a) If Af-(x£P, f ^ e , then Af-a£P". 
b) If A-a£P, then Ag-oc: g£P" for all g£I'. 
Obviously, G' is a right linear indexed grammar which satisfies 1) and 2), and 

is equivalent to G. Furthermore, it is easy to see that if G is a strong ILL(/c) grammar, 
then G' is a strong lLL(/c) grammar too. 

Now we can prove: 
Theorem 5.3. Each right linear indexed grammar G=(N, T, I, P, S) which 

is a strong ILL(l) grammar, generates a deterministic context-free language. 
Proof If L(G) = 9 then L(G) is a deterministic context-free language. If L(G)^ 
construct G' = (N', T,I\ P', S') according to the proof of Lemma 5.1. Further-

> more we can assume w.l.o.g. that G' is reduced. We will define a pda K which accepts 
the language L(G')$, where $ is a new symbol. .K buffers a lookahead of length one 
in its states and simulates leftmost derivations according to G'. The strong ILL(l) 
property of G' then implies that K is a deterministic pda. 

Set K—(Z, X, r,5,z0, # , F) with Z=N'X(TU {e, $})U {zf}, X=T U{$}, 
r=I', z0—(S', e), F = { z / } , and define 5 as follows: 
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(1) For all c i X let ((5, c), # ) € « ( ( $ ' , e), c, # ) . 
(2) Let 7i: Af-*aBy be a production in P with A t ± S ' . 

(a) If a^e then ((B, c), y)çS((A, a), c , f ) for all c£X. 
(b) If a=e then ((B, b),y)Çô((A, b), <?,/) for all ¿Ç^ 'F i r s t ^^S . 

(3) Let 7i : Af— a be a production in P. 
(a) If a^e then (zf,e)eô((A, a), $,/). 
(b) If a=e then ( z f , e)Çâ((A, $), e j ) . 

First we make the following observations concerning K: 

Claim 1. If ô((A, a), for a, c£X then there is a production n: Af—aa 
and {a}=First1(7r)=(1)First1(7r)$. 

Claim 2. If S((A, a), e , f ) f o r aÇ.X then there is a production n: Af—a 
with a=e or the first symbol of a is in N and furthermore aÇ(1)First1(7r)$. 

Claim 1 and Claim 2 correspond to the subcases (a) and (b) respectively in the 
above definition of <5. 

Claim 3. For all z£Z, c£XU{e}, and fer we have \S(z, c , / ) | s l . 
If z=(S',e) then |<5(z, c,f)\^\ obviously holds. Now assume z=(A, a) 

with a€X and |<5(z, c , /") |>l . Then there are productions n and n' with n^n' and 
aÇm(First ^rc)$)D (1 )(First^n')? ). This is a contradiction to the strong ILL(l) pro-
perty of G. 

Now consider z=(A,a) with aÇX and fÇT. If S(z, e,f)^0 and S(z, c,f)^0 
for a cÇX then Claim 1 and Claim 2 state the existence of two productions n and n' 
with n^Tt' and furthermore a ^ w ( F i r s t ^ S ) D ( 1 ) ( F i r s t ¿ n ^ S ) . But this is a con-
tradictibn to the strong ILL(l) property of G. 

If z=(S',e) then 0(z,e,f)=0 holds. Together with Claim 3 this shows that K 
is a deterministic pda. 

To prove L(K)=L(G')$ we need 

Claim 4. If «S # "=>• wAy # *=>wv, w,v£T*, AÇ.N, according to G' then 
(z0, wv$, #) f-^ii- ((A, c), v', y # ) according to K, and cv'=v$ with c^e. 

The claim will be proved by induction on n. 
If n = 0 then w=y=e and A—s. According to K we have 

((S", e), v$, #) l - ( (S, c), v', # ) with cv = v$ and c ^ e. 

Assume the claim holds for all k ^ n . 
Let S#"=>wAy #n=>waBy'#*=>wav be given where a£TU{e}. From the 

induction hypothesis (z0, wav$, #) ((A, c'), v", with c'v"=av$ and 
c'^e follows. If now a£T then c'=a and v"=v$ holds. According to K the move 
((A, a), v$, y#)h((B, c), t> ' ,y '#) with cv' = v$ and c^e is possible. If a=e 
then c'v"—and c'çW(First1(7i)$) holds. According to K the move 
((A, c \ v", y # ) l - ((B, c'), v", y' # ) is possible. This completes the induction. 

Now, by induction on n we will show 

Claim 5. If (z„, wv$, # ) |-2±L ((A, c), v ' , y # ) with w,v£T*, cv' = v$ and 
cj±e holds according to K then S wAy # holds according to G. 
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If n=0 then we have ((S", e), # ) h - ((5, c), v', y # ) with cv'=v$ accord-
ing to K. This implies and S # °=> wSy # holds according to G. Assume 
the claim holds for all k^n and let (z0, wv$, #) h ^ i ((A', c'), v", y' # )|-
h- ((A, c), v', y # ) with cv'=v$ and c^e be given. 

If v"=v' then c=c' and c'v"=v$ holds. From the induction hypothesis 
S#n=*-wA'y' # follows. Since ((A', c), v', y' # )|- ((A, c), v', y # ) holds, there is a 
production 7i with wA'y'#*=> wAy#. 

