
Language extension in the HLP/SZ system

By E. SIMON

1. Introduction

It is the intent of this paper to describe a practicable modification of the HLP
lexical metalanguage for specification of the language extension. Programmers should
never be satisfied with languages which permit them to program everything. There-
fore, there is a need for languages which help the programmer to find the most
natural representation for the data structures he uses and the operations he wants to
perform on them. This is clearly illustrated by the current trends in the evaluation of
programming languages [4].

In order to achieve flexibility and power of expressions in programming lan-
guages, we must pay the price of greater complexity. In the 70's there was a tendency to
retrench towards simpler languages such as PASCAL, even at the price of restricted
flexibility and power of expressions. An alternative solution was the development of
extensible languages too. The classification of language extension can be made on the
basis of the stage of the translation process during which the definition of an exten-
sion is processed and the augment text is converted into a text in the base language.

In compiler-writing systems based on attribute grammars, two natural means
are given to introduce extensions. In the first case the augment text is processed
during the lexical analysis, and therefore the extension mechanism is a part of the
generated lexical analyzer. Information which controls the recognition of the augment
texts and which prescribes the generation of the definition texts can be obtained from
the lexical metalanguage description. In this case the extension mechanism is generally
similar to macrogenerators. Those lexical analyzers which have an extension mecha-
nism must contain special stack automata to store parameters computed during isola-
tion of a token. Extension mechanisms are generally implemented by recursive proce-
dures. Adapted from [6], the extension executed during the lexical analysis is called
the type-A extension. From the user's point of view, the type-A extension can be
useful for a large class of problems, but there are some other classes where delay of
the extension is needed until the translation process. For example, the recursive pro-
cedure call in BASIC language can not be introduced by a type-A extension, because
the stack manipulations must be implemented at the target code level. It should be
noted that the other type of language extension is based on attributed tree transfor-

90 E. Simon

mations. These are executed during syntax/semantic analysis of the token stream
generated by the lexical analyzer. The attributed tree transformations are controlled
by those attributes which are computed before transformations. In practice the appli-
cation of both techniques is suitable.

In the case of the type-A extension there are two different methods to give defi-
nitions of the augments. In our HLP/SZ system the recursive definitions are given by
generator expressions in lexical metalanguage, while the augments are contained by
source programs. Hence, in all cases a new lexical analyzer must be generated on the
basis of the new lexical description. If the generated lexical analyzer contains the total
extension mechanism, including the parser generator, definition texts are given in the
source programs. An extension executed by attributed tree transformations is now
under development.

In the next part of this paper the modified lexical metalanguage is presented
through examples. It is followed by a short description of our implementation based
on SIMULA 67 language. In the following, a knowledge of the original HLP system
cf. [1], [2]) is assumed.

2. Extension description in lexical metalanguage

A lexical description of a prgamming language defines the way the programs are
written in that language. The streams of characters are divided into syntactically
meaningful entities called tokens. Token classes are defined by regular expressions
which are built up from character sets, terminals and tokens. In our system, five
predefinite character sets are introduced with conventional meaning. These character
sets are: LETTER, DIGIT, ANY, ENDOFLINE and SPACE. These names can be
overdefined in the set declaration list. An essential difference between the original
and the HLP/SZ system is that the transformations are related to the character set
names and token class names only. The transformations are given after the token
class description in the following way:

TRANSFORMATIONS ARE
ident if iers ; or (1)
identifier 1 => terminal .symbol;
END OF TRANSFORMATIONS.

In the first case, character sets assigned to the "identifier" are deleted during
isolation of a token. In the second case, characters are changed by the terminal .sym-
bol. If "identifier. 1" is defined as the character set name, then the first character of
the terminal .symbol will be inserted after deletion of the last input character. Appli-
cations of transformations can be found in the examples of this section.

In order to extend a language it is enough to create one or more generator ex-
pressions without any knowledge of the original parts of the lexical description. For
introducing the generator expression, let us take the terminology of macrogenerators
into consideration.

