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It is known in finite automata theory that the equivalence problem can be 
traced back to the isomorphism of automata. Then, in a natural way, one can raise 
the question whether two frontier-to-root tree transducers (/-"-transducers) are iso-
morphic if they are equivalent. 

In this paper we deal with this problem. We introduce the class of the con-
nected F-transducers with adapted rules and that of the inferior F-transducers. 
It will be shown that for each F-transducer there are equivalent F-transducers f rom 
the above classes. 

Moreover, in the second part we define a subclass of the class of deterministic 
F-transducers, namely the class of normalized F-transducers. It will be proved that 
two strongly normalized F-transducers are equivalent if and only if they are 
isomorphic. 

The terminology is used in the sense of [1]. The algebraic notations developed 
by Gecseg and Steinby in [3, 4] will be used throughout this paper. 

1. Notions and notations 

By a ranked alphabet we mean a finite nonvoid union F=U(Fk\k=0, 1, ...) 
of pairwise disjoint sets Fk. 

Take an arbitrary ranked alphabet F and a set R. Then the set of all F-trees 
over R (or trees, for short) is the smallest set TF(R) satisfying the following con-
ditions. 

(i) F 0 U R ^ T F ( R ) . 
(ii) I f / 6 F , (k>0) and Pl, ...,PkeTF(R) then f ( P l , ..., pk)£TF(R). 
We can define the height (hs(p)) and frontier- (frs(p)) of a tree p(c TF(R)) 

with respect to S(QR) in the following way: 
(i) if peTF(R\S) then frs(p)=s, hs(p) is undefined, 

(ii) if p e s then frs(p)=p, hs(p)=0, and 
(iii) if P = f ( P l , ...,pk)(iTF(R)\TF(R\S)) then fr(p)=fr(pi)...fr(pk) and 

hs(p) = max(hs(pd\i=\, ..., + 
Here e denotes the empty string. If S=R then the symbol S can be omitted. 



174 Z. Zachar 

The set of subtrees (sub (p ) ) and the set of proper subtrees (sub (p)) of a 
tree p are defined in the usual way. 

In the rest of this paper the pairwise disjoint sets of variables X= x2, ...}, 
Y— y2, . . .} and Z = {z1; z2 , . . .} are kept fixed. The symbols z l 5 z 2 , ... a re 
used as auxiliary variables. For arbitrary integer « ( S O ) , X„, Y„ and Z„ denote the 
sets {*!, . . . ,*„}, {y l 5 ..., and fa,...,z„}, respectively. 

If p£TF(XnUZk) and frz(p)=zh...zu then for p we also use the no ta t ions 
pfa,...,zk) and p{zh, . . . , z1(>. Substituting / ¡ ( 6 r f ( J „ U Z ) ) (1 Si^k) fo r the 
auxiliary variable z ; ( 1 ^ / s / c ) in a tree p we obtain another tree which is denoted 
by p(h, ...,tk). Let p=q(zil, ..., z;,) where q£TF(Xn\JZ,) and frz(q)=z1...zl. 
Then p{tj,...,t,) will stand for q(t1, ...,/,) (t£TF(X„\JZ), i=\, . . . , /) , tha t is 
the tree p(t1, ..., '¡) is obtained by replacing each variables of zh, ..., zh by the 
tree tx, ..., t, one af ter another . 

The auxiliary variable zx of Z j will also be denoted by # • 
in the sequel we shall use the notations 
fp(X„) = {p\p£TF(Xn\JZJ, frHp) = # } and 
TF(Xn) = TF(XnUZx)\TF(Xn). 

