On the equivalence of the frontier-to-root tree transducers II.

By Z. ZACHAR

In this paper we continue our study started in [6] about the equivalent and isomorphic frontier-to-root transducers (F-transducers). First we introduce the superior F-transducer which can be seen the dual of the inferior F-transducer from part I. Then we deal with a subclass of the class of deterministic F-transducers, namely the class of normalized F-transducers. It will be proved that the strongly normalized forms of equivalent deterministic F-transducers are isomorphic.

Since this paper connects with [6] closely thus we use the notions, notations and results of part I.

1. Notions and notations

Take an arbitrary positive integer k. Let $p_1, p_2 \in T_F(X_n \cup Z_k)$ be arbitrary trees and $z_i \in Z_k$. Then the z_i -product $p_1 \cdot p_2$ of p_1 by p_2 is the tree

$$p_2(z_1, \ldots, z_{i-1}, p_1, z_{i+1}, \ldots, z_k).$$

For an *F*-transducer $\mathbf{A} = (T_F(X_n), A, T_G(Y_m), A', \Sigma)$ and sets $A_i \subseteq A \ (i=0, ..., k)$ we denote by $\tau_{A_1,A_1,...,A_k}^{A_0}$ the transformation induced by

$$(T_F(X_n \cup Z_k), A, T_G(Y_m \cup Z_k), A_0, \Sigma \cup \{z_i \to a_i z_i | a_i \in A_i, i = 1, ..., k\}).$$

Finally, when we will refer to a definition or a result from a part of our paper if the serial number of the part is I then it will be marked otherwise it will not be.

2. Superior *F*-transducers

Definition 1. Let $A = (T_F(X_n), A, T_G(Y_m), A', \Sigma)$ be an *AF*-transducer. The transformation induced by the state $a(\in A)$ can be increased by the tree $q^a \in \tilde{T}_G(Y_m) \setminus \{ \# \}$ if for all $p \in dom \tau_{A,a}$ and $q \in \tau_{A,a}(p)$, there is a tree $\tilde{q} \in T_G(Y_m \cup \{ \# \})$ satisfying $q = q^a \cdot \tilde{q}$, provided that range τ_A^a is not a singleton. The tree q^a increases the transformation τ_A^a maximally if the tree q^a is a proper subtree of a tree \bar{q}^a then τ_A^a cannot be increased by \bar{q}^a .

Definition 2. An AF-transducer $A = (T_F(X_n), A, T_G(Y_m), A', \Sigma)$ is called a superior AF-transducer if none of the transformations induced by its states can be increased by any trees.

Take an AF-transducer $A = (T_F(X_n), A, T_G(Y_m), A', \Sigma)$. Assume that for each state $a \in A$ the tree q^a increases τ^a maximally if τ^a can be increased and $q^a = \#$ otherwise. It means that for all $a \in A$, $p \in dom \tau_a$ and $q \in \tau_a(p)$ there is a tree \tilde{q} such that $q = q^a \cdot \tilde{q}$. We suppose that the tree q^a is given for every state $a \in A$. Then the following lemma is valid under these notations.

Lemma 3. There is a superior AF-transducer $\overline{\mathbf{A}} = (T_F(X_n), A, T_G(Y_m), A', \overline{\Sigma})$ which is equivalent to A.

Proof. We shall show that one can construct an *AF*-transducer

 $\overline{\mathbf{A}} = (T_F(X_r), A, T_G(Y_r), A', \overline{\Sigma})$

such that for each state $a \in A$ the following conditions hold.

(1) dom $\tau^a_A = \text{dom } \tau^a_A$.

(2) dom $\tau_{\mathbf{A},a} = \operatorname{dom} \tau_{\mathbf{\overline{A}},a}$ and dom $\tau_{\mathbf{A},a} = \operatorname{dom} \tau_{\mathbf{\overline{A}},a}$.

(3) {(p, q ⋅ q^a)|q∈τ^a_A(p), p∈dom τ^a_A}=τ^a_A.
(4) {(p, q^a ⋅ q)|q∈τ^a_A, a</sub>(p), p∈dom τ_{A, a}}=τ_{A, a}.
In a way similar to that in the proof of Lemma I.7 we can see that A is an equivalent superior AF-transducer for A.