An action block consists of a collection of screen clauses in the original lexical
metalanguage. Each screen clause denotes an identifier which is declared as a token
class name in the lexical description. Generator expressions are assigned to token

Language extension in the HLP/SZ system 91

class names in action blocks. Character strings belonging to the token classes are
treated as augment texts or macro calls. Macro definitions are given by generator
expressions. Let us assume that, in the definition of a token class assigned to a genera-
tor expression, token class names occur. Character strings isolated to these token
class names are called parameters. References to these parameters in the generator
expressions are given by the following syntax rules.

formal_parameter= ^ u n s i g n e d - i n t e g e r ; (2)
formal _parameter= ^generator .expression;

In the first case, parameters are positionated, that is the "unsigned _ integer"
designates the serial number of a parameter. Token class names occuring on the
left-hand side of token class definitions are regarded as Oth parameters. Numbering of
parameters on the right-hand side is defined from left to right. The serial number of
the leftmost token class name, as parameter, is equal to 1. In the second case, the
generator expression generates a token class name, which is called keyword parameter.
We suppose that the generated token class name can be found on the right-hand side
of the token definition assigned to the generator expression in which the original for-
mal parameter reference occurred. It should be noted that the token class definition
above does not contain the same token class names twice.

In lhe original lexical metalanguage, the control can be transferred to an other
block using GOTO. After a token is processed according to a screen clause, the GOTO
part appearing on its left-hand side indicates the block where the next token will be
recognized. The default rule states that the block is not changed. In the case of an
extension description, the GOTO part can appear after the token class name assigned
to a generator expression. The GOTO part occuring behind the generator expression
indicates the block where the generated definition text will be recognized.

Generator expressions are built up from terminal symbols, parameter references
and functions. The functions typed as string are the following: BLANK, SUC, PRED
and IT_IND. The first function has no argument, while SUC and PRED have one
string argument which must be converted into an integer. The function SUC is assum-
ed to be an incrementing function, and PRED to be a decrementing one. The
meaning of the function IT_IND can be found in the following part of this section.

In order to build up a generator expression from terminals parameters and func-
tions, string operations are needed. Similarly to regular expressions, the descriptive
power of generator expressions is based on the operations iteration (*), concatena-
tion (juxtaposition) and McCarthy expression. The operator * has the highest prece-
dence and the McCarthy expression the lowest. The use of subexpressions enclosed in
parentheses is permitted.

For example, we could have the description to be found in Figure 1. The name of
this description is FACTORIAL and no character set definitions are needed. The
strings belonging to the token class FACT begin with terminal FACT. The left pa-
renthesis is followed by 1—2 digits and the right parenthesis. After the right parenthe-
sis some blank characters can follows, which are deleted during recognition of the
token (augment text) called FACT. During evaluation, the generator expression
assigned to the token class name FACT, Jl contains the substring passed to INT_
PARAM as integer parameters of the factorial call. Parameter reference |0 assigns
the total augment text without last spaces. It can be seen that the extension is recursive.

92 E. Simon

LANGUAGE E X T E N S I O N AT LEXICAL LEVEL

THE AUGMENT TEXT IS: FACT(INT_PARAM)

LEXICAL DESCRIPTION FACTORIAL
TOKEN CLASSES
NUMBER = DIGIT + [4];
MULT = it * j t ;
FACT = ^ F A C T ^ I N T . P A R A M SPACE* ;
I N T . P A R A M = DIGIT + [2] ;
END OF TOKEN CLASSES
TRANSFORMATIONS ARE
SPACE => ;
END OF TRANSFORMATIONS

BLOCK: BEGIN
FACT [BLOCK] EQ 1 - - 1 /

}0EQ | 0 - - Jl ^ F A C I X ^ PRED(j l)

[BLOCK_l] ;
END OF BLOCK

B L O C K , 1:
BEGIN
NUMBER => NUMBER ;
MULT [BLOCK] =>MULT_OP ;
END OF BLOCK _1

END OF LEXICAL DESCRIPTION FACTORIAL.