If pefF(X„) and p£TF(Xn) then we denote the tree p(p) by p • p. 
Now we can define the set of the supertrees (sup (p)) fo r a tree p(d TF(Xn)): 

i/6 7>(X,,) is in sup (p) if there exists a q£TF(X„) such that p=q-q. 
We now turn to the definition of a frontier- to-root tree transducer (/"-trans-

ducer). An F-transducer is a system \ = (TF(Xn), A, Tc(Ym),A', I ) , where F and 
G are ranked alphabets, A is a finite nonvoid set of states, A'^A is the set of final 
states, and I is a finite set of rewriting rules of the following two types: 

(i) x-*aq ( x € X „ U F 0 , a£A, g£Tc(Ym)) and 
(ii) / O i , ...,ak)-~aq(z,, ...,zk) (f£Fk, k>0, ax, ...,ak, a£A, q£TG(YmUZ*)). 

The transformation induced by A will be denoted by T a . Moreover, let d o m r A 
and range Ta be, respectively, the domain and range of T a . For an arbi t rary tree p 
we put rA(p)={q\(p, <7)€ta}. 

For an F-transducer A = ( T F ( X „ ) , A , T G ( Y M ) , A ' , I ) and two sets A X , A 2 ( ^ A ) 
we denote by the transformation induced by 

(Ff(X„UZJ), A, TG(YmUZ]), Als rU{# —\a£A2}). 

Moreover, let 

dom Z I U , = d o m RTU, 0 fF(XN) and 
range T a ^ = {q\p£dom ti\At, q<ni)Al(p)}-

If AX = A ' and A 2 = 0 , then AX and A 2 will generally be omitted in T a ^ . Fur the r -
more, if there is no danger of confusion then we write t instead of r A . Let us no t e 
that a singleton will also be denoted by its element. 

Take an arbi trary F-transducer A = (7>(A'„), A, TG(Ym), A', Z). If Ta is a ' 
partial mapping then A is called functional. Moreover , A is deterministic, if all its 
different rules have different left sides. 

Let A = ( T F ( X T T ) , A , T G ( Y J , A ' , I A ) and B = (7>(;rn), B , T C ( Y J , B ' , Z B ) be 
two F-transducers and take a bijective mapping pi of A on to B . If the following 
three conditions are satisfied then p is called an isomorphism. 
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(i) x — a q £ Z A ( x £ X n U F g , a£A) if and only if x-*p(a)q€ZB. 
(») f ( f l 1» ak)-+a0qeZA if and only if f ( p ( a . . . , p(ak))-p(a0)q£ZB, where 

f£Fk (fc>0) and a£A («'=0, 1, ...,k). 
(iii) p(A') = B'. 

We can say that A and B are isomorphic. 
Finally, two F-transducers are called equivalent if the transformations induced 

by them coincide. 

2. Inferior F-transducers 

Let A = ( T F ( X „ ) , A , T G ( Y M ) , A ' , Z ) be an arbitrary F-transducer. It is called 
connected, if for each rule of the form x-^aq (xgA^UFo) and f(a aq 
(f£Fk,k>0) in Z, there are trees plt ...,pk, p such that p£dom xa and p-^dom xat 
0 = 1, ..., k), moreover, the set A of states coincides with {a\p—aq£Z}. 

One can easily show that for every A there is a connected F-transducer B with 

Definition 1. By a connected F-transducer with its adapted rules (^F- t rans-
ducer), we mean a connected F-transducer A=(Tt(X„), A, Ta(Ym), A', Z) such that 
each state a ((LA) satisfies the following conditions: 

(i) if range t" is a singleton then for each tree |>£dom r a \ { # } , the inclusion 
r a ( P ) ^ r G ( r j holds, 

(11) if range T0(YJ then range ra={y,}. 
It is easy to prove that range raQTG(Ym) if and only if range TG(Ym). 

Thus the condition (ii) of the above definition can be replaced by the following: 
- (ii)' if range TaQTG(Ym) then range xa= {jj}. 

Lemma 2. For any connected F-transducer an equivalent A F-transducer can 
be constructed. 

Proof. Let A = (TF(Xn), A, TG(Ym), A', Z) be an arbitrary connected F-trans-
ducer. We shall construct the F-transducer A = (TF(Xn), A, TG(Ym), A', Z) by 
rewriting the rules of I . 

