
On involutorial automata and involutorial events 

By M . ITO a n d J . DUSKE 

1. Basic notions and facts 

By an automaton we mean a triple si = (A, X, S), where A and X are finite 
nonempty sets, the set of states and the set of inputs of si, and <5: AXX—A is a 
function, the transition function of si. 

Let A'* be the free monoid generated by X with identity element e. Then <5 is 
assumed to be extended to A XX* in the usual way. A finite nonempty set is called an 
alphabet. Each subset EQX* is called an event or a language over the alphabet X. 
Let us now define the notion of an involutorial automaton. 

1.1. Definition. An automaton si=(A, X, 5) is called involutorial iff 5 {a, xx) = 
= a holds for all a£A, x£X. 

The following lemma is a trivial but useful one. 

1.2. Lemma. Let si = (A, X, <5) be cyclic and involutorial. Then si is strongly 
connected. 

(For the automata-theoretic notions not defined in this paper see [6] and [3].) 
Let si=(A, X, S) be an arbitrary automaton and define the congruence Q 

on X* by: 
V w i , W 2 £ X * : (W1,W2)£Q i f f S ( a , w x ) = § ( a , w 2 ) f o r a l l a £ A . 

The quotient S(si)=X*/Q is called the characteristic semigroup of si. Let us use 
the notation [w]e for the set {vv'|(vv', Concerning characteristic semigroups of 
involutorial automata, we can state: 

1.3. Theorem. Let si—(A, X, 5) be an involutorial automaton. Then S(si) 
is an involutorial generated group. 

Proof Let xdX. Then (xx, <?)£<?, therefore We[x]c = [e]e, hence [x]c is an 
involutorial element of S(si). Now let [w]Q^S{si) with w—x1...xn. Denote x„... 
... Xx by Then [w]e [ w R ] e = [ [ w ] e = [e]e. 

With the aid of the following well known lemma, automata, which are involu-
torial and commutative, can be characterized. 

1.4. Lemma. A group, in which each element is involutorial, is an abelian group. 
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1.5. Theorem. An automaton si=(A, X, 5) is involutorial and commutative iff 
S(a, ww)=a holds for all a£A and wCA'*. 

1.6. Example. An important example of an involutorial automaton is the T-
Flip-Flop (trigger) ^ = ( { 0 , 1}, {0, 1}, 8) with <5(z,0)=z and <5(z, l ) = z for all 
z£{0, 1}. Here 0 = 1 and 1=0. is involutorial and commutative. 

If we generalize the notion of a trigger, we arrive at the following: Let X be an 
alphabet and let y£X. Set &~y

x=({0, 1}, X, <5*) with 

Sy(z,x) — z for all z£{0,1} and x£X with x ^ y and 

5f(z,y) = z for all z£{0, 1}. 

We will call these automata generalized triggers. 
If we now specialize the proof of Theorem 1 in [5] to the involutorial and com-

mutative case, we obtain: 

1.7. Theorem [Gecseg]. Every commutative involutorial automaton is the 
homomorphic image of a subdirect product of finitely many generalized triggers. 

We can characterize commutative involutorial automata from another point of 
view. It is easy to see that every commutative involutorial automaton is a finite direct 
sum of cyclic commutative involutorial automata. From the basis theorem for abelian 
groups (see e.g. [12], p. 121) and Fleck's result ([4], Theorem 6), we obtain the follow-
ing results, which were suggested by B. Imreh. 

1.8. Theorem. Every cyclic commutative ivolutorial automaton is a one-state 
automaton or a direct product of finitely many two-state cyclic involutorial automata. 

1.9. Corollary. Every cyclic commutative involutorial automaton has 2" states, 
where n is a nonnegative integer. 

2. The minimal involutorial congruence on X* 

Let X be an alphabet. A finite subset T of X * X X * is called a Thue-system over 
X * . T defines a relation Q T Q X * X X * in the following way: 

Vv,w£X*:(v,w)£eT iff v = f!v2v3, w — i ^ u ^ and (v2, w^dT 
o r ( W 2 , V 2 ) E T . 

The congruence generated by the Thue-system T is the reflexive and transitive 
closure of QT. 

Let us now consider the Thue-system T— {(aa, e)\adX} over X*. The relation 
Qt will be denoted by »—- and the congruence generated by Twill be denoted by — 
and called minimal involutorial congruence on X*. Obviously, X*/ is an involu-
torial generated group. In order to investigate the congruence — , we will first esta-
blish some properties of the context-free language L(G() generated by the context-free 
grammar G ;=({S}, X, P, S) with the set of productions P={S^e, S - S S J U 

5* 
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(For the notions of formal language theory not defined in this paper see [1], 
[7], and [8].) 

2.1. Lemma. Let G, be given as above. Then we have for all w l5 u^, w, ux, u2£X*: 
(1) If wlt H>2<EL(G;), then wxw2dL(Gd, 
(2) If wdL(Gi), then awadL(G^ for all a£X, 
(3.a) If wZL(Gi), w^e, then w=awxaw2 with wJ,w2dL{G^ and a£X, 
(3.b) If wdL(Gi), w^e, then w = wxaw2a with wx, w2£L(G{) and a£X, 
(4) If uxaau2£L(Gt) with a£X, then ulu2dL(Gi) (involutorial cancellation), 
(5) If M1M2€X(Gi) then u1aau2dL(Gi) for all a£X (involutorial extension). 