FINIS
Figure I

A part of the generated text will be recognized by the automata assigned to the token
class FACT. During the processing of an augment text (macro call), a sequence of
tokens called NUMBER and MULT_OP are generated in action block B L O C K . 1.
After the processing, the next active block will be the BLOCK by GOTO transfer
assigned to token class name FACT.

In order to create macro calls which have other calls in their own parameter list,
the following agreement is reached. If none of the token classes currently under con-
sideration has a right-hand side from which a token class name TO can be derived,
the string generated by TO will be normally processed; otherwise, the generated
string will be strored in the stack.

As an example, let us consider the description of HANOI TOWERS in Figure 2.
In this case the string generated by PARAM must be stored in the stack as a para-
meter of the augment text HANOI. Naturally, theere is a posibility to continue the
example found in Figure 2 by creating an attribute grammar to synthesize the original
HANOI call on the basis of the token stream generated by the lexical analyzer
HANOI _ TOWERS.

Language extension in the HLP/SZ system 93

LEXICAL DESCRIPTION HANOI_TOWERS
CHARACTER SETS

ABC = t^ABCT^ ;
END OF CHARACTER SETS
TOKEN CLASSES

IDENTIFIER = LETTER (LETTER/DIGIT) * ;
INTEGER = D I G I T + [2] ;
SPACES = SPACE + (/ENDOFLINE) ;
DOT = . ;
NUMBER = DIGIT + ;
FROM = ABC ;
TO = ABC •
MOVE = ?îXMOVE?Î NUMBER ^ FROM ^ TO ;
SER_NUMB = DIGIT + ;
PARAM2 = ABC ;
PAR AMI = ABC ;
PARAM = ^ P A R A M O PARAM1 t î , ^ PARAM2 ^ ;
ARGUMENT = (ABC/PARAM) ;
HANOI = ^ H A N O I ^ S E R _ N U M B (^ , t î ARGUMENT)*

;
END OF TOKEN CLASSES
SCREEN_A:
BEGIN

IDENTIFIER
- INTEGER

SPACES
DOT
MOVE

KEYSTRINGS
INTEGER ;

= DOT ;
- ^MOVET^ T* T^THE^ jl tîTHT^ ^ ^ T^DISC^ # ^

^ F R O M ? i ^ ^ T H E ^ ^ ^ J2 ^ ^
7*PLACE^ * * t^TCM * ^ ^ T W . ^ * * \3
^ 7* PLACE ^ ;

HANOI - (U E Q ^ l ^ - - ^ X M O V E ^ U \2 t3

JO EQ ¿0 - -
H A N O I P R E D (j l) \2

P A R A M ^ \2 ^ |3
t^XMOVES^ U ¡2 p | 3
T Î H A N O I T Î PRED(j l)

^PARAMtî T^O \2 ?î,9± {3 |3
;

PARAM - 01 EQ ^ A ^ - -
(|2 EQ ^ B ^ - - 9 iC9 i 1 | 0 EQ JO—>- ^ B ^) /
Jl EQ ^ B ^ - -

0 2 EQ - - / |0 EQ }0 - - * A ^) /
10 EQ |0 - -

0 2 EQ ^ A ^ 9±B9± / | 0 E Q jO - - ^ A *)) ;
END OF SCREEN_A
END OF LEXICAL DESCRIPTION HANOI_TOWERS.

FINIS
Figure 2

94 E. Simon

HLP/SZEGED (0.2) * * SOURCE TEXT* *
_

2 E X T E N S I O N OF AN A L G O L W SUBSET
3 BY C A S E AND F O R STATEMENTS
4 5 OCTOBER 1983. S Z E G E D
5

LEXICAL DESCRIPTION EXTENDED.ALGOLW_SUBSET

9 CHARACTER SETS
1 0 * * PERCENT

UNDERSCORE =
S T M T . CHAR =
END OF CHARAC

11
12
13
14
15
16

;
;

