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1. Introduction. Multiprogrammed computer systems are important subject of 
research in modern queueing theory. We can model such a system as the collection of 
a Central Processor Unit (CPU) or CPU-s, terminals (e. g. rotating disk memory, 
magnetic tape, card reader, etc.) and the jobs. Each job is associated with a terminal 
at which it suffers no delay, queues of programs may occur only at the CPU (or 
CPU-s). 

- - - - To analyse this kind of systems we often use the finite-source queueing model 
which is sometimes called the "machine interference model". For a FIFO multi-
programmed computer system a new mathematical model can be given in the follow-
ing way. Let the number of jobs in the system be n (n=r). Jobs (or programs) 
emanate from the peripheral devices where various input-output (I/O) operations are 
carried out. An arriving program is immediately served by one of r CPU-s if there is 
an idle one, otherwise a waiting line is formed. The jobs are served in the order of 
their arrival, that is the service discipline is FIFO (first-in, first-out). The service 
times of the jobs are assumed to be exponentially and identically distributed random 
variables with mean l/fi. After completing CPU operations the program i returns to 
its peripheral device and stays there for a random time having an arbitrary distribu-
tion function Ff (x) with density /;(*). All random variables involved here are supposed 
to be mutually independent of each other. 

Since there is a huge literature for the problem in question we refer only to the 
latest results. Bunday and Scraton [3] have recently proved that the probability dist-
ribution of the number of machines running in steady state is the same in the M/M/r 
and GIMjr cases. In connection with the mathematical description of multiprogram-
med computer system for the interested reader the following papers can be recom-
mended: Avi-Itzhak and Heyman [2], Asztalos [1], Csige and Tomko [5] Gaver [6], 
Kameda [8], Schatte[10], Sztrik [11]. In Kleinrock's book [9] further models and 
good bibliography on this subject can be found. 

The present paper deals with a possible generalization of the G/M/r case and 
gives the main steady-state operational characteristics of the system, such as CPU 
utilization, mean waiting and response times of the jobs. 
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2. The mathematical model. Let the random variable v(t) denote the number of 
jobs processing I/O operations at time t and ( a^ i ) , ..., a v ( 0 ( / ) ) indicate their indices 
ordered lexicographically. Let us denote by (/), ..., /?„_v0)(/)) the indices of the 
jobs waiting or served at the CPU-s in the order of their arrival. Clearly the sets 
{«!(?), . . . , a v (o(0) and { ^ ( 0 , ...,/?„_V(I)(0} are disjoint. 

Let us introduce the process 

The stochastic process (Y(t), / ^ 0 ) is not a Markovian one unless the distribution 
functions F i(x) are exponential, / = 1 , . . . ,«. 

Let us introduce the supplementary variable £<x((i) denoting the random time 
that the job a,(t) has been staying at a peripheral device in the time period (0, t), 
1=1, ...,v(t). Define 

(0). 

the process has the Markov property. 
Let V£ and C\ denote the set of all variations and combinations, respectively, of 

order k of the integers 1,2, ..., n ordered lexicographically. Then the state space of 
the process (X(t), consists of the points (i\, ..., ik; xt, ..., xk\jx, ...,jn-k), 
where (/ l5 ..., ik)£Cn

k, (A, • ••,jn-k)£K_k, X;€R+, / = 1 , ..., k, k = l , ..., n. 
The process is in state ..., 4 ; x1, ..., xk\ j\, ...,/„ if k jobs with indices 

(4, ..., 4) have been processing I/O operations for times (x l 5 ..., xk), respectively, 
while the rest of jobs need the CPU-s. The indices of these programs in the order of 
their arrival are ( j \ , ...,j„-k). 

To derive the Kolmogorov equations we should consider the transitions that can 
occur in an arbitrary time interval (t, t+h) . The transition probabilities are given in 
the following way 

7 ( 0 = (v (0 ; . . . . am(t): Pi(0, &-,.(,>(0). 

P{x(t + h) = (4 , ..., ik; xx + h, ..., xk + h; jl5 ..., j„_k)/ 

2?(0 — (4> •••! ^xj •••> xk ; j i , . . . , j n - k )} — 

(i-(n-k)nh)n 
* 1 -Flt(xt + K) 

ti{ 1 -Fh(xd 
+ o(h), 

P{x(t+h) = ( 4 , ..., 4 ; Xx + h, ..., xk + h; jx, ...,jn-k)l 

x(t) — 0l5 * * * s Jn k i •••> i'k"> xXi •••> J ' •••> x'k\ jl> •••> Jn-t-l)} — 5 • 

fJn-k(y)h A l-Ftl(x, + h) 
1 1 

for 0 ^ n—k r, 

n + 0(h), 
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where (/,', ...,j"n-k, ...,/*) denotes the lexicographical order of the indices (/l5 ..4 
..., ik,Jn-k), while (X, ..., y','..., xk) indicates the corresponding times. 