If t V » ' then v"=cv' and w=w'c'. From the induction hypothesis S#"=> 
n=>w'AY* follows. Since ((A', c'), v", y' #)|- ((A, c), v', y # ) holds there is a 
production n with w' A' y' # w'c'Ay # = wAy # . This completes the induction. 

Now let w£L(K), i.e. (z0, w, # ) ((A, c), d, y #)\-(zf, e, y'). Here we have 
either d=% or d=e and c=$ . If d=$ then w=w'c$. Obviously, w'c£T* 
holds. Therefore the derivation S#*=>w'Ay # exists according to Claim 5. Since 
((A, c), $, )h(zf, e, / ) holds, there is a production n: Af—c with w'Ay#"^>-
"=>w'c. Therefore w'c£L(G) and w=w'c$É.L(G')$. If d=e and c = $ then 
vv=w'$ with w'£T*, and the derivation S#*=>w Ay # exists according to Claim 
5. Since ((A, $), e, y # )h- (zy , e, y') holds there is a production n:Af—e with 
w'Ay#*=>w'. Therefore w'iL(G') and w=w'$£L(G')$, and hence L(K)QL(G)$. 

Conversely, let w£L(G'), i.e. S # *=>w'Ay # => w=w'c ' , c'£TU{e}. Then 
(z0, w'c'$, # ) h*- ((A, c), d,y#) with cd=c'$ and c^e holds according to Claim 4. 
If c'=e then c = $ and d=e hold. Hence the move ((A, $), e,y# )h(zf, e, y') 
exists. If c ' ç r then c=c',d=$, and the move ((A, c), $, y # )h(zj-, e, y') exists. 
Therefore w$£L(K) and hence L(G)$QL(K). 

Together with the inclusion L(K)QL(G)$ this shows L(K)=L(G)$. 
Since K is a deterministic pda, L(G)$ is a deterministic context-free language 

which implies that L(G') is a deterministic context-free language as well (see [3], 
Theorem 11.2.2). 

Combining Corollary 5.1 and Theorem 5.3 we can state 

Theorem 5.4. The class of deterministic context-free languages is exactly the 
class of right linear indexed strong ILL(l) languages. 

The indexed grammar for the language {a"bnc"\n^\} given in [1] is a strong 
ILL(l) grammar. This proves 

Theorem 5.5. The class of strong ILL(l) languages properly contains the class 
of the deterministic context-free languages. 

6. A general transformation of indexed grammars 

In Section 3 it was shown that the strong indexed LL ( k ) property is decidable. 
This will be used in Section 7 to prove the main result of this paper, namely the de-
cidability of the (general) indexed LL(fc) property. 

To this end we first investigate in this section properties of two functions which 
are defined with respect to a given indexed grammar. Let G=(N, T, I, P, S) be an 
indexed grammar and let A: I*—L and fi: (NI*{JT)*-+M be two functions in 
two finite nonempty sets L and M. A and /x can be interpreted as assigning information 
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•A(y) and ¡i(9) from finite domains L and M to words y€7* and 9£(NI*UT)*, res-
pectively. If A and n satisfy certain compatibility conditions Cx and then it is pos-
sible to construct a grammar GXll equivalent to G which simulates the derivations of G 
and attaches in left sentential forms wAyB of G the information A(y) and n(9) to the 
variable A. This means that the values of the functions A and fi can be "computed" 
during leftmost derivations. 

Let us now state the compatibility conditions Cx and C„. 

( Q ) If A(yt) = A(y2) then A(/y i) = A(/y2) for all ylty,a*, and / € / . 

(C„) If A(yx) = A(y2) and ^(0.) = n(02) then ^ ( f l r y ^ J =/ i (0 :y 2 0 2 ) for 

all O^d^NFUTT, 0£NI*UT, and y l 5 y 2 €/* . 

Note: If Cx is satisfied then it is easy to see that A(y1)=A(y2) implies A (ay^ = 
=A(ay2) for all a£1*. Funhermore it easy to prove that if C„ holds then A(y^ = 
=A(y2) and imply ^(0:y101)=/x(0:y202) for all d£(NI*UT)*. 

We will now give examples for functions A and ¡i satisfying the conditions C ; 
and C„. 

Example 6.1. Let G=(N, T,I,P, S) be an indexed grammar. Set L=0>(N), 
the power set of N, and set A(y) = {A\Ay*=>e}. We will show that A satisfies condi-
tion Cx. For this purpose let y i ,y 2 €/* with A(y1)=A(y2),/€/ and A^X(fy^) be 
given. Since A£A(fyi), there exists a derivation Afy*=>e. If Af*=>e, then 
AdA(fy2) obviously holds. Otherwise there exists a derivation Af*=>B1...B„ with 
B£N, /€[1: n] and Bflx*^e 'for /£[1: n] holds. Therefore BifJ.(yl)=l(y2) and 
hence Biy2*=>e for /£[1: n] holds too. Consequently we have Afy2*=>B1y2... 
...Bny2*=>e and A£X(fy2) follows. This shows A(/yj)QA(/y2). The converse 
inclusion follows by symmetry. 