ANY - / E N D O F L I N E ;
TER SETS

TOKEN CLASSES
IDENTIFIER

17
18
19
2 0 * *
21
22
23

24

NUMBER
COMMENT
SPECIALS
SPACES
LINE . S K I P
CASE

FOR

25
26

27
28
29
30* *
31
32
33
34
35
36
37
38
39
40* *
41 SCAN: BEGIN

INT . P A R
STATEMENT
C Y C L E . P A R
FIRST .VALUE
STEP .VALUE
LAST .VALUE
STATEMENT . 1
STATEMENT . 1

LETTER (LETTER/DIGIT/UNDERSCORE) *
[16];
DIGIT + [8] ;
PERCENT A N Y * ENDOFLINE ;
DEFAULT TOKENS ;
SPACE+ •
SPACE* ENDOFLINE ;
^XCASE^ ^ s ^ I N T . P A R ^ ^ O F ^ ^ ^
(STATEMENT (SPACE/ENDOFLINE) *
T ^ E N D S ^ ;

^ X F O R ^ * * C Y C L E . P A R ^ ^ * : = ^ * *
FIRST.VALUE ^ S T E P ^ ^ ^

STEP.VALUE ^ ^ U N T I L E jt *
LAST .VALUE ^ ^ ^ D O ^ ^ ^
STATEMENT . 1 ;
DIGIT + [2] ;
S T M T . C H A R * ;
LETTER (LETTER/DIGIT/UNDERSCORE)* [16];
DIGIT + [8]
DIGIT + [8]
DIGIT + [8]
S T M T . C H A R * ;

B E G I N S (ANY/ENDOFLINE)* ^ E N D ^
END OF TOKEN CLASSES

TRANSFORMATIONS ARE
UNDERSCORE ;
END OF TRANSFORMATIONS

Language extension in the HLP/SZ system 95

42 IDENTIFIER
43 NUMBER
44 COMMENT
45 SPECIALS
46 SPACES
47 LINE _ SKIP
48 CASE
49
5 0 * * FOR
51
52
53
54
55 END OF SCAN
56
57 END OF LEXICAL DESCRIPTION EXTENDED_ ALGOLW_SUBSET.
58
59

6 0 * * FINIS
Figure 3

In the following we define the format in which the number of iterations are given
to an elementary subexpression of a generator expression. The number of an itera-
tion. is equal to 1 if the iteration specification is omitted. If it occurs, then it must
be written in the following format:

iteration_number = 7 i * 7 i generator_expression ; or
iteration _ number = ^ * ^ ^[T^ unsigned .integer T6]^ ; (3),

assuming that the string generated by the "generator_expression" can be converted
into an integer. It should be noted on the basis of (3) that *[2] and are
(in the same way) syntactically correct items with different meanings. In the first case
the value of the "generator.expression" designates the number of iterations to be
executed. To illustrate the meaning of "iteration .number" defined secondly, let us
consider a token class which is defined by iterations. Let us number the occurren-
ces of iterations from left to right. In this case * [i] has the following meaning. The
index i denotes a * symbol on the right-hand side of the token class definition, assig-
ned to the generator expression in which *[i] occurs. In this way the item *[i]
means the number of the i-th iterations performed by the automata during isolation
of a token. In order to use the iteration number in the form *[i], practical additional
features are required. Firstly, during execution of an iteration the elementary string
expressions must be evaluated in each step. Secondary, we must introduce a new ele-
mentary string expression called IT_IND, which produces the value of the iteration
index.

We are now ready to give two extensions of an ALGOLW subset in HLP/SZ
lexical metalanguage. The original lexical description [3] is increased by some token
class definitions to introduce the CASE and FOR statements into the base language.
Additional token class definitions, such as STATEMENT, I N T . P A R etc., are

=> IDENTIFIER/KEYSTRINGS ;
=>• NUMBER ;
=> ;
=> KEYSTRINGS ;

- (^ I F ^ \l = ITIND tîTHENTÎ iSUC(ITIND)
^ E L S E T O * t l] ;

- ^BEGDSM Jl \2 ^LABEL:^
^ I F y i jl ^LE?* |4 ^ T H E N ^ tîBEGINTÎ

Jl :=5>Ml + |3 ^ ^
7ÎGOTO7Î ^LABEL; ^ t ^ E N D ^

t î E N D ^ [SCAN] ;