7>{x(i+7i) = ..., ik; Xl+h, ...,xk+h; A, ...,jn-k)l 

CO = 0"i> •••> hi xlt •••> xk'> A, •••> A-*)} = 

P.{x(t+h) = Q1,...,ik-,x1 + h,...,xk+h;j1,...i j^_k)l , • .. 

•x(t) = (i[, ...,j'„-k,:.., i'k; xi, ..., y', ..., xk; jx,...., j„zk-1)} = . • ; 

i - ^ G O «ix i - W w • 

for r ^ n — k n. 

To calculate the distribution of X(t) consider the following functions. 

Qo; h ;„(') = P(v{t) = 0; AO) = A, .... ßk(t) = A). 

Qii ¡kih j„-k(.xt, ..., xk; t) = 
P(o(i) = k; a t ( 0 = i l 5 ..., oct(i) = ik; ..:, £ffc ^ 

s*»; ßi(t)=ji,...,ßn-M=jn-k) (2.1) 

Let be defined by 1 /A— J xdF^x), then we have 
o 

Theorem 1. If l /A^oo, /=1 , n, then the process (X(t),t^0) possesses 
the unique limiting (stationary) ergodic distribution independently of the initial con-
ditions, namely 

Q ^ J u f . J . r ]™Q*J l J M . . . . . . (2-2) 

Qh ik-.h jn->(*i' •••> **) = i™Ö.,—ik-. jn-M> t). 

Note that X{t) belongs to the class of piecewise-linear Markov processes subject to 
discontinuous changes. The proof follows immediately from a theorem on page 211 
of Gnedenko—Kovalenko's [7] monograph. Theorem 1 provides the existence and 
uniqueness of the following limits " J 

<7ii, Ji j„-i,(xl> •••> xk) = 

lim P(v(t) = k; a t(i) = i l 5 ..., cck(t) = ik; x, < x, + dxt, I = 

= 17k-, ßi(t) = A, ß„-k(t) = A-A) (2.3) 

for . k = 1, ..., n„ 

where qh ifc.A j„.lc(x1, ..., xk) denotes a state probability density associat-
ed with state (/l5 ..., ik;. ..., xk, A, ...,j„-k) as t-+ k—\, ..:, n. ..Note that we 
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have assumed here that the ergodic distributions (2.2) of X(t) for fixed k have densi-
ties, k= 1, . . . ,« . This assumption is justified if we suppose for simplicity that F^x) 
has density f,(x), i= 1, ..., n. (cf. Gnedenko—Kovalenko [7] pp. 224). We can make 
this assumption as in many applications we use distributions having density. 

In order to formulate the following theorem introduce a further notation, namely 
71 " " k )

 ~ - { } 

which is the so-called normed density function, k = l, ..., n. Then we have 

Theorem 2. The normed density functions introduced above satisfy the follow-
ing system of integro-differential equations (2.5,), (2.7) with boundary conditions 
(2.6), (2.8): 

+ - + g'* l * ; h ' - - f c ^ 1 ' X k ) = 

= -(n-k)nq,* ik;h ,n_t(*i, ...,xk)+f 
o 

(xl,...,y'>...,x'k)/jjy)dy (2.5) 

lk;ji j„-k(x 1» xl-l> *i + l> •••> xk) 

/' 2 <7it «1-1,¡1 + 1 ik;ji ¡1 j„-k(xi, •••> xl-l> xl + li •••> x
k), (2.6) 

V'' J1 Jn-fc 
for I = 1, ..., k, O ^ n — 

[•¿T+ - + ¿ 1 Xk) = 

= ~rMu Kh Jn-M.—xJ + f rtu.-X-»...^,...,.-^ 
0 

(*i, . . . , / , ...,xQfJn_k(y)dy, (2.7) 

¡fc;ji •••' xi-i, Xj+i, ••., xk) = 

A4 2 Qii ¡i-i,¡i + i , h ¡1 jn.k(xi> •••> xi-i> xi+i> x0> (2-8) 
V1.1 
Jl Jr-l 

for I = 1, ..., k, r^n — k ^ n — l. 