Proof. (1) and (2) are trivial. To prove (3.a), consider a leftmost derivation 
S^>Sk=>aSaSk~1^> ...^>awxaw2=w of iv, and to prove (3.b), consider a right-
most derivation S^-S^S^aSaU... =>wxaw2a=w of w. Now let us consider 
(4). Let S=^vx=i-v2=> ...=>vn = uxaau2 be a derivation of uxaau2. We will prove the 
assertion by induction on n. The assertion holds for n = 1. Let S=>vx=>v2=>... 
...=>vn+x=uxaau2 be a derivation of uxaau2 of length n+1. We have to consider the 
following cases: 

(a) Let S=>vx=SS. Then there exist derivations S=>rx and S=>r2 of 
length nx and n2 with nx, « 2 = w and r1r2=u1 aau2. If aa occurs in r1 or r2, then the 
assertion follows from the induction hypothesis. It remains to consider the case 
rx=uxa and r2=au2. Here the application of (3.a), (3.b) and (1), (2) yields the asser-
tion. 

(b) Let S=>vx=bSb with b(LX. Then there exists a . derivation of 
length nx^n and uxaau2=bwb holds. The case w = e is trivial, therefore let us 
assume w^e. If aa occurs in w, then the assertion follows from the induction hypo-
thesis and (2). If aa are the first two letters of uxaau2 (a=b, ux=e), then a is the left-
most letter of w. According to (3.a) we have w=awxaw2 with w>1; w2£L(G^, and 
therefore u1u2 = wxaw2a(iL(Gi). The case that aa are the last two letters of uxaau2 
(a=b, u2 = e) is proved similarly. 

Now let us prove (5) by induction on the length of uxu2. The case \uxu2\ = 0 is 
trivial, therefore let us assume \uxu2\>0. 

According to (3.a) we have uxu2=bwxbw2 with b(iX and Wj, w2dL(Gi). If 
\ux\^\bwxb\, then ul=bw1br and w2=ru2. From the induction hypothesis we con-
clude raati2£L(Gi), and therefore uxaau2=bwxbraau26 £ (G;) for all a^X. 

If \ux\<\bwxb\, then bwxb = uxr2b. Thecase |wi|=0 is trivial. Therefore assume 
ux=brx. Then wx=rxr2> and with the aid of the induction hypothesis we conclude 
rxaar2£L(Gt), and hence we have uxaau2=brxaar2bw2£L(G¡) for all a£X. This 
completes the proof of the lemma. 

Now we can prove the following theorem. 

2.2. Theorem. Let Gf be the context-free grammar given above and let w = 
=xxx2...xkiX* with Xj£X for ./£[1: k], x j - ^ X j for j£[2: A;], and teO. If 

(I) ... holds, where n S 0 , then we have 
w' = a0xx<xxx2oi2...cik_xxk<xk with a,£L(G f) for /€[0: 

Proof. The assertion holds for n=0 and n=\. Now let [0: n] be maximal 
with the following property: 
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(II) There are words a{, a{, ..., a{£L(Gi) such that 

Wj — a{x2a{ ... a{-iXka{ holds. 

We will show j=n. Assume j<n. Let us consider the following two cases: 
(1) w j + 1 can be derived from Wj by insertion of aa, a£X (involutorial exten-

sion). Then, according to (5) of 2.1. Lemma, (II) holds f o r ) ' + l . 
(2) wJ+1 can be derived from Wj by deletion of aa, a£X (involutorial cancella-

tion). If this aa can be chosen in an a/ , /€[0: k], then, according to (4) of 2.1. Lem-
ma, (II) holds fo ry '+ l . It remains to consider aa=xtx,, /£[1: k], and 

aj_1xlaj = aJ,_1xlxla{ or (2.1) 

a/'-i*/«/ = a/_ i x, jcj a/, (2.2) 

and wJ+1 can be derived from w, by cancellation of the occurrences of x,x, in the 
right sides of (2.1) or (2.2). 

(2.1) According to (3.b) of 2.1. Lemma, divide in a{_1=w1xlw2xi with 
w1,w2£L(Gi). Then we have aj_1ai = wlxlwia{, and therefore (II) holds for y '+ l . 

(2.2) According to (3.a) of 2.1. Lemma, divide a{ in a{=x,w1x,w2 with W2€ 
£L(G,). Then we have aJ

l_ia{ = aj_1w1x,w2, and therefore (II) holds for 7 + 1 . We must have j=n, which proves the theorem. 