Assume that r a n g e r ^ is a singleton i.e., for .each tree /?£dom T "A(p) = q. 
Then we replace every rule / ( a 3 , ..., a0r in Z by the rule f(a1, .... ak) — 

..., tk), where t—q if at = a and ti=zi otherwise ( i = 1, ..., k). 
If range TAi a^TG( Ym) then a$A', thus every rule of the form f(ay, ..., ak)-~ ar 

and x-*ar may be replaced by the rule of the form f(a1, ..., and 
x—ay1, resp. 

I t is clear that the set I of rules constructed in this way satisfies the conditions 
of Lemma 2. 

Lemma 3. If the ^F- t ransducer A = { T F ( X n ) , A, Ta(Ym), A', I ) is functional 
then for each state a(£A), T" and r a are mappings. 

Proof. Assume that z" (a£A) is no t a mapping. Then a$A' and there are 
trees />6dom x" and q^, <72£T"(/0 such that q17iq2. Since r a n g e r " is no t a sin-
gleton, thus by condition (ii) of Definition 1 there exist trees p £ d o m T„ and qdT a(p) 
such that the tree q contains the symbol # in its frontier. Then p • p d d o m T, SO 



176 Z. Zachar 

Qi'qitiP • P) 0 = 1,2). It means that qxq=q2-q, therefore qx — q2 which con-
tradicts our assumption. 

Next let us consider the t ransformation xa. We have that dom T a = d o m t U 
U{p |p€7V(A r

n )ndom T0}. Since r is a mapping, it suffices to prove tha t if 
p 6 d o m r a \ 7 > ( A ' n ) \ { # } and q i , q 2 £ x a ( p ) then ¡ h = g 2 . 

If range x" is a singleton then by condition 0) in the definition of an / - t r an s -
ducer we know that ¡7,, q2£TG(Ym). It means that for an arbi trary tree />£dom xa 

the equalities x(p-p)—q1 and x(p-p)=q2 hold. Consequently qx=q2. 
If r a n g e r " is no t a singleton then there are trees p i , p 2 £ d o m T" fo r which 

T a ( A ) = 0 I 5^2=*"(/>«)• We have that 

• T ( P I - P ) = = 
and 

*(p2-P) = qz-qi = 92-^2, 

which imply that 5 I=42- This ends the proof of Lemma 3. 

Definition 4. Let A = (J'F(A'n), /4, TC(Y„), A', Z) be an ^ / - t r a n s d u c e r . The 
t ransformation induced by the state a(£A) can be cut by the tree qa£ 7 G ( y m ) \ { # }, 
if for all a£A', /?€dom x\ and qdx-a(p) there is a tree q such that q-q-qa. The 
tree qa cuts the transformation x" maximally, if x" can not be cut by any tree q • qa, 
where « € f e ( y j \ { # } . 

By the above definition the t ransformation x" can be cut by the tree qa if and 
only if qa is a supertree of each tree f rom the set {q\q£rangt xa~, a£A'}. 

Theorem 5. There is an algorithm to decide for each ^ /" - t ransducer 
A = ( T F ( X „ ) , A , T C ( Y M ) , A ' , X ) and arbitrary state A ( £ A ) whether the t rans forma-
tion T" can be cut. Moreover, every tree qa cutt ing x" can be given effectively. 

Proof. Let K=max(q\q£xa
g(p), p€domx"s, h(p)^\\A\\, a£A, a£A') and 

L=(K+6)-\\A\\. We denote by Q the set {p\p£ TF(X„), h(p)^L). Let a£A and 
qa£ f G ( y m ) \ { # } be arbitrary. It is sufficient to show that the following statement 
is valid: 

if fo r all a£A', p£domxa
sC\Q and q£xi(p) there exists a tree q such tha t 

9 = 9 ' 9 a , then the t ransformation xa can be cut by qa i.e., for all a£A', />£dom x\ 
and q£x"s(p) the tree qa is a supertree of q. Obviously, every such qa can be given 
effectively. 