Example 6.2. Let GC=(N, T, P, S) be a context-free grammar which can be 
interpreted as an indexed grammar G=(N, T, I, P, S) with 7=0 . Let L be a finite 
nonempty set and let A: /*—L be defined by /,(e)=q for a q£L. Obviously A 
satisfies condition Cx• For a k^l set M=<k)T* and define y.{9) = {u\9*=>v, v£T*, 
M=<*)u}=Firstfc(0) for all Oe(NUT)*. We will show that n satisfies condition C„. 
Let O^O^NUT)* with ii(BJ=n(6>2) be given. Let 6£(NUT)* and let 
Hence there exists a derivation 69j*=>w with v=ww. This derivation can be writ-
ten as 661*=>u161*=>u1u2=w. If then v=(k)u1£n(992) holds. Now assume 
| Hi | < A:. We can state the existence of a derivation 62*=>u2 with (fc)M2=(fc)M2 since 
fi(9j)=fi(6^). Hence 892 =>-u192 =ru1u2 and <-k)u1u2—v^fi(992) holds. Therefore we 
have The converse inclusion simply holds by symmetry.* 

This completes the examples and we return to the general discussion. 
Let L=L\J{q} where q is a new element. With the aid of A the function 

1\ I*XL-*L, is defined for all y£7* and qtL by 

Hy,g) = Hyy') if q = W ) for a / £ / * 

= q otherwise. 

If A satisfies the condition Cx then 1 is well defined. 
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Now set M=M U {m} where m is a new element and define the function 
p.: (NI*UT)*XMXL-M for all 0£(NI*\JT)*, m£M, and qdL by 

m, q) = n(0:y0d if q = Kv) for a y£I* . 

and m = n(6 j) for a O&NFUT)* 

= in otherwise. 

If p satisfies the condition C„ then p. is well defined. Now we can state 

Lemma 6.1. 

(1) If A is effectively computable and satisfies the condition Cx then A(/*) and 1 
are effectively computable, too. 

(2) If A and ¡1 are effectively computable and satisfy the conditions Cx and C„ 
then p((NI*UT)*) and ¡1 are effectively computable, too. 

Proof. (1) We will first show that the value of X for an index word with, length 
greater than or equal to \L\ can be obtained by applying A to a word of length less 
than \L\. 

Let X be effectively computable, i.e. there is an algorithm Ax which determines for 
each given y£I* the value A (7). With the aid of Ax determine the •set A( ( | L | - 1 ) /*). 
(Recall that ( | i | ~ 1 ) / * denotes the set of all words over / with length less than or equal 
t o | L | - l . ) 

Let y=fr...f1ei* with r^\L\ be given and let qk = X(fk...fL) for k£[0: r}. 
There exist i,j£[0: r] with 7<7 and qi = qj because \L\ = r. Since A satisfies the 
condition Cx we have X(y) = X(fr...fj+1fi...f1). Hence A(/*) = A ^ l - 1 * / * ) and this 
implies that A(/*) is effectively computable. 

To show that I is effectively computable let y£I* and q^L be given. If 
?fA(/*) then l{y, q)=q holds. Otherwise, if q£MI*), determine a 
with X(y')=q and compute the value X(yy) with the aid of Ax. This completes the 
proof of (1). 

(2) We will first show that for each 0£(NI*U Tf there exists a 0'£(NI*U T)* 
with n(8)=fi(6'), and with the length of the index words in 6' restricted by \L[. 
In the next step we show that it suffices to compute the values of p for words over 
(.NI*UT)* with length less than \M\. 

Let A be effectively computable and let A and ft satisfy the conditions Cx and C„. 
First we will show by induction on the length that for each Q€(N/*UT)* there 
exists a 0'e(iV( (lLl-1>/*)Ur)* with p(Q)=p(6'). In case 6=e the assertion is 
trivial. Let B = 0102 with 91eNJ*UT and 02£(Ni*UT)*. The induction hypothesis 
guarantees the existence of a 9'2e (N(lW-»I*)\JT)* with ii(O2)=fi(0'J. 

If 0 x = a € r then n(S)=ti(ad2)=p(ad'2)=p(9') with 
since n satisfies condition 

Now let Q^AydNI* . Part (1) of this lemma guarantees the existence of a 
y'g(li-l-i)/* w i th X(y)=X(y'). Since p satisfies the condition C„, we have p(6) = 
=p(A:ye^=ii(A:y'9'2)=ii(0') with fl'e^^l-^OUTO*. 

Now let p be effectively computable, i.e. there is an algorithm Ap which determi-
nes for each Q£(NI*UT)* the value p(6). With the aid of Ap determine the set 
^ ( ( I m i - d ^ U l i - u ^ u j ) * ) . We will show that this set equals p((NI*UT)*). 
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Let a 9£(NI*UT)* be given. We have proved above the existence of a 
0'£(W((|i.|-i>/*)U:r)* with /i(0)=/i(0'). Let 0' = gr...e1 with Ot£NI*\JT for 

r] and r s | M | . If we set mk=fi(9k...9J for r] then there exist 
'>/€[0: r] with /'</' and rni = rrij. Since fi satisfies the condition C„, we have 
K6')=MOr...eJ+le,...ed. 