Next we define the rules of $\overline{\Sigma}$ in the following way:

(i) $x \rightarrow ar \in \Sigma$ ($x \in X_n \cup F_0$) if and only if

 $x \rightarrow a\bar{r} \in \bar{\Sigma}$ where $\bar{r} = r \cdot q^a$,

- (ii) $f(a_1, ..., a_k) \rightarrow ar \in \Sigma$ ($f \in F_k, k > 0$) if and only if
- $f(a_1, ..., a_k) \rightarrow a\bar{r} \in \bar{\Sigma}$ where the tree $\bar{r}(q^{a_1}(z_1), ..., q^{a_k}(z_k))$ equals the tree $\mathbf{r} \cdot q^{a}$.

It is clear that this construction can be made for each rule of form (i). Assume that $f(a_1, \ldots, a_k) \rightarrow ar \in \Sigma \ (f \in F_k, k > 0).$

Then let $p^{j} \in \text{dom } \tau_{A}^{a_{j}}$ and $t_{i} \in \tau_{A}^{a_{j}}(p^{j})$ be arbitrary fixed trees (j=1,...,k). For each index j $(1 \le j \le k)$ we use the following notations:

$$p_{j} = f(p^{1}, ..., p^{j-1}, \#, p^{j+1}, ..., p^{k}),$$

$$r_{j} = r(t_{1}, ..., t_{j-1}, \#, t_{j+1}, ..., t_{k}) \text{ and }$$

$$\bar{r}_{j} = r_{j} \cdot q^{a}.$$

It is sufficient to show that for each index j $(1 \le j \le k)$ there is a tree \bar{q}_i such that $\bar{r}_i = q^{a_i} \cdot \bar{q}_i$. From this we obtain easily that the tree \bar{r} with

$$r \cdot q^{a} = \bar{r}(q^{a_{1}}(z_{1}), ..., q^{a_{k}}(z_{k}))$$

can be constructed.

Let j be an arbitrary index $(1 \le j \le k)$. If $\bar{r}_i \in T_G(Y_m)$ or $q^a_i = \#$ then let $\bar{q}_i = \bar{r}_i$. In this case our statement holds obviously.

We may assume that $\bar{r}_j \in \tilde{T}_G(Y_m)$ and $\bar{q}^{a_j} \in \tilde{T}_G(Y_m) \setminus \{\#\}$. If range τ^a is a singleton then by the construction from Lemma I.2 the tree r is in $T_G(Y_m)$. It follows that $\bar{r}_i \in T_G(Y_m)$ which is a contradiction. It means that range τ^a is not a singleton. From this we obtain that there are trees $p \in dom \tau_a$ and $q \in \tau_a(p)$ such that $q \in \tilde{T}_G(Y_m)$. It implies that $r_j \cdot q \in \tau_{a_j}(p_j \cdot p)$ and $r_j \cdot q \in \tilde{T}_G(Y_m)$. By Definition 2 we know that $r_j \cdot q = q^{a_j} \cdot \tilde{q}$ under a suitable \tilde{q} . It means that $\tilde{q} \in \tilde{T}_G(Y_m)$. Moreover, one of the inclusions $q^{a_j} \in \text{sub}(r_j)$ and $r_j \in sub(q^{a_j})$ holds.

Firstly, assume that $q^{a_j} \in \text{sub}(\bar{r}_j)$. Then there exists a tree $\bar{q} \in \tilde{T}_G(Y_m)$ for which $r_j = q^{a_j} \cdot \bar{q}$. In this case let $\bar{q}_j = \bar{q} \cdot q^a$. It means that $\bar{r}_j = r_j \cdot q^a = q^{a_j} \cdot \bar{q} \cdot q^a = q^{a_j} \cdot \bar{q}_j$. Secondly, assume that $r_j \in sub(q^{a_j})$. Then there is a tree $\bar{q} \in \tilde{T}_G(Y_m) \setminus \{\#\}$ for

Secondly, assume that $r_j \in sub(q^{a_j})$. Then there is a tree $\bar{q} \in \tilde{T}_G(Y_m) \setminus \{ \# \}$ for which $q^{a_j} = r_j \cdot \bar{q}$. We have that for each tree $p \in dom \tau_a$ and $q \in \tau_a(p)$, the inclusion $r_j \cdot q \in \tau_{a_j}(p_j \cdot p)$ holds. Moreover, there is a tree \tilde{q} such that $r_j \cdot q = q^{a_j} \cdot \tilde{q}$. From this we obtain that $r_j \cdot q = r_j \cdot \bar{q} \cdot \tilde{q}$. Since $r_j \in \tilde{T}_G(Y_m)$ the equality $q = \bar{q} \cdot \tilde{q}$ holds, too. It means that τ^a can be increased by the tree \bar{q} .