The proof of this statement can be performed by induction. If h ( p ) ^ L then 
by our assumption the tree qa is a supertree of each tree f r o m the sets range 
(a€A'). Now let h(p)>L and assume that our s tatement holds for all trees which 
have less number of occurrences of symbols f r o m F than p has. Then there are 
two sequences p0, ...,pK+e and q0, ...,qK+e of trees and a state a(£A) such tha t 
Q O ^ I I P O ) , Q & 4 ( P I ) 0 = 1 , —» K + 5 ) , Q K + E ^ A P N + E ) , P O ' • • • • P K + E = P and 
9 o " • • • - 9 k + 6 = 9 -

N o w there are three cases. 
Firstly, we assume that there is an index j A"+6) for which qj£TG(Ym). 

Thenq=qj- ...-qK+^qo-qj- ...-qK+E^LIPO-PJ- ••• - P k + s ) - By the induction hypoth-
esis concerning the tree p0 pj • . . . • P K + S we have that qa is a supertree of q. 

Secondly, we suppose that there is an index j for which qj= # . 
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It means that q = q0 •... • qj_t • qj+1 •... • qK+ae-ca
s(p0 •... • Pj-i-Pj+i-••• -pK+s)- Again 

by the induction hypothesis, we get that there exists a tree q for which q = q- qa. 
Finally, we may assume that h*(qj)>0 (j=2, ..., K+5) and TG(Ym). 

Let q=q5 •... • qK+6- Furthermore, we have that r=qQ-qx-q2?iq0-qx-q2-qz—s. 
By the induction hypothesis there are trees r and £ such that r - q = r - q a and s - q = 
=s-qa. We know that h(qa)^K and h(q)>K. F rom this we obtain that the 
tree q can be given in the fo rm q-qa, i.e. qa is a supertree of q. Since 

-<l2-<lz-<li-q-<li,i thus there is a tree q for which 
q = q-qa. This ends the proof of our lemma. 

Definition 6. An ^ / - t r ansduce r \ = (TF(Xn), A, TG(Ym), A', I ) is called inferior 
if none of the transformations induced by its states can be cut by any trees. 

Take an /1/"-transducer A = (TF(Xn), A, TG(Ym), A', I ) . Assume that the trans-
formations induced by the states ax , ..., at can be cut and the tree qa. cuts xa> max-
imally (i—I, ..., I). For a state a, if x" can not be cut . . . ,a ;}) then let 
< 7 n = # . It means that for all ad A, a£A', p£domx"a and q£xa-(p), the equality 
q = q~q a holds under a suitable q. 

The following lemma is valid under these notations. 

Lemma 7. There is an inferior /"-transducer A which is equivalent to A. 

Proof. We shall show that one can construct an / - t ransducer 

A = (TF(X„), A, Ta(Ym), A', I ) 

such that for all states a£A and a(LA' the following conditions are satisfied. 

(1) dom xA = dom x\ and dom tAj .s — dom x\yS. 

(2) dom xAia — dom xA<a. 

(3) { ( p , q - q a ) \ q ^ l J p ) , P ^ o m x % J = x%tS. 

(4) {(p, qa• q)\q^A,a(P%/?€domTa,0} = xLa. 

From this Lemma 7 will follow. Indeed, f rom (3) we get that A is equivalent 
to A. If range T | is a singleton then range x \ is a singleton by (3), too. Using 
condition (i) of Definition 1 we have that for each p g d o m t A ; „ \ { # } , xA a(p) Q 
Q TG(Ym)._7herefore, by (4), xA,a(p)^TG(Ym). It means that (i) of Definition 1 
holds for A. Similarly, we obtain that A jsatisfies condition (ii). Consequently, A is 
an ^. / - t ransducer . It is also clear that A is an inferior /"-transducer, too. In the 
opposite case we would arrive at a contradiction by assuming the maximality of 
the trees qa (a£A). _ 