This impUes ^ ( (W*UT) + )=^( ( | A i | - 1 W(<l i - l - 1 ) /* )Ur)*) and therefore 
n((NI*UT)*) is effectively computable. 

J t remains J o be shown that p is effectively computable. Let 0(i(NI*{JT)*, 
m£M, and q£L be given. If m£n((NI*\JT)*) and qO^I*) then determine a 0X 
with fi(61)=m and a y with k(y)—q and compute the value p(9:y91)—p(9,m,q) 
with the aid of Afi. Otherwise, if m=m or q=q, we have ¡1(0, m, q)—m. This 
completes the proof of the lemma. 

Starting with an indexed grammar G=(N, T, I, P, S) and functions X and fx 
satisfying Cx and C„, we will construct an indexed grammar GXfl=(N', T, /', P', S'). 
This grammar is structurally equivalent to G, i.e. generates the same set of terminal 
strings and the same set of derivation trees (ignoring the labels of the intermediate 
nodes). _ 

Define N'=NXMXL, l'=lxL and S'=(S, m0, q0) with m0=n(e) and 
q0 = He). 

For the definition of P' we need two functions <p and i¡1. The function 
(p: / * X L — ( / X L ) * = / ' * attaches a second component to each index f , in an index 
word / i . . . / „ . For a given q£L the second component of f will be value l(fi+1... 
...f„,q), i.e. <p is defined by 

(p (e, q) = e, and 

<PUv, ?) = (/> Uv,q))<P(y,q) for all y£I*, / € / , and qtL. 
The function ^ : (N1* U T)*XMXL-* ((NXMXL)(/XL)* U T)*=(NT* U T)* 

attaches two components to the variables A{ in a word A1y1_A2y2...A„y„ of (N/*U 
U T)* with A^NUT, y£I* for /€[1: «]. For a given m£M and qtL the values 
of these components will be p(Ai+1yi+1...Any„, m, q) and !(>>;, q) respectively. 
Furthermore the yj will be replaced by q>(yj, q) for [1: n], i.e. 4> is defined by 

\//(e, m, q) = e, 

\l/(aO,m,q) =a\l/(9,m,q) and 

il/(Ay9, m, q) = (A, p(9, m, q), I(y, q))(p(y, q)^(9, m, q), 

for all A£N, y£l*, 9£(NI*UT)*, m£M, q£L, and a£T. 
Now we are able to define the productions of GXlt • Let n: Af—fi be a production 

of P. Then for all m€n((NI*(JT)*) and q£X(I*) the production 

nm,q: 4/(Af, m, q) - 1¡/(P> m, q) is in P'. 

• Note that ij/(Af, m, q)= (A, m, l ( f q))<p(f, X ( / ' U {«}), since <p(f q)=e 
if /=<?, or (p(f,q)=(f,4) if 

Gx„ is called the Xfi-grammar of G. If the functions A and fi are effectively compu-
table, then the function ij/ is also effectively computable and the grammar GXll can be 
constructed effectively. 
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The homomorphism 3: (N' (J I' U T)*_—(N U_I U T)* defined by S(A, m, q)=A, 
S(f q)=f, and S(a)=a for all A£N,m£M, q£L,f£I, a£T, deletes the components 
attached to variables A£N and indices / € / . Obviously, if 6[ nr°'"=>8'2 according 
to G ^ , where 0i, 9'^(N'I'*UT)*, then ¿ ( 0 ^ ( 5 ( 0 0 holds according to G. 

Furthermore for all 9£(NI*UT)*, m£M, q£L, we have 5(il/(9,m,q))=0. 

If S' = (S,m0,q0) 1 =>6[... n =>6'n is a leftmost derivation according to 
GXft, then 

S*i =>5(9[) =>•...*» =>5(0'„) 

is called the corresponding leftmost derivation according to G. 
In the following two lemmas we will make precise the structural equivalence of 

the grammars G and GXfl. To prove these lemmas we need a number of facts concern-
ing the functions 1, Ji, <p, and 

Claim 1. For all 0, 6lt 9^(NI*UT)*, and y,yxU* we have 

(i) l(e,X(y)) = X{y), 

(ii) Hy> <7o) = where q0 = X(e), 

(iii) J.(yx,I(y, q)) = l(yxy, q) for all q£L, 

av) ¡i[e,m,m) = m , 

(v) /Z(0, m0, q0) = /i(0) where m0 = p(e) and q0 = X(e), 

(vi) p.(919,m,q) = p.(91,fi(9,m,q),q) for all m £ M and q£L, 

(vii) fi(9:y, m, q) = fi(9, m;X(y, qj) for all m£M and q£L. 

These identities are easily obtained from the definitions of the functions 1 and j.I. 
The following three claims state properties of the functions (p and All claims 

are proved by induction on the length of words over I and NI*UT respectively. 