2.3. Corollary. Under the assumptions of 2.2. Theorem either |w ' |> |w| oi 
w=w' holds. 

2.4. Corollary. The context-free language L(GD is the congruence class of c 
w.r.t. . 

Now let us consider the local regular language X*\X* VX* with V= {xx |x£X) . 
We have: 

2.5. Corollary. 
(1) If w is a word of minimal length in a congruence class of — , then w £ X * \ 

\X*VX*. 
(2) If w£A'*'vV* VX*, then w is a word of minimal length in a congruence 

class of . 
(3) Two different words of X*\X*VX* are in different congruence classes 

o f ™ - . " 
2.6. Corollary. Each congruence class of - contains exactly one word of mi-

nimal' length. 

2.7. Corollary. If X— {x} is a one element alphabet, then — c o n t a i n s exactly 
two classes, namely {e, x2, x4, ...} and {x, x3, x5, ...}. If \X\^2, then the index of 
, - i — i s infinite. , 

We will denote the unique word of minimal length in the congruence class of w 
w.r:t. by -wlmin. If KQX*, then we denote the set {»v lmin |vv^} by Lmm(K). 

The function q: X*^X* with o(tv) = wImin for w£X* is a Dyck-Simplifica-
tion in the-sense of [10], which implies the following theorem. 

2.8. Theorem! (Sakarovitch [10]). If RQX* is regular, then Lmin(R) is regular. 
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3. Involutorial events and involutorial closure 

In this section we will introduce and investigate involutorial events and involu-
torial closure. Let us first define these notions. 

3.1. Definition. Let X be an alphabet and let EQ X* be an event (subset of X*). 
The set {u'\u'€X*, 3u£E with u—u'} is called the involutorial closure of E. 
An event EQX* is called involutorial i f f E=E'. E is called i-regular iff E is involu-
torial and regular. 

Obviously, for EQX* we have £ '=Lm i n(£) ' ' , and for E,KQX* we have 
E* = K* iff Lmln(E)=Lmin(K). 

Let si=(A, X, S, a0, F) be a recognizer. Here (A, X, S) is an automaton, 
a0€A is the initial state and FQA is the set of final states of si. T(si) = {w\8(a0,w)d 
£ F} is the event recognized by si. si is called involutorial iff (A, X, S) is an involu-
torial automaton. 

Now let EQ X* be an arbitrary event, and let = be the iVerode right congruence 
associated with E, i.e. right congruence defined by: 

\/v,w£X*: v = w iff \/udX*: (vudE iff wudE). . 

E is regular iff = is of finite index (see e.g. [9]) 
We can now prove the following theorem. 

3.2. Theorem. Let X be an alphabet and EQX* be an event. Then E is /'-regu-
lar iff E is recognized by an involutorial recognizer si. 

Proof. If E= T(si) for an involutorial recognizer si, then obviously E is invo-
lutorial. Conversely, let E be /-regular. Since E is regular, the Nerode right congruence 
= of £ is of finite index. Construct the recognizer si=(A, X, 5, a0, F) with A~ 
= {[w]H|w€X*}, 5([w]a ,*)=[tMc]e , cf„=W 3 , and F={[w] s |w€£}. We have 
E=T(si). Since E is involutorial, the congruence '•— is contained in = . Since 
wxx+-t— w for all w£X* and x£X, we have <5([w]=, xx) — [wxx] = = [w] =, i.e., si is 
involutorial. 

The recognizer constructed in this proof is the complete minimal (accessible and 
reduced) recognizer (see [3]) which accepts the /'-regular set E. Therefore we can state: 

3.3. Corollary. If E is an /'-regular set, then the complete minimal recognizer for 
E is involutorial. 

3.4. Example. Let si = (A, {x}, 5, aa, {a2}) be a recognizer with 

A = {«0, flj, a2}, S(a0,x) = a2, 5(a2, x) = alt and S(a1,x) = a2. 

Then T(si)= (x, x3, ...,x2n+1, ...} is involutorial, but si is not involutorial. The 
complete minimal recognizer for T(si) is 

AP = ({a0, a t}, {x}, 5r, a0, { a j ) with 5r(a0, x) = and dr(a1,x) = a0. 

which is obviously involutorial. 
The following two theorems state some closure and nonclosure properties of 

/'-regular sets. 
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3.5. Theorem. Let X be an alphabet. 
(1) The family of /-regular sets of X* is a Boolean algebra of sets, 
(2) If E is an /'-regular set, then the transpose ER of E is also an /-regular set. 
(Recall that the transpose of a word w=aia2...a„ is the word 

wR = a„ ... a2alt and ER = {wR|w€£'}.) 
Proof. (1): Let E. E1, and E2 be /-regular sets. 
Then (E1UE2)i^E[[JEi

2=E1[JE2. Let_ si=(A, X,8, a0, F) be an involutorial 
recognizer with E=T(sf). Then E-T(si), where s/=(A, X, 8, a0, A\F) is an 
involutorial recognizer. The proof of (2) is trivial. 

3.6. Theorem. The product of two /'-regular sets and the iteration (star opera-
tion) of an /-regular set are not necessarily /-regular. 