Next we define the rules of A in the following way. 
(i) x-+arel (x£XnUFQ) if and only if 

x-~ar£Z, where r = f-qa. 
(ii) / ( « I , ..., ak)—ar£Z (f£Fk, k>0) if and only if 

/(%, ..., ak)^ar, where the tree r=r(qai(z1), ..., qak(zk)) is equal to f-qa. 
First, we show that the rules of Z can be constructed. It is obvious, that this 

construction can be performed if the rule satisfies the assumption (i) or (ii) provided 
the equality qa— #. 
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Then let f{ax, ..., ak)-*ar££ (f£Fk, £ > 0 ) be an arbitrary rule such that 
Ta(YI1)\{ # }. We have that for every final states a and all trees pt£dom tg', 

Qi£ra'(Pi) 0 = 1, •••, k) the following conditions hold. 

(a) r(qx, ..., qjttiifip!, ...,pk)) and 

(b) r(qx, ..., qk) = r(qx • qai, ..., qk • q„k) = 

= r{qai(zi), ..., ?a(tO*))(?i, • ••, qk) = r(qx, qk). 

Let f(Pi, ...,Pit) =p and r(q1, ..., qk)=q. By Definition 4, q = q-qa. Therefore, 
r(qi, •.•,qk) = q-qa-

Let s be a tree for which there exist trees r l , ..., rm£TG(YmUZk) and 
h, ..., i m € r G ( F m U { # } ) 0) such that s{rx, ..., rm> = r and s{h, ..., tm) = qa, 
moreover, for each index j (1 ^j^m) at least one of the conditions rj£Zk and 
tj= # holds. It means that for an arbitrary index j ( l s j ^ m ) , ..., q^ — 
= 9-tj. 

Assume that r}£Zk, i.e. there is an index / ( l s / s A : ) satisfying rj=zl. Thus 
for each tree /?,(|dom and qi£x"i'(pl) the equalities qrqa=qi and qi = q-tj 
hold, that is tj is a supertree of qx. 

If tj£TG(Ym) then qi = q-tj-qa=tj-qa t implies that range x"' is a singleton. 
On the other hand the symbol z, is contained in the frontier of the tree r. There-
fore, it should occur in the frontier of r, too. This means that range xai% TG(Ym), 
thus by the condition (i) of Definition 1 range t"< is no t a singleton which is a 
contradiction. Then we have that tjdfG(Ym). 

If tj ^ 4i- then, by qt = q • tj • qat, the transformation t°< can be cut by the 
tree tj • qai which contradicts the maximality of qai. 

Now we have that for each index j ( lSy'S/w), # . It implies that s = qa. 
Therefore, r = qa(r1, ..., rm). Using (b) we obtain that 

r(q1, •••, = qa(rA<il, qk), r,n(<il, 9fc)> = ? " 4„, 

consequently, q=rj(q1; ..., qk) ( j = 1, ..., m). 

We shall prove that the trees ri,...,rm are equal to each other. . Let 
s1,s2£{r1, ..., rm} be arbitrary. Then the equality s ^ , ..., qk)=s2(q1, ..., qk) holds 
for each pt£ dom Ta< and q^^'ipi) (i=i,...,k). Let j (1 ^j'^k) be an arbi t rary 
index. Let pfcdomTa< and ti£x"i(pi) (i=l, ..., k; i^j) be arbitrary fixed trees, 
moreover f , = # . Denote the trees i j ( i l 5 ..., 4) and s2(i1, •••, 4 ) by Uj and Vj, 
respectively. We have that for each /»jCdom X"J and qj£xai(pj) the equality qj-Uj = 
= qj • Vj holds. It is obvious that Uj£TG(Ym) if and only if Vj£TG(Ym), more-
over, if Uj£TG(Ym) then range T".» is not a singleton. F rom this we obtain that 
UJ = VJ. It means that for all indices j (1 ^j^k) the equality Uj — Vj holds, which 
implies that i j = s 2 • 

We now have that rx=r2=,_..—rm, and this tree is denoted by r. It follows 
that r = r-qa, thus the rules of can be constructed. 