Claim 2. For all y, y%€I* and qdL we have 

<p(M> q) = <P(Y> HJI, q))(p(Yi, q)-

Proof The assertion holds for y=e. If y=fy' with / € / then 

Hfy'yi, q) = ( / UY ?i> q))<p(y'7i> q) 

= ( / HY, Uvi, q)))(p{y\ Hyi, q))(p(yi, q) 

(see Claim 1 (iii) and induction hypothesis) 

= <p{fY, Uyi, q))<p(yi, q) 

(see definition of (p). 

Claim 3. For all 0, 9lZ(NI*\JT)*, m£M, q£L, we have 

^(0!0, m, q) = I¡/(dt, ¡1(9, m, q), q)ip(9, m, q). 
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Proof. The assertion holds for 91—e. Assume that 91=a9'1 with a£T and that 
the assertion holds for 6[0. Then, by the definition of ip we can conclude 

t W A m, q) = a\j/(0[0, m, q) 

= a\l/(9[, ¡1(9, m, q), q)\j/(9, m, q) 

= \lf(aBi, /1(0, m, q), q)\j/(9, m, q) 

Now assume 91=Ay9'1 with Ayd.NI* and 9'1£(NI*UT)*, and assume the 
assertion holds for 9[9. Then, by the definition of i¡f and Claim 1 (vi) we can conclude 

iP(Ay9[9, m, q) = (A, ¡x(9[9, m, q), l(y, q))<p(y, q)^)(9'19, m, q) 

= (A, ¡i(9'16, m, q), l(y, q))<p(y, q)ip(9[, /1(0, m, q), q)ip(9, m, q) 

= (A, ¡1(91, ¡1(9, m, q), q), l(y, q))q>(y, q)4>(9[, ¡i(9,m, q), q)^(0, m, q) 1 

= il/(Ay9i, ¡1(0, m, q), q)ip(0, m, q). 

Claim 4. For all 9^(NI*\JTf, ydI*, m£M, and qdL we have 

i¡/(9: y, m, q) = \p(9, m, X(y, q)):cp(y, q). 

Proof. The assertion holds for 9=e. Assume Q — adi with a£ T and the asser-
tion holds for 9t. From the definition of ij/ it follows. 

<K(a0i):V. q) = ^ ( a f t : V), m, q) = ai/^: y, m, q) 

= a(\p(9i, m, l(y, q)): cp(y, q)) = 

= (a\j/(91, m, J.(y, q))): <p(y, q) = 

= ij/(a91,m,l(y, q)): <p(y, q) 

Now assume 9=Ay191 with Ay^NI*, 9^(NI*{JT)* and assume that the 
assertion holds for 0!. Then, by the definition of ip, Claim 1 (iii), Claim 1 (vii), and 
Claim 2 we have 

t((Ayi9i)'-y> m> q) = ¡¡>{Ayiy(9i- i), m, q) 

= (A, /7(0X: y, m, q), I fay, q))(p(y tf, q)^(0i. y, m, q) 

= (A, /2(0l5 m, l(y, q)), I(yxy, qj)<p(yi, X(y, q))<p(y, q)^{91, m,l(y, q))\ cp(y, q) 

= ((A, /2(0!, m, X(y, q)), l(yx, l(y, q)))i¡ff(yls l(y, q))^(91, m, l(y, q))): q>(y, q) 

= " H ^ y A , m> <f>(y> 

For the remainder of this section we will use the following general assumptions: 
(*) Let G=(N, T, I, P, S) be an indexed grammar and let A: / * — L and 

fi: (NI*(JT)*-"M be two functions in two finite sets L and Msatisfying the con-
ditions Cx and CM. Let L=LU{q} and M=M(J{m} where q and in are new ele-
ments and let GXll=(N', T, 1', P', S0 be the ¿/¿-grammar of G. 

The next lemma establishes a correspondence between a leftmost derivation step 
in G and an analogous leftmost derivation step in GA(1. 
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Lemma 6.2. Under the assumptions (*) for all w£T*, y£I*, 0£(NI*VT)* 
the following holds: 

If n: Af—P^P and wAfy6"=>wfl:yO according to G, then for all mx£n((NI*U 
U T ) * ) and qx£X(I*) we have \p(wAfyB, mx, q^m'q=>\l/(wp-.yB, mx, qi), where 
m=/7(0, mx, qj and q=l(y, qj. 

Proof. Since mx£n((NI*UT)*) and qx£X(I*), the same holds for m and q, 
hence nm-q£P'. Consider nm-q: (A, m, I ( f q))<p(f, m, q)£P'. By the 
definitions of (p and i¡/ and Claim 1 (iii) we have 

\j/(wAfyO, m,, qx) = w(A, m, l ( f y , qx))<p(fy, qJ<1/(0, mx, qx) = 

= w(A, m, l ( f q))q>(f, q)(p(y, qi)*P(B, mx, q^) 

This shows that nm'9 is applicable to \}/(wAfy9, mx, qx), i.e. the following left-
most derivation step is possible: 

w(A, m, X(f qj)(p(f, q)(p(y, qd^(0, mx, qx) 

W\I/(P, m, q): <p(y, qx) ̂ /(9, mx, qx). 

Using the Claims 3 and 4 we have 

w\l/(P, m, q):q>(y, qd^(9, mx, qx) = w\l/(P:y, m, qx)\j/(9, mx, q^ 

= i¡/(w9x9, qx). 