Proof. Consider X— {x} and E={x, x3, ...,x2n+1, ...}. Then E is /'-regular. 
But E2 = {x2, x\ ..., x2n, ...} is not /'-regular, since (E2y = {e, x2, x\ ..., x2n, ...}. 
This shows nonclosure under product. Now let si=(A, X, 5, a0, F) be the recognizer 
given by 

A = {a0, Oi, a2}, X = {x, y}, F = {a2}, and <5(a0, y) = 8(a1, x) = a0, 

S(a0, x) = 5(a2, y) - ax, and ¿ (c l 5 y) = S(a2, x) = a2. 
si is an involutorial recognizer, therefore T(si) is an /-regular set. If T(si), 

then and x*$T(sf). This implies x2$T(si)*. But e<ET(st)* implies 
x2£(T(sf)*y, therefore T{si)*^ (Tisi)*)'. 

We will now consider the formation of the involutorial closure E' of an event E. 
Let us first investigate those events E for which E' is regular. 

Remember that in contrast to the above mentioned (complete deterministic) 
recognizer, the transition function <5 of an incomplete (deterministic) recognizer si — 
=(A, X, 8, a0, F) is a partial function from AXXto A. We assume that S is extended 
to A XX* in the usual manner. We will call an incomplete (deterministic) recognizer 
si a trim recognizer, if each state of si is accessible and coaccessible [3]. If E ^ 0 
is regular, then there is a trim recognizer si with E= T(si). Now we can prove: 

3.7. Theorem. For each alphabet X there is a nonregular event X* such 
that E' is regular. 

Proof Let X={x) be a one-element alphabet. Then E= {x2n,\n^l} is not 
regular, but E'={x2"\n^0) is regular. Now consider the case Lmin(X*) 
is regular. Let si—(A, X, 5, a0, F) be a trim recognizer such that T(si)=Lmm(X*). 
According to the structure of the words of Lmin(X*) and the fact that si is trim, a'= 
—8(a,x) for a, a'€A, x£X, implies 8(a',xj=0. In particular we have a?$d(a,x) 
fo r a i l a£A, x£X. Now choose x,y£X with x^y. Since x£Lmin{X*), there is a 
final state a'=8 (a0, x). 

Define an incomplete recognizer 38={B, X, /?, a0, F), whose state set is infinite, 
in the following way: Set B—A(J {a, | /^l}U {¿>,|/Sl} (disjoint union) and 

P(a,z) = 8(a,z) for all a£A, a ^ a\ z£X, 
P(a',z) = 8(a',z) for all z£X, z * x, and 

P(a', x) = au P(alt x) - a'. 
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Furthermore set 

P(o;, y) = bi, P(b„ x) = a i + 1 , and 

P(bh y) = at, P(ai+1, x) = bi for all i 8s 1. 

Then it is easy to see that Lmin(X*) = T(jtf)QT(@). Set E=T(3S), then E'= 
=X*, i.e., E' is regular. We will now show that Eis not regular. Assume the contrary. 
Then there exists a recognizer such that E= T(r4). Let n be the number of states of 
<g.lf v\vdT(fi), v, w£X*, then there exists some OdX*, \B\^n, such that v9e 
£T(<$)=E. 

Consider a word x(xy)p with p>n. Then p(a0, x(xy)p(yx)p)=a'£F, hence 
x(xy)p(yx)p£E. But obviously, for all with we have x(xy)p^T(SS)=E, 
which yields a contradiction. Hence E is not regular. 

Events £ V 0 over an alphabet Xwith \X\^2, for which E' is regular, possess 
an interesting property w.r.t. Lmin(X*). 

Let us first give the following definition. 

3.8. Definition. Let E, FQ X* be events with EQ F. E is said to be dense in F 
iff there exists a nonnegative integer k such that the following holds: 

\/veF3w£X* with \w\^k such that vw£E. (Note that k=0 implies E=F.) 
Now we can prove: 

3.9. Theorem. Let X be an alphabet with \X\^2 and let EQ X* with 
such that E' is regular. Then Lmin(E) is dense in £min(A'*). 

Proof. Let sd=(A, X, S, a0, F) with \A\=n be an involutorial recognizer such 
that T(s/)=E'. Since i s V 0 we have FV 0, and furthermore, according to 1.2. 
Lemma, we can assume that (A, X, d) is strongly connected. We have to show that 
there exists a nonnegative integer k such that, for all v£Lmin(X*) there exists w£X*, 
M ^ f c , with vw£Lmin(E). First assume v=v'x£Lmm(X*), where x£X. Choose 
y£X with x^y and set u=(yx)". Since \A\=n, F^Q, and (A, X, 5) is strongly 
connected, there exists u'£X* with \u'\^n such that S(aQ, vuu') = 8(a0, v'x{yx)"u')£ 
£F. Set a = v ' x ( y x ) " u ' , then almin = v'xw with \w\^3n = k. Since stf is an involu-
torial recognizer, we have 5(a0, vw)=5(a0, vuu')£F, i.e. vw£E'. Furthermore 
vw£ E' fl Lmin (X*)=Lmin(E). The case v=e is trivial. 

3.10. Corollary. Let X be an alphabet with \X\^2 and let EQX* be a non-
empty event. If LmXn(E) is finite, then E' is not regular. In particular, if E is finite, 
El is not regular. 