Consider the / - t ransducer A = ( T F ( X „ ) , A , T G ( Y M ) , A ' , I ) constructed in this 
way. We will show that A has the properties (1)—(4). By the construction, it is 
easy to see that (1) and (2) hold. The property (3) shall be proved by induction. 
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Let a£A and a£A' be arbitrary states and />edom z"Ayi. Assume that h(p)—0. 
If p£XnUF0 then p—aq^Z if and only if p—aq-qa£Z. Therefore, (p, q)£z\~ 
if and only if (p, q-qa)ez%,s. 

I f / ? = # then a = a and qa=#, thus xa
AiS(p)=r\,s(/?)=# • 

Assume that p=f(pi, •••,Pk) and q€.x%,s(p)- There is a rule / ( o 1 ; ..., a t ) — 
—ar£Z and there exist trees qi€z%B(Pi) 0 = 1, such that q—r(q1,...,qk). 
By the induction hypothesis we have that there are trees _(pt) for which 

9i'-9a>=9i 0 = 1 , k). Therefore, q=r(qai(zl), ..., q^z^fa, ..., qk). 
By our construction there is a rule f(air..., ak)—ar£Z, where 

r(qai(zi), •••,<lak(zk)) = r-qa. 

Then q ...,qk)£z\iS(p) a n d _ q = q - q a . Similarly, we get that if q£r\,a(p) 
then q-qa€*A.a(P)- It means that A has property (3). 

Let p £ d o m r A ; a and r£zA<a(p) be arbitrary trees. By the proof of (3), there 
is a tree r£zAta(p) such that for each />£domr"A and q€.za

A(p), q r = q-r and 
q • qa=q under a suitable tree q. It is easy to show that r£TG(Ym) if and only if 
r£TG(Ym). I t follows that if r£TG(Ym) then f=r=qa-r. If r£ TG(Ym):: then none 
of range za

A and range z"A is a singleton. Using this we obtain that r=qa • r. It 
means that if (p,r)£zAta then (p, qa • r ) € r A i 0 . The inverse claim can be shown 
in a similar way. 

This ends the proof of Lemma 7. 

Let A = ( T F ( X „ ) , A, TG(Ym), A', ZA) and B = ( T F ( X „ ) , B, TG(Ym), B', ZB) be 
A / - t ransducers for which dom t A = d o m Tb . We construct the F-transducers A1 = 
= (7>(JQ, AXC, Ta(Ym), A'XC', Z\) and Bl = ( T F ( X N ) , BxC, Tc(Ym), B'XC', Z\), 
where C=AXB, C'=A'xB' and the sets of rules satisfy the following condi-
tions. 

(a) For each c = (a,b)£C and x ( I „ U F 0 , 
x-~(a, c)q£ZA and x—(b, c)r£Z]} if and only if 
x-*aq^ZA and x-~br£ZB. 

(b) For each f£Fk 0) and C;=(a;, bt) 0 = 0 , 1, ..., k), 
/ ( ( % , cx), ..., (ak , c* ) ) - (a 0 , c 0 ) q e Z \ and 
/ ( ( ¿ j , cO, ..., (bk, ck))-(b0, c0)reZl

B if and only if 
/ ( « i , •••,ak)-a0q£ZA and f(bu ..., bk)-~b0r£ZB. 

Using a standard construction we get two connected / - t ransducers A2 = 
= (TF(Xn), AXC, TG(Ym), A'XC', Z\) and W=(TF{Xn\ B^C, TG{Ym), WxC, Z%) 
such that A2 is equivalent to A1 and B2 is equivalent to B1. Moreover, using the 
constructions of the proofs of Lemmas 2 and 7 we obtain two inferior / - t ransducers 
A = (TF(Xn), AXC, TG(Ym), A'XC', ZA) and B=(TF(X„\ B~XC,TG( Ym), B'XC', ZB) 
which are equivalent to A2 and B2, resp. Let us denote the inferior F-transducers 
A and B by A(B) and B(A), respectively. Since T A =T a ( B ) bo th r A and RA(B) will 
be denoted by <p. Similarly, i¡/ will denote zB and T B ( A ) . 