This completes the proof. 
- The following lemma is in some sense the converse of Lemma 6.2 and describes 

the simulation of a leftmost derivation step according to GXfl in the grammar G. 

Lemma 6.3. Under the asumptions (*) the following holds for all 
w£T*, ?€/*, and 0€(iV/*Ur)*: If nm•«: ^ ( A f m , q ) ^ ( P , m , q ) e P ' and 
^(wAfy9,mx, qj*"""^, where mx£ii((NI*l>T)*) and qx<EA(/*), then m = 

mx, qi), q=X(y, ft), and B=il/(wP:y9,mx, qx). 

Proof. Since ^(wAfyB, mx, qx) = 

w(A, Ji(9, mx, qx), X(fy, qj)(p(fy, qx)tp(9, mx, qx) = 

w(A, ¡1(9, mx, qx), l ( f , X(y, qx)))<p(f, l(y, qx))(p(y, q^(9, mx, qx) 

(see Claim 1 (iii)) we have m=fi(9, mx, qx) and q=X(y, qx). 
Furthermore, with the aid of Claims 3 and 4 we have: 

B = w\l/(P, m, q): cp(y, qx)i/j(9, mx, qj = w\p(p-.y, m, qx)i//(9, mx, qx) 

- \f/(w9x9, mx, qx) 

This completes the proof. 
The repeated application of Lemma 6.2 yields 

Corollary 6.1. Under the assumptions (*) we have: If S*=>wAy9 acccording 
to G with w£T*, A£N, y€/*, and 9£(NI*UT)* then S'=(S, m0, q0)**> 
*^[j/(wAy9,m0,q0) according to Gifl. 
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Remark. Since 

4>(wAy9, m0, q0) = w(A, ¡¡(9, m0, q0), l(y, q0))<p(y, q0)4>(9, m0, q0) = 

= w(A, ii(B), X.(y))<p(y, qQ)^(6, m0, q0) 

holds, we conclude: GXft simulates the .leftmost derivations of left sentential forms 
wAy9 of G and attaches the information X(y) and p(9) to the variable A. 

Repeated application of Lemma 6.3 yields 

Corollary 6.2. Let S'=(S, m0, q0)*=>6' be a leftmost derivation according to 
GXp and let S*=>9 be the corresponding leftmost derivation according to G. Then 
B'—\Jj(8, m0, q0) holds. 

Furthermore, with Lemma 6.2 we obtain 

Corollary 6.3. Under the assumptions (*) we have: If 9£(NI*UT)*,m£p((NI*U 
LIT)*), q£Hl*), and v£T* then i¡j(0,m, q)**-v according to GX/l iff 9*=>v 
according to G. In particular L(G)=L(GXp) holds. 

Remark. The underlying principle of this construction is applied for example in 
[1,9]. In [1] the function A of Example 6.1 is used for constructing a normal form of 
an indexed grammar. In [9] the function p of Example 6.2 is used in investigations of 
context-free L L ( k ) grammars. 

A construction similar to the construction of GXfl can be applied to indexed push-
down automata and pushdown automata. The principles of this construction are used 
in [7, 8] in the indexed case and, for example, to prove closure properties of determi-
nistic languages in the context-free case (cf. [3], Section 11.2). 

7. Decidability of indexed LL(k) 

In this section we will prove our main theorem concerning the connection between 
ILL(fc) and strong ILL(/c) grammars. For this purpose we will introduce two special 
functions X and n in the following manner. 

Let G=(N,T,I, P, S) be an indexed grammar with P={n1,nz,...,np}. 
Set L= (SP^T*))", the set of all /^-vectors, whose components are subsets of ( k ) r * , 
and M=0>(MT*) with tel. 

Define X: I*-»L by X(y)=(qlt ..., qp) where qt=First*(n^ y) holds for 
/£[1: p]. Furthermore define p: (N1*UT)*-M by p(9)=First*(9). F rom Corol-
lary 3.1 we know that X and p are effectively computable. 

First we want to show that X satisfies condition Cx. For this purpose let yt, y2£I* 
with A(y1)=A(y2) be given, i.e. First*(7tf, yj) = First*(ji,, y2) holds for all /€[1: bl-
u n d e r this assumption we will show by induction on n that for each y£I* and each 
production 7ij the following holds: 

If 
Ayy1"j=> Ox"^ u with u£T* then 

Ayy2«j=> 02*=> v with v£T* and « h = <*>». 

(Recall, "=> denotes a leftmost derivation in n steps.) 
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Obviously this assertion holds for « = 0 . Now let Ayy1 0X "+1=>u with 
u£T* be given. 

If y=e, the assertion follows from X(yj)=X(y2). 
If y no index of can be consumed in the first step of the derivation. There-

fore we have 

0i = - M i • • • B,pr with B£NU T, r > 0, and 

Pi = yiyi with yl€I* if B ^ N 

= e otherwise. 

In addition B{Pi "¡=>uL with rii=n + l holds for /£[1 : r] where u=u1...ur. Since y^e it is possible to apply to Ayy2 which yields 

Ayy2BJ[... BrP'r = e2 with 

P\ = Ya2 with y\a* if B ^ N 

= e otherwise. 