The converse of 3.9. Theorem does not hold. Namely, we have: 

3.11. Theorem. The involutorial closure E' of an event E such that Lmin(E) 
is dense in Lmin(X*) need not be regular. 

Proof. Let X be an alphabet with \X\^2. Set £=Lmin(X*)\{A;}, where 
x£X. Obviously, Lmin(E) is dense in Lmin(X*) and { x f ^ X ^ E 1 . Assume that the 
theorem does not hold. Then, El becomes regular. Since X* and E' are regular, so is 
{*}'. This contradicts 3.10. Corollary. Hence, the theorem has to hold. 

3.10. Corollary shows the existence of involutorial events, which are not regular. 
This situation is impossible for events which are involutorial and commutative. 
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An event EQ X* is called commutative, if £ is a union of congruence classes of 
a congruence x, which is defined by: 

Vu, w£X*: {v, w)£x iff v = y1...yn, w = yil...yim, 

where i\, ...,im is a permutation of 1, ...,m and y^X for /€[1: m] with m^O. 
It can easily be shown that the congruence x+ (the sum of the congruences 

x and --i—) is of finite index. Therefore we have: 

3.12. Theorem. If EQ X* is involutorial and commutative, then E is regular. 
Let us now consider those events E for which E' is context-free. We will prove a 

theorem characterizing these events, part of which can be viewed as a special case of 
a theorem due to Sakarovitch [11]. 

3.13. Theorem. Let EQX* be an event. Then E' is context-free iff Lmi„(E) 
is context-free. 

Proof. Let Lmm(E) be a context-free language and G=(V,X, S, P) be a con-
text-free grammar in Greibach normal form with L(G)=Lm„(E). Each production 
of G is of the form A — aa with a£X, a£V*. If e£Lmin(E), then there is a produc-
tion e, and S does not occur on the right-hand side of any production. 

Construct a context-free grammar G 1 =(K 1 , A', S, with Vx= V\J{Sa\ad 
€A'}U{S'i} (disjoint union) and furthermore (1) if e^L{G) then 

P1 = {A -Saa\A -~aa£P}\J{Sa - - V . S J f l G A ' J U P with -

p = - e, S J - S j S J U {Sj - aSjalatX}, 
(2) if e£L(G) then extend Px of (1) with the production S-^S^ 

Since Lmin(E)QLmin(X*), L ( G 1 ) = i m i n ( £ ) i = £ , i can easily be shown with the 
aid of 2.2. Theorem. Hence £ ' is a context-free language. 

Conversely, let E' be a context-free language. Since the intersection of a context-
free language with a regular set is context-free, Lmm(E)=ET\Lmin(X*) is context-
free. 

In analogy to regular involutorial closures, we can state: 

3.14. Theorem. For each alphabet X there is a non context-free event EQ X* 
such that El is context-free. 

Proof. Let x£X. It is easy to see that E— 1} is not context-free. Since 
Lmin(E) — {e, x} is regular, E' is context-free. 

On the other hand, we have: 

3.15. Theorem. The involutorial closure of a context-free event need not be 
context-free. 

Proof. We have to show the existence of a context-free event E such that Lmin(E) 
is not context-free. Consider the context-free event E1 = {(ca)ncb(ac)2n\n ^ 1} over 
the alphabet X={a,b, c}, and set E=Ef. 

Then E is context-free and each word w£E is of the form 
w — (ca)'icb(ac)2'>(ca)'>cb(ac)2'i ... (ca)'*cb(ac)2ik 

with i j ^ l for 7£[1: A:] and fcsl. 
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Assume that Lmin(E) is context-free. Then E2=Lmi„(E)f](ca)(cb)+(ac) + has to 
be context-free. Each word vdE2 is of the form v = (ca)(cb)k(ac)2k with A: S i . "Con-
sider the homomorphism h: X*—a* given by h{a) = a and h{b) = h(c)=e. 

Then h (E2) = {a2fc+11A; s 1} has to be a context-free language, which is a contra-
diction. Therefore, Lmin(E) is not context-free. 

4. The structure of some special recognizers 

We will start this section with the investigation of the structure of any trim recog-
nizer accepting Lmi„(E), where EQX* (\X\^2) is a nonempty involutorial regular 
event. 

Let us first introduce the following notation. If si = (A, X, 8, a0, F) is a recog-
nizer and a£A, then we set 

/„ = [x\xdX and 8(a',x) = a for an a'£A} and 

0a = {xlxeX with d(a,x)?6 0}. 

Now we can state: 

4.1. Theorem. Let X= {xu ..., x„} b e a n alphabet with wS 2, let EQX* 
be a nonempty involutorial regular set, and let si = (A, X, 8, a0, F) be a trim recog-
nizer with T(si) = Lmin(E). Then we have 

(1) S(ao,x)?i0 for all x£X. Furthermore, if x,yd.X with x^y, then 
8(a0, x)^8(a0, y) holds,. . ' 

(2) The set /„u is empty. In particular <5 (a0, x) ^ a0 holds for all x£X. 
(3) Let a£A with Then |/a| = l, i.e. a can be reached by exactly one 

x£X, and 7onOa = 0, 7aU0a = A', i.e. a can be leaved by exactly those y£X with 
y^x. Furthermore we have 5(a, x)^8(a, y) for all x,y£0a with x^y. 