rf*Qo; 71 Jn = f it-.h jn^(y)fjn(y)dy. 
o 

Symbol [ ]* will be explained in the proof, while V/̂  is defined as follows 

vh, -J. = {(hJi» • • • ./*)> 0'i> h,j\, ••• J,), • • •, O'i , • • • ,js, ¡iKK\ i} • 
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Proof. Since the process (X(t), t^O) is Markovian its densities must satisfy 
the Chapman—Kolmogorov equations. A derivation is based on the examination of 
the sample paths of the process during an infinitesimal interval of width h. The follow-
ing relations hold: 

<lh iu.h j„-k(xi + h, ...,xk + h) = qh lk.h jn_k(xu • 

x(,-|-l«iwtIiiiwLx (Z9) 
X f a- ' (x' v' ^ - ( y ) h d y I 0 

k 1 — F (x +h) 
<kx ik;/1 jn_h(x1 + h,...,xl-1 + h,xl+1 + h,...,xk + h)h = [[—. 'V; ' X 

s=l 1 fi,\Xs) ' 

(h), 

Xfih £ qh i (_ l i l+1 ¡k.h j^ixj., ...,x,.ltxl+1, ...,xk) + o(h) 

for O ^ n —fc<r , I = 1, ..., k. 
ln-k 

Similarly 

¡k.h j„-k(xi + h> -,xk + h) = qh ik]j1....,Jn.k(x1, ..:,xk)X 
k 1-F„(xt + h) , * l-Ftl(x, + h) 

•X 

X / y-. (2-1Q) 

i + h> •••,xi-i + h,0,xl+1+h, ...,xk+h)h = t X 

Xfih ^ qix i l_1 , ,- I + 1 ¡k; ..,,j„_k(xi, ..., xt+1, ..., xk) + o(h) 

for r^n — k^n — 1, 1 = 1, ...,k. 
J„--JR-L 

Finally 

<2O : A . ' . . . . ;„ = Q0;ju...,jn(i-rfih)+f q]n,h in_i{y)il^ML+o(h). (2.11) 

Hence the derivation of eq. (2.5), (2.7) and boundary conditions (2.6), (2.8) is quite 
simple. Indeed, dividing the lefthand side of eq. (2.9), (2.10), (2.11) by the factor 

k 
JJ (1 — Fi,(xt+h)), taking into account the definition of the normed densities (2.4) 

and taking the limits as /i—0 we get the desired result. 

9* 
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In the lefthand side of (2:5), (2.7), used for the notation of the limit in the right-
hand side, the usual notation for partial differential quotients has been applied. 
Strictly speaking this is not allowed since the existence of the individual partial dif-
ferential quotients is not assured. This is why the operator is notated by []*. Actually 
this is a (1, 1, ..., 1)6/?* directional derivative. (See Cohen [4] pp. 252). 

In the following we solve eq. (2.5), (2.7) subject to boundary conditions (2.6), 
(2.8) to determine the ergodic distribution 

(Co ; h, —Jn> Qh i*;j'i j„-k)> 

(4 , ..., ik)£C£, 0'i, •••,j„-k)€K"-k> k=l, ..., n. 
If we set 

2O;ji j„ = co> 

<7IT ¡K; J'I, ...,jn~k(.xi-> •••> •**) = ck> k = •••> ni 

then it can be shown by substitution that they satisfy the eq. (2.5), (2.7), and boundary 
conditions (2.6), (2.8). Moreover the sequence {ck} can be obtained in succession and 
expressed in a neat form by the help of c„. Using the relations (2.5), (2.6), (2.7), (2.8) 
it is easy to see that 

ck = (rl i-"-'-V-*)-1 -cn ior O^k^n-r, 
and, similarly 

ck = ((n-k)\ti"-k)~1 • c„ for n — r s l c ^ n. 
Since these equations completly describe the system, this is the required solution. 

Let Q H ¡K.JL Jn_fc denote the steady state probability that jobs with indices 
(/*!, ..., 4) are at the peripheral devices and the order of the rest arrival to the CPU-s 
is Oi» •••,j„-k)- Furthermore, denote by Q h t , . . j k the steady state probability that 
programs with indices (i\, ..., 4 ) are processing I/O operations. It can be verified that 

Qiu-,ik;h Jn-k = ¿ik)~lck> f o r k = l,...,n. (2.12) 

Using the relations for ck we get 

Qh ik = {n-k)\[r\r»-k-'lf-k.Xh...Xik}-^cn, (2.13) 

( 4 , . . . , 4 ) € C k " , k = 0,1, ..., n-r. 
Similarly 

Qh i k ^ W ' - K - h r 1 - ^ , (2.14) 
( 4 , . . . , 4)€C k" , k = n-r, ..., n. 