96 E. Simon

needed to describe the parameters of the augments. It seems to me that the definition
of a statement list by iteration, which can be seen in the description of the CASE
statement (cf. Figure 3), is very useful for giving the extension assigned to the CASE.
The generator expression is a very good example for application of the function
IT_IND too. The meaning of the elementary string expression jSUC(IT_IND) is
not trivial. During the first step of the interation cycle prescribed by *[1], the value
of the iteration index is equal to 1. On the other hand, the serial number of the first
STATEMENT parameter is equal to 2.

3. Implementation

Our implementation is based on SIMULA 67 language and it is now running on
the CDC 3300 computer [5]. The system can generate two types of lexical analyzer,
such as a lexical analyzer with an extension and without an extension facility. The type
of generated lexical analyzer is given at the job control level.

There is a further facility too. If the source text is given without augments, the
lexical analyzer containing procedures to execute extensions can be controlled so
that, during its running, additional information for extensions will not be created.
The hand-written analyzer of the HLP/SZ lexical metalanguage has no extension
facilities, because in this case the processing time was the primary point of view. The
generated lexical analyzer has automatic error-correction routines, which discontinue
"one distance" lexical errors if it is possible. Therefore, a restriction is needed for the
first characters of augments. The reader may imagine what happens if, for example, the
new tokens called IDENTIFIER and CASE are being recognized in the same action
block and the next four input characters are CAPE. In this case it can not be decided
whether an error correction must be made or not. In this manner, the first character
of an augment text must differ from the first characters of the other tokens assigned
to the same block. In exchange for this, the augment text can be more exactly recog-
nized. Information, needed to the error-correcting, parameter-generating and itera-
tion-calculating routines, can be computed during the generation of the final states.
Generator expressions are embedded into the generated lexical analyzer in a special
tree language, to promote the fast evaluation of these.

Abstract

The Hungarian version of the Helsinki Language Processor, HLP/SZ [1], consists of modules
for the lexical, syntactic and semantic processing of programming languages. The lexical metalan-
guage of our system has been modified so as to introduce the possibility of language extension. Aug-
ment texts, expressed in terms of constructs which are not part of the base language, are defined by
token classes. The generator expressions, which are assigned to the token class names in action blocks,
generate the definition texts. Definition texts can contain additional augments in a recursive way,
and it will be processed according to an optional action block. Generator expressions built up from
terminals, parameters and functions are controlled by "McCarthy expressions". The system imple-
mented in SIMULA 67 language is now running on the CDC 3300 computer.

RESEARCH GROUP ON THEORY O F AUTOMATA
HUNGARIAN ACADEMY OF SCIENCES
SOMOGYI U. 7.
SZEGED, H U N G A R Y
H-6720

Language extension in the HLP/SZ system 97

References

[1] GYIMÓTHY, T., E. SIMON and Á . MAKAY, An implementation of the HLP, Acta Cybernetica, Tom.
6, Fasc. 3, pp. 315—327.

[2] RAIHA, K . J . , M . SAARINEN, M . SARJAKOSKI, S . SIPPU, E . SOISALON-SOININEN a n d M . TEINARI,
Revised report on the compiler writing system HLP78, University of Helsinki, Report A—1983-1,
130 pp.

[3] SIPPU, S., Syntax error handling in compilers, University of Helsinki, Report A-1981-1, 100 pp.
[4] SIMON, E., Language design objectives and the CHANGE system, Computational Linguistics

and Computer Languages, v. 15, 1982, pp. 229—247.
[5] SIMON, E. and T. GYIMÓTHY, Using attribute grammars to generate compilers, Információ Elek-

tronika, v. 1984, 2, in Hungarian.
[6] SOLNTSEFF, N . and A . YEZERSKY, A survey of extensible programming languages, McMaster

University Hamilton, Technical Report No. 71—7, 143 pp.

(Received Jan. 26,1984)

Acta Cybernetica VII/1