The induction hypothesis quarantees the existence of the derivations 

BiPi *=*• vi with v£T* and = <">«; for ¿€[1: rj. 

~ Consequently we have 

Ayy2 "J=> 02*=>V! ... vr = v with = 

This completes the induction, and hence 

First* (Nj, YYJ i First* (TIJ, yy2). 

The converse inclusion holds by symmetry. The special case y £ / shows that A 
satisfies condition Cx. 

We now prove that ¡i satisfies condition C^. 
Let yuyaa* with A(y1)=A(y>) and 02£(N1*UT)* with /x(01)=^(02) 

be given, i.e. for all productions 7T; we have First* (r^, y t)=First* (rc,, y2), and further-
more First* (0])=First* (02) holds. 

Now for each 0eN/*UT the equality First*(9:yj0x) = First*(0:y202) has to 
be shown. 

If 0Ç.T this assertion holds obviously. 
If 9=Ay£NI* then observe that Firstk(Ayy])= (J First* (rc,-, yyx) holds where 

iiJ 
J is the set of all numbers of productions with lefthand side Af, fÇ.1 U{e}. Since 
A(y1)=A(y2) and A satisfies condition Cx, we have A(yy1) = A(yy2). Hence we have 

First* (AyyJ = U First* (ni, yy2) = First* (AyyJ. 
¡éJ 

4 Acta Cybernetica VII/1 
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This equality enables us to conclude 

First, (AyyM = «(Firs t , (Ayyt) First, (0,)) 

= «(Firs t , (Ayy2) First, (92)) 

= First, (Ayy292). 

Consequently n satisfies the condition 
According to Lemma 6.1 we observe that 1(1*), 1, fi((NI*L)T)*), and ¡1 are 

effectively computable. 
The ¿/(-grammar of G defined by these special functions A and /t will be called 

the Sk-grammar of G and denoted by Sk(G). 
Now we can state our main theorem. 
Theorem 7.1. Let G=(N, T, / , P, S) be an indexed grammar and let k^l. 

Sk(G), the 5",-grammar of G, is a strong ILL(fc) grammar iff G is an ILL(/c) grammar. 

Proof, (a) Let G be an lLL(/c) grammar. If Sk(G) does not satisfy the strong 
YLL(k) condition, then the following two cases are possible. 

(1) There are two productions nV"q\ \p(Af, m, q)-~\j/((]1, m, q) and nf-q\ 
\j/(Af, m, q) — ip(f}2, m, q) in P' with the same lefthand side, where 
and First,(7rP'")nFirst,(7rJ , '?)7i0, i.e. there are two leftmost derivations 

S" *=• wip(Af m, q)y'0' w6i0' *=> wu9' *=> wuv (7.1) 
and 

S' vvt/* (Af m, q)Y0"z^"'=> wWj' wuQ' => wuv (7.2) 

according to Sk(G) with w, w, u, u, v, v£T*, y', y'dl'*, and 

&', 9[, B', Bi£(N'I'* U T)*, where 

6[ u, 9' v, 

B[ *=> U, 0' *=> v, 
and Wuv = (k)iiv holds. 

Consider the derivation (7.1). We have the corresponding leftmost derivation 

S *=> wAfy9 *<=> wOl 9 *=> wuO *=>• wuv, 

where y = S(y% ^ = 3(90, and 9 = 5(9'). 
Then from Corollary 6.2 we conclude w\l/(Af,m,q)y'9' = \p(wAfy9,m0,q0). 

Since \j/(wAfy9,m0, q^}n'!"q=>w9[9' we have from Lemma 6.3 m = ji(9, mQ, qQ) = 
=H(9), a n d q=X(y,q0)=Hy). 

Analogously, considering the derivation (7.2), we have a corresponding leftmost 
derivation 

S *=> wAfyB *J=> w9i 9 *=> wuB*=> wuv, 

where y=5(f), 0l=S(9[), and B.=8(B'). Furthermore we have m=n(B) and q=m-
Since A(y)=A(y) we have in particular F i r s t , ^ - , / y ) = F i r s t , ^ - , /y ) and since 

fi(9)=fi (0) we have First, (9)=First , (B). 
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If then € First* (nj,fy) and therefore wiï€First*(7ty,/y), i.e. 
Afy *J=> Pz : y*=>û according to G with (,I)w=(fl)i7. 

Then the following derivation according to G is possible: 

S *=> wAfyd "J=> wP2 : yO *=> wûv 

with (k)ûv=(k)û=ik)uv. But this is a contradiction to the ILL(£) property of G. 
If then u € First* ( n f y ) and therefore u€First*(^j-,/y), i.e. Afy "j=> 

P2: y *=>u according to G. Since First*(0) =First*(9) there exists 8*=>û 
according to G with №D=(lt)i5. Then the following derivation according to G is 
possible : 