Proof. (1) Each letter x is an element of Lm,„(X*), therefore,' according to 3.9. 
Theorem, there exists wdX* such that xw£Lmin(E), which implies 8(a0, 
Now let x, ydX with XT^y, and assume 8(a0, x) = 8(a0, y). Since xyd.Lmin(X*), 
then, with the same argument, there exists a word w£X* such that xyw£Lmin(E), 
i.e. d(a0, xyw)£F. Since 8(a0, xy) = 5(a0, yy), we conclude S(a0, yyw)£F, i.e. 
yyw£Lmin(E), which is a contradiction. (2) Assume that there exist x£X, ad A 
such that 5(a,x)=a„ holds. Since a is accessible, there exists udX* with 8(a0,u) = a. 
Hence 5(a0, ux) = a0. ;With the aid of. (1) we conclude 5(a0, uxx) = 8(a0, x ) ^ 0 . 
Since S(a0, x) is coaccessible, there,exists v£X* such that 5(d(a0, x), v)dF, i.e. 
S(a0i uxxv)dF. This means that uxxvdLmin(E), which yields a contradiction. 
(3) Assume that there exist x,ydla with x^y. Then there are a, a" ¿A. with 
8(a', x) = 8(a", y) = a. Sinee si is trim, there are v',v"dX* with 5(a0, v') = a' 
and 8(a0, v") = a", which implies 8(a0, v'x) = 8(a0, v"y)-a. Since v"ydLmin(X*) and 
x^y, we have v"xydLmin(X*). There exists yv£X* with v"yxwdLmin(E), i.e. 
d(a0, v"yxw) = 3(a0, v'xxw)d F. Therefore v'xxw£Lmin(E), which is a contradiction. 
Notice that, since si is trim, there exist x£X, a'£A with <5 (a, x) = a. This, together 
with the foregoing, shows |/„| = 1. ( 

7anOa = 0 follows from the fact that si is trim and T(si)=Lmin(E). Now let 
/„={*} and S(a',x)=a. There exists v£X* with S(a0, v)=a\ and we have 
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vx£Lmin(X*). Let y£X with x^y. Then vxy£Lmin(X*) holds, too. There exists 
w£X* such that vxyw£Lmin(E), i.e. 8(a0, vxyw)£F, and therefore we have 
8 (a, y) 0. The rest of the assertion can be proved in a way similar to the correspond-
ing part of (1). 

4.2. Example. For each alphabet X we will introduce an automaton, named JS?X, 
which accepts exactly Lm{n(X*). To this end, set 

2>x = (Lx,X,Xx,l0,Lx) with Lx = {10}U {lx\xeX}, 
¿x(l0 ,x) = h for all x£X, and j ) = / , for all x, y£X 

with X y. 
It is easy to see that S£x is trim and T(H?x)=Lmin(X*) holds. 

Recall that an incomplete recognizer is called minimal, if it is trim and reduced 
(see [3]). In the following we will construct for a given nonempty involutorial regular 
event EQ X* (¡A j =2) a minimal recognizer which accepts Lmin(E). To this end, we 
first need two lemmas. 

4.3. Lemma. Let si=(A, X, 8, a0, F) with \X}^2 and F^0 be a cyclic 
involutorial recognizer. Then for all x, y£X with x^y and all a£A there exist 
u, v£X* such that uxyv£Lmm(T{s4)) and 8(a0, ux)=a holds. 

Proof. Since si is cyclic and involutorial, si is strongly connected (see 1.2. Lem-
ma). Let ad A, choose m>\A\ and set c=6(a, (xy)m). Since si is involutorial, we 
have a=8(c,(yx)m). Since si is strongly connected, there exists u'£X* with \u'\^m 
and 5(a0,u') = c. Therefore we have 8(a0,u'(yx)m)=a. Set u=u'(yx)m. Then, 
from \u'\^m, weconclude i/lm!n = «x. Since si is involutorial, we have 8 (a0,ux)=a. 
In a similar way we can show that there exists v with t> /min=ju and 8 (a, yv)£ F. 
Then 8(a0, uxyv)€F, and since x^y, we have uxyv£Lmin(T(si)). 

The following lemma states a propierty of accessibility and «»accessibility in 
siX3?x, where si is a complete minimal involutorial recognizer which satisfies the 
conditions of the foregoing lemma, and Z£x is the trim recognizer of 4.2. Example. 

4.4. Lemma. Let si=(A, X, 8, a0, F) be a complete minimal involutorial 
recognizer with \X\^2 and /-V0. Then, in the product automaton siXS?x, the 
following holds: 

(1) (a, /(,) is not accessible for all a£A with a^a0, 
(2) All the other states of siX2?x are accessible and coaccessible. 