In the next lemmas and Theorem 11 we shall use the above notations. 

Lemma 8. Let (a ,b) = c, (a, 5) = c£C. Then the following conditions are sat-
isfied : 

3 Acta Cybernetica 



180 Z. Zachar 

(i) (a, c)£AXC if and only if (b, c)£BxC, 
(ii) (a, c)£A'XC' if and only if (b,c)£B'xC', 

(iii) dom (p" ' c =dom \l/b'c, 
(iv) dom <pfl> c=dom \]/iiC, 
(v) dom <p%l=dom ipfe . 

Proof. By the definitions of I \ and there is a natural bijective mapping 
of I \ onto Eg. It is easy to see that the restriction of the above mapping to I A 
is a bijective mapping, too. Using this the statement this lemma is obvious. 

In Lemmas 9 and 10 and in Theorem 11 we assume that the ^ /"- t ransducers 
A and B are equivalent i.e., (p = ij/. Then d o m T A = d o m r B , thus we may use 
the above notat ions and Lemma 8. 

Lemma 9. Let c=(a,b)£C and p£dom<pa c be arbitrary. Assume tha t the 
¿ / - t r ansduce r A is functional. Then <p„ r(p)£ TG(Ym) if and only if ij/b c(p) Q 

Proof. First of all we note that , by Lemma 3, the t ransformat ions ip, tpb'c 

and ipbtC are mappings. Assume that there is a tree p fo r which the conclusion of 
this lemma does not hold. Let (parC(p)—q and ^b,c(P)— r- Then exactly one of 
q and r is in TG(Ym), say r£TG(Yj and q£TG(Ymj. We have that p^ # . Thus 
by condition (i) of Definition 1, range <p"'c is no t a singleton. It means tha t there 
are trees pj, />2(6dom (p"'c) for which q\ = (p"'c{p\)7i(pa,c(p^~q2- Then qt-q = 
= q>(pr p) = ijj(pr p) = r (i — 1, 2), consequently, qt- q = q2- q, which contradicts 
the assumption q ^ q i - Similarly, we arrive a t a contradiction by assuming 
r e f c ( r j and q£TG(Ym). 

Lemma 10. If A is functional, then (p"-c = \pb-c fo r all (a, b)=.c(£C). 

Proof. First we note that if (a, c) and (b, c) are final states then the equality 
<p = i/i implies (pa'c — {jjb-c. We may assume that (a, c) and (b,c) are n o t final 
states. By Lemma 9, range (p"'c is a singleton if and only if range ijjb,c is a sin-
gleton, too. If bo th range <p"'c and range i¡jb'° are singletons then the equality 
<p"'c(p)=yi=4'b'c(p) holds for each tree />£dom <pa'c. Therefore, in this case 
(pa,c = ljJb,c 

Suppose that range <p"'c is not a singleton. By the note following Definition 1. 
we have that rangejpatC% Ta(Ym) i.e., there is a tree p£dom cpa c satisfying the 
inclusion <pa,c(P)£TG(Ym). Let <pa,c(p)=<i and ip b i C (p ) = f . In the same way as 
in the proof of Lemma 7, one can see that there exist trees s£Ta(Ym), rx, ...,rm 
and ..., qm ( m > 0 ) such that the equalities r=s{rx, ..., rm) and q=s(q,, ..., qm) 
hold, moreover, at least one of qt and rt is # for each index i ( l s i ^ m ) . It is 
easy to show that q{, rfcfG{Ym) (/ = 1, ..., m). 