S *=> wAfyd "J=> wp2 : yO *=> wUO *=> wuv 

with (k)îiv = (-k)îiv = <-k^uv. This is a contradiction to the ILL(/c) property of G. 
(2) There are productions nf-q\ t ¡ j ( A f , m , q ) — ij/(P1,m,q), fdl, and nj'q' : 

i¡/(A, m, q') —\I/(P2, m, q') in P' with q'=l(f q) and 

S' *=> w\j/(Af m, q)y'd' wQ^d' *=> wu9' *=> wuv (7.3) 
and 

*=>wtp(A, m, q'WÏÏw9[9'*=> wuW*=> wuv (7.4) 

according to Sk(G) with w,w,u,U,v,v£T*,y',y'(H'*, 

0i ,0 ' , 0 i , 0 ' 6 ( # ' / ' * UT)* where 

0i*=*w, 0' *=>• v, 
&Î *=> U, B' *=> v 

and w u v = wUv holds. -
Consider the derivation (7.3). We have the corresponding leftmost derivation 

S *=> wAfyO w0x0 *=> wud *=> wuv, 

where y=à(y'), and 8=ô(8'). As above we conclude m=/i(6) and 

Considering the derivation (7.4), we have the corresponding leftmost derivation 

S wAyd "J=> w0j0 *=> wud' *=> wuv, 

where y=<5(f)> B1=ô(B'l), and B=Ô(B'). Furthermore m=fi(B) and q'=X(y). 
Since X(fy)=l(fq)=q'=X(y) we have in particular First* (tzj, y) = First* (nj,fy) 

and since /i(9)=fi(B) we have First*(0)=First*(0). 
If then ( k )û€First*(itj , y) and therefore ( i)w€First*(7i ;,/y), i.e. Afy"j=> 

fy*=>û with (k)û=(k)û. 
Hence the derivation 

S *=> wAfyd "J=> wp2 :fyd *=> wû8 *=> wûv 

according to G is possible with wûv=(k)û=(k)u=(k)uv. This is a contradiction to the 
ILL(/c) property of G. 

4* 
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If |M|<A: then F i r s t l y , y) and therefore i76First*(7tj,/y), i.e. Afyui=> 
"J=>P2: fy*=>U holds according to G. Since First*(0)=First,(0) we have 0 *=>£) 
with <V0=(k)v. Hence 

S *=• wAfyO "i=> w/?2:/y0 *=> wuO *=> wuv 

is possible according to G with (k)uv = ik)uv={k)uv which contradicts the ILL(/c) po-
perty of G. 

(b) Let Sk(G) be a strong ILL(£) grammar. Assume that G is not an ILL(/c) 
grammar, i.e. there are two leftmost derivations 

S *=> wAyd "'=> w0! *=>• wx and 

S *=> wAyO "J=> w02 *=• wy 

with A£N, ye /* , 01,02€OVrUr)*, w,x,y£T*, (k)x = <k)y and 
Let us consider the case that the lefthand side of the two productions are dif-

ferent, i.e. 7tf: A—fil and izj-. Af—fS2 with / £ / . Hence y = / y ' holds. Set m= 
= m = m m 0 , q 0 ) , q ' = W ) = K Y , q o ) and q = ).(y) = X(y, q0) = l ( f , q ' ) . 

In P' there are the productions 

nT-q: ip(A, m, q) 
and 

n?-*': M4f,m,q')-\lt(P»m,q'). 

With Corollary 6.1, Lemma 6.2 and Corollary 6.3 the existence of the leftmost 
derivations 

S' *=> ip (wAyO, TO„, q0) '=> ip (w0j, m0, q0) *=> wx and 

S'*=> ip (wAyO, m0, qd""'q^\p(we2, m0, q0)*=>wy 

according to SK(G) follows. 
Since we have First* (rtf •*) f! First* (7t™' *') 0 which is a contradiction 

to the strong ILL(A;) property of Sk(G). 
In a similar manner the case that jt, and n j posess the same lefthand side yield 

a contradiction. 
This completes the proof of the theorem. 
Now we can easily derive the following decidability result. 

Theorem 7.2. Given an indexed grammar G and an integer fcsl. It is then 
decidable whether G is an ILL(/c) grammar. 

Proof. Sk -grammar of G is effectively constructable since the functions A and n 
defining this grammar are effectively computable. Furthermore it is decidable whether 
Sk(G) is a strong ILL(fc) grammar (cf. Corollary 3.2). 

Clearly, given an indexed grammar G, it is not decidable whether there exists a k 
such that G is an indexed LL(/c) grammar, for otherwise this question would be decid-
able in the contextfree case. 

Furthermore, the construction used in the proof of Theorem 7.1 shows 

Theorem 7.3. The classes of ILL(k) and strong ILL(k) languages coincide. 
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Abstract 

The classes of indexed LL(k) grammars and strong indexed LL(k) grammars are defined. First 
the class of strong indexed LL(Ar) grammars is investigated. In particular it is shown that the strong 
indexed LL(k) property is decidable and that the class of strong indexed LL(&) languages is contained 
in the class of deterministic indexed languages. Furthermore it is proved that the deterministic 
contect-free languages coincide with the right linear strong indexed LL(1) languages and are a proper 
subclass of the strong indexed LL(1) languages. The remainder of the paper is devoted to proving the 
decidability of the (general) indexed LL (k) property. To prove this result, a general transformation of 
indexed grammars is introduced. This transformation unifies proof techniques used in the context-
free and indexed areas. 
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