Proof. (1) is trivial according to the fact that S£x is a trim recognizer accepting 
Lm^n(X*) and (2) of 4.1. Theorem. To prove (2), we have to consider the set of states 
{(a0, /0)}U {(a, lx)\a£A, x£X}. It is easy to see that (a0, /0) is accessible and coacces-
sible. Consider a state (a, lx), a£A, x£X. By the foregoing lemma, for all y€X 
with x^y there exist u, v£X* with uxyv£Lmi„(T(si)) and <5(a0, ux)=a. This 
implies («5X/!•>•)((a0, /0), ux)=(8(a0, ux), lx(l0, ux))=(a, lx), i.e. (a, lx) is accessible, 
and (8xtx)((a, lx),yv)£FXLx, i.e. (a, lx) is coaccessible. 

4.5. Theorem. Let EQX*, \X\^2, be a nonempty involutorial regular event 
and si—(A, X, 8, a0, F) be a complete minimal recognizer with T(si)=E. Then 
(sfX&xy is a minimal recognizer with T((siX£?x)')=LmJE). (Here (siXSex)' 
denotes the trim recognizer associated with s#XS£x (see [3]).) 
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Proof. According to 3.3. Corollary, si is an involutorial recognizer, and since 
we have f V 0 . Furthermore, T((siX&x),)=T(jtfX2'x) = T(si)C\T(£ex) = 

=E0Lmin(X*)=Lmin(E). From the foregoing lemma we know that {(a0, /„)}U 
U {(a, lx)\a£A, x£X} is the set of states of {siX£Cx)'. If we show that {siX&x)' is 
reduced, then the theorem is proved. 

Let us show that (a0, /„) is not equivalent to any state (a, ly), a£A, a^a0, and 
y£X. With the aid of 4.3. Lemma, we can find v£X* such that 8(a0, vy)£F and 
yveLm]n(X*). Therefore (8xXx)((a0,10), yv)£FxLx, but (¿XA*)((fl, /,), yv) is 
not defined. Now choose x, y£X with x^y and consider two states (a, lx) and 
(a\ ly) with a, a'£A. Again, with the aid of 4.3. Lemma, we can find a word vdX* 
with d(a,yv)£F and yv£Lmin(X*): Therefore, (<5xAx)((a, lx), yv)£FXLx, but 
(8x^x)((a\ ly), yv) is not defined. It remains to show that (a, lx) and (a', lx) are not 
equivalent for all x£X and a,a'£A with a^a'. To this end choose y£X with 
y^x and m>\A\2. Set b=8(a,(yx)m) and b'=8(a', (yx)m). Since an involutorial 
recognizer is obviously a permutation recognizer, we have b^b'. Since si is reduced, 
there exists u£X* such that 8(b,u)£F and 8(b',u)$F (or vice versa). Here we can 
assume that |t/ |g|,4|2 holds. Hence we have 8(a, (yx)mu)£F and 8{a', (yx)mu)$F 
(or vice versa). Set w—(yx)mu. Since \u\<m, we have w,min=yv for a suitable 
v£X*. Consequently, we have 8(a,yv)(iF and 8(a', yv)$ F (or vice versa). Since 
y^x, we have (8xAx)((a,/x), yv)£FXLx and (8X^x)((a', Q, yv)$FXLx (or 
vice versa). This ends the proof of the theorem. 

The proof of the following corollary now is trivial. 

4.6. Corollary. Let si=(A, X, 8, a0, F) be a complete minimal involutorial 
recognizer with- \X\^2 and Let si'=(A', X, 8', a'0, F') be a minimal recog-
nizer such that T{sf)=LmXB(T(st)) holds. Then we have \A'\ = \A\\X\ + 1. 

5. Decidability results 

In this section we will first investigate the decidability of the question 
= T({%)',\ where si and S& are two given recognizers. 

To treat this problem we first need, for a given alphabet X and a language 
LQX*, the operator XL mapping subsets of X* to subsets of X* (see e.g. [1]). XL 
is defined as follows: Let w, w'£X*. Then w'£AL(vv) iff w=w0x1w1x2...w,_1x1.w, 
with w.-CL for /£[0:r], xs£X for _/6[l :r], r ^O, and w'-xxx^.-.x,.. 

It is known that, if RQX* is a regular event, then ?.L(R) is regular for arbitrary 
languages LQX*. Taking into consideration of this fact given in [1], p. 60, it can 
be seen that, if L is a given context-free language and R is a given regular language, 
one can effectively construct a recognizer accepting AL(R). If we choose L={e}', 
then, according to 2.2. Theorem and 2.5. Corollary, we have w/min€At(tv) for all 
we**. 

Now we can prove: 

5.1. Theorem. Let two recognizers si and 38 be given. Then T(siy = T{3Sf 
is decidable. 

Proof. T(si)i=T(3$)i is equivalent to Lmin (T(si) )=Lmin (T(@)). From 
4ni„ (T(sf))=>.L(T(si)) n Lmin (X*) with L={e}< and similarly Lmin(T(®))= 
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= X L ( ) f l £min *) and the fact that we can construct recognizers for XL(T(s/)), 
XL(T(3S)), and Lmin(X*) the theorem follows. 