Let QK and Pt denote the steady state probabilities that k jobs are staying at the 
peripheral devices and I jobs need service at the CPU-s, respectively. Clearly 

= Qi = & = ¿o, Qk = A-k, 

It is easy to see that 

and 

for k=0, ...,ft. 

C „ = Q N { X Y . . . X N ) , 

Qk = . Z Qh I, 
(¡1 y e c ; 
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where Qn can be obtained with the aid of the norming condition 

1 & = 1. o 

In the homogenenous case relations (2.13), (2.14) yield 

k i r ^ - A j ) 'Qn'for Q=k=n~r> 
&={nk)[i) for 

Thus 

P k = ( f c ) ' f ° r ° ~ k - r > a n d 

Pk=(n-Q\rlr*-' (7) ^ r-/C""-

This is exactly the same result obtained by Bunday and Scraton [3]. The equivalence 
of the EJM/l and M/M/l models and that of GIMjr and M/M/r models as noted by 
Benson, Bunday and Scraton, respectively, is just a special case of our more general 

-result obtained here. -
Before determining the operational characteristics of the system we need one 

more theorem. In order to formulate it we introduce some notations. Let Q(i)(P(l)) 
denote the stationary probability that job i is processing I/O operation (need service 
at the CPU-s) for i=\, ...,n. It is clear that the process (Y(t), / ^ 0 ) is semi-Marko-
vian with state space 

u { 0 ' i , i k ; A> - Jn-k)}-
(•"1 y f C (A 

{'1 Un(j', J„_k)=0 0,1 n. 

Let Ht be the event that job / is processing I/O operation and ZH({t) its indicator 
function i.e. 

z f l if Y № H t , 
H" " otherwise. 

Theorem 4. 
T 

l i m ± f ZHl(i)dt = = fl<* = l - 2 * > , 

where denotes the mean waiting time of program i.-

Proof. The statement is a special case of a theorem concerning the expected 
sojourn time for semi-Markov processes, see Tomko [12] pp. 297. 
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3. The main characteristics of the system 

(i) Utilizations. Utilizations can now be considered for individual servers or for 
the system as a whole. The process X(t) is assumed to be in equilibrium. Considering 
the system as a whole it will be empty only when there are no jobs at the CPU-s and 
will be busy at other times. As usual, using renewal-theoretic arguments for the sys-
tem utilization we have U= 1 — Qn, and 

Mrf 
Qn = Mt]*+MÔ ' 

where >/*=min (jyl5 ..., t]„), the random variable r^ denotes the I/O times of program 
z, / = 1 , ..., n, and Mb means the average busy period of the system, respectively. 
Thus the expected busy period lenght is given by 

* }- Qn Mb = Mt] 
iin 

Specially, if F,(x) = 1 - e x p (-XiX), i=l, ..., n we get Mb = (l-£)„) • 2 Af) \ 

It is easy to see that for CPU utilization the following relation holds: 

1 ( ' " - ) r 
UCfV=-\2kPk+r 2 Pk r \k = 1 k = r + l ) r 

where r denotes the mean number of busy CPU-s. 

(ii) Mean waiting times. By the virtue of Theorem 4 we have 

Q( i) = ( J / / 1 ) ( i A + ^ + i , V ) - 1 . 

Consequently, the expected waiting time of job i is 

1 1 -0(i) 1 = f o r i = 1 , 

It follows that the mean response time of program i, that is, the waiting and CPU 
time together, can be obtained by 

Ti = Wi + l /n = ( l -QM)V H QM)- \ for i = l , . . . ,„ . (3.1) 
Since 

¡=i 

where n denotes the mean number of jobs staying at the CPU-s, by reordering and 
adding (3.1) we have 

2 W)Q i ! ) = n (3-2) 
i=i 

which is Little's formula for the finite-source G/M/r queue. In_particular, if Ft(x) = 
=F(x), i= 1, . . . ,«, (3.2) can be written as XTQ=n where Q denotes the average 
number of programs processing I/O operations. 
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Abstract 

The aim of the present paper is to give a new queueing model for a multiprogrammed computer 
system, where r CPU-s serve the jobs according to the FIFO discipline. The programs are stochasti-
cally different, job i is characterised by exponentially distributed CPU time with rate n and I/O 
time with an arbitrary distribution function Fi(x) possessing density f,(x). In steady state we deal 
with the main performance measures, such as CPU utilization, mean waiting and response times of 
the jobs. 
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