Next we prove that all the r ; and q-, are equal to # ( / = 1 , ...,m). Let i be 
an arbitrary index ( l ^ i ^ m ) . Assume that q~ # and r c ( y m ) \ { 4 r }• For 
each final state (a, c) ((a,B) — c) and for all trees />£dom (pa

s'l(p) = d o m ipf'l, if 
<j€(Ps,Cc(p) and r£xl>lc

e(p) then 

(Ps.c(p-P) = q q = s(q-qu ..., q- qm) and 

tsAP-P) =r-r = s<r-r1; ..., r •!•„,). 
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Since (a, c) and (b, c) are final states (ps-s = \pB-i, which implies <pa,c(p-p) = 
= ih , c (P 'P) - Therefore, r-ri=q-qi, i.e. r-r—q. It means that the transforma-
tion <pa'c can be cut by the tree r ; , which is a contradiction. Similarly, the assump-
tions r ; = # and q i £ T c ( Y m ) \ { # } imply the equality 

Now we have that r=q—s and r=q. It means that for each 

p£dom<p'-e(Qdom<ft$, <pa<%p) = x\ib'c(p) 

holds. This ends the proof of Lemma 10. 

Theorem 11. If the /1/- transducer A is functional then the inferior /"-trans-
ducers A(B) and B(A) are isomorphic. 

Proof. Let us define a mapping p: AXC—BXC, such that for an arbitrary 
state (a, c)(£AXC) the equality p(a,c) = (b,c) holds if c — (a,b). It is clear 
that p is a bijective mapping of ^ X C onto BxC, moreover, p(A'xC') = B'xC'. 

Next suppose that x—(a, c)q£ZA (x6XnU/'o) , where c — (a,b). We have 
x g d o m (pa'c_ thus x £ d o m t¡jb-c. By Lemma 10, q = (pa,c(x) = \l>b'^(x) implies 
x—(b, c)q£ZB. Similarly, if x-*(b, c)r£ZB then we get x —(a, c)r£ZA. 

Let / ( ( f l i , Cj), (ak, ck))-*(a0, c0)q£ZA where c =(an ¿>;) (/ = 0, 1, ..., k). By 
the construction of A(B) and B(A) we know that there is a rule of the form 
f((bucj), ...,(bk,ck))-*(b0,c0)r in ZB. Let /7,(€dom <^ ' c . =dorn I//6..'«) be 
arbitrary trees ( / = L •••, k) and let j be an arbitrary index (l^j^k). We define 
the trees st (i=\, ..., k) in the following way. If i—j then otherwise 

Denote by qj and the tree q(st, ...,sk) and r(.s-j, ...,sk), respectively. We 
have that (parci(pJ) = \j)bj'cj(pJ) for each pj£dom (p"j-cj. F rom this it follows 
easily that the equality fj=qj holds. Since j is arbitrary we get / =q. It means 
that / ( (¿x , cO, ..., (bk, ck))-{bQ, c0)q£ZB. 

Similarly, one can see that if f((b1, c,), ..., (bk, ck))—(b0, c„)r£ZB then the rule 
/((«!, Cj), ...,(ak, ck))-*(a0, c0)r is in ZA. 

Therefore, the inferior /"-transducers A(B) and B(A) are isomorphic. 
The next corollary is known f rom [2], where the result has been achieved in 

a different way. 

Corollary 12. There exists an algorithm to decide for an arbitrary /"-trans-
ducer B and a functional /"-transducer A whether they are equivalent, i.e. TX = tB-

Proof. Let A and B be ^/"-transducers equivalent to A and B, respectively. 
Clearly, A and B are equivalent if and only if so are A and B. By Theorem 11, t a = t b 
if and only if dom r A = d o m r B and the inferior transducers A(B) and B(A) are 
isomorphic. It is known that the equality dom r A = d o m r B is decidable (c.f. [3, 4]). 
Obviously, A(B) and B(A) can be constructed. Moreover the isomorphism of these 
inferior transducers can be verified. Thus the statement of Corollary 12 is valid. 
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