We already mentioned that the involutorial closure of a regular set is a determi-
nistic context-free language. If we specialize the proof of Theorem 3.3 in [2], then we 
can construct for a given regular set E, a deterministic pushdown acceptor for E'. 
Since it is decidable whether the language accepted by a deterministic pushdown 
automaton is regular (see e.g. [8], p. 246), we conclude: 

5.2. Theorem [Book], Let a recognizer X, d, a0, F) be given. Then it is 
decidable whether T(sfy is regular or not. 

Using our structure results in section 4, we are able to give an algorithm for this 
problem, which does not use deterministic pushdown automata, but finite automata 
only. 

5.3. Algorithm. 
Input: A recognizer si=(A, X, 5, a0, F). 
Output: "YES", if is regular, " N O " otherwise. 
Method : 

(1) If f) = 0 or |JT| = 1, go to (5) 
(2) Now we have \X\s2 and FV0. 
Construct a minimal recognizer X, 8', a'0, F') with T(s4') = 

=Lmin(T(sf))=XL(T(s/))flLmin(X*), where L={e}'. . . . 
(3) Construct the set is a complete minimal involutorial recognizer 

with ^ j r 1 states}. 

(4) For all decide whether T{s4)1 = holds. If this is the case for a 
go to (5), otherwise go to (6). 

(5) Output "YES". 
(6) Output "NO". 
5.4. Theorem. The output of 5.3. Algorithm is "YES" iff T ( ^ y is regular. 
Proof. The case T{sl)=0 or 1*1 = 1 are trivial. Therefore we can assume that 

which implies f V 0 , and \X\^2 holds. If the output is "YES" then 
there exists a with T ( s t y = T ( V y = T(V), i.e. T(s ty is regular. 

Conversely, assume that T(jtf)' is regular. Consider the complete minimal invo-
lutorial recognizer ¿¿=(A, X, 5, a0, F) with T(si) = T(si)i. According to 4.6. 

|A'\ — l -
Corollary we have —pbn—> i-e. and therefore the output is "YES" . . 

Abstract 

In this paper we will study a special class of automata and events or languages, called involu-
torial. An automaton with input alphabet X is involutorial iff the double input of one input sign 

X induces the identity mapping of the state set, an event over an alphabet X is involutorial iff 
it is saturated w.r.t. to a special (the minimal) involutorial congruence on X*. This congruence is 
investigated in section 2. In section 3 we will treat involutorial events and the involutorial closure of 
arbitrary events. In particular we will study those events, whose involutorial closure is regular or 
context-free. In section 4 the structure of some special recognizers is determined, and in section 5 
we shall give with the aid of these results an algorithm based on finite automata, to decide for a 
given regular event, whether the involutorial closure is regular or not. 



On involutorial automata and involutorial events 79 

Acknowledgement 

The authors would like to thank Prof. Dr. R. Parchmann for valuable discussions and 
suggestions. ' 

[1] BERSTEL, J., Transductions and Context-Free Languages, Teubner, Stuttgart, 1979. 
[2] BOOK, R . V . , Confluent and other types of Thue systems, J. ACM, v. 2 9 , 1982 , pp. 1 7 1 — 1 8 2 . 
[3] EILENBERG, S., Automata, Languages and Machines, v. A,i Academic Press, 1974. 
[4] FLECK, A. C., Isomorphism groups of automata, J. ACM, v. 12, 1965, pp. 566—569. 
[5] GÉCSEG, F., On subdirect representations of finite commutative unoids, Acta Sci. Math., v. 36, 

1974, pp. 33—38. 
[6] GÉCSEG, F. and PEAK, I . , Algebraic Theory of Automata, Akadémiai Kiadó, Budapest, 1972 . 
[7] HARRISON, M. A., Introduction to Formal Language Theory, Addison-Wesley, Reading, Mass. 

[8] HOPCROFT, J. E. and ULLMANN, J. D . , Introduction to Automata Theory, Languages, and Com-
putation, Addison-Wesley, Reading, Mass., 1979. 

[9] RABIN, M. O. and SCOTT, D., Finite automata and their decision problems, IBM J. Res. Deve-
lop., v. 3, 1959, pp. 114—125. 

[10] SAKAROVITCH, J . , Un théorème de transversale rationelle pour les automates à piles déterminis-
tes, Proc. of the 4th Gl conference on Theoretical Computer Sei., K. Weihrauch, ed., (Lect. 
Notes in Computer Sci., 67), Springer, 1979, pp. 276—285. 

[11] SAKAROVITCH, J . , Description des monoides de type fini, Elektronische Informationsverarbei-
tung und Kybernetik, v. 17, 1981, pp. 417—434. 

[12 ] ZASSENHAUS, H . J . , The Theory of Groups, Chelsea, New York, 1958 . 

FACULTY O F SCIENCE 
KYOTO S A N G Y O UNIVERSITY 
603 K Y O T O 

INSTITUT F Ü R I N F O R M A T I K 
UNIVERSITÄT H A N N O V E R 
W E L F E N G A R T E N 1 
D-3000 H A N N O V E R 1 

References 

1978. 