On the other hand we have that $q=q^a \cdot \tilde{q}$ under a suitable tree \tilde{q} . Since the tree q^a increases τ^a maximally thus from the two equalities above we get $\bar{q} \in \text{sub}(q^a)$ i.e., there exists a \bar{q} for which $\bar{q} \cdot \bar{q} = q^a$. Let $\bar{q}_j = \bar{q}$. It follows that $\bar{r}_j = r_j \cdot q^a = r_j \cdot \bar{q} \cdot \bar{q} = q^{a_j} \cdot \bar{q} = q^{a_j} \cdot \bar{q}_j$.

It means that our statement is valid, thus the rules of $\overline{\Sigma}$ can be constructed. Finally, one can see easily that the F-transducer $\overline{A} = (T_F(X_n), A, T_G(Y_m), A', \overline{\Sigma})$ constructed in this way satisfies conditions (1)—(4).

This ends the proof of Lemma 3.

Lemma 4. There is an algorithm to decide for each AF-transducer

$$\mathbf{A} = (T_F(X_n), A, T_G(Y_m), A', \Sigma)$$

and arbitrary state $a(\in A)$ whether the transformation τ^a can be increased. Moreover, every tree q^a can be given effectively which increases τ^a .

Proof. We have that if the transformation τ^a can be increased by the tree q^a then $h(q^a) \leq \min(\tau_a(p)|p \in dom \tau_a)$. It means that the number of trees which increases τ^a is finite. Moreover, by the proof of Lemma 3 it is easy to see that for each tree q^a the transformation τ^a is increased by q^a if and only if the rules of Σ can be rewritten according to the conditions (i)—(ii) from the proof of Lemma 3. From this the statement of our lemma is obtained obviously.

3. Normalized F-transducers

Definition 5. A deterministic AF-transducer $\mathbf{A} = (T_F(X_n), A, T_G(Y_m), A', \Sigma)$ is called a *normalized F*-transducer (NF-transducer) if conditions (i) and (ii) below hold. (i) For every state $a \in A$, range τ^a is either a singleton or infinite.

(ii) For all states a, \bar{a} if both range τ^a and range $\tau^{\bar{a}}$ are infinite, $dom \tau_a = dom \tau_{\bar{a}}$ and there exist trees $q, \bar{q} \in T_G(Y_m)$ such that for each tree $\bar{p} \in dom \tau_a$, $q \cdot \tau_a(\bar{p}) = \bar{q} \cdot \tau_{\bar{a}}(\bar{p})$ then at least one of the following conditions are satisfied. (ii) There are trees $r, \bar{r} \in \tilde{T}_G(Y_m)$ such that at least one of them is equal to

the tree # and for each tree $\bar{p} \in dom \tau_a$ the equality $r \cdot \tau_a(\bar{p}) = \bar{r} \cdot \tau_{\bar{a}}(\bar{p})$ holds. (ii₂) The sets range $\tau^a \cap q$ and range $\tau^{\bar{a}} \cap \bar{q}$ are empty.

The next lemma, in a different form, can be found in [2]. The proof can be performed easily thus it is omitted.

Z. Zachar

Lemma 6. Let $q_j, r_j \in T_G(Y_m \cup Z)$ be arbitrary trees (j=1, ..., 5). For each positive integer *i* the equalities (1)—(7) imply the equality (8).

- (1) $r_1 \cdot i r_5 = q_1 \cdot i q_5$
- (2) $r_1 \cdot i r_2 \cdot i r_5 = q_1 \cdot i q_2 \cdot i q_5$
- (3) $r_1 \cdot i r_3 \cdot i r_5 = q_1 \cdot i q_3 \cdot i q_5$
- $(4) \quad r_1 \cdot i r_4 \cdot i r_5 = q_1 \cdot i q_4 \cdot i q_5$
- (5) $r_1 \cdot i r_2 \cdot i r_3 \cdot i r_5 = q_1 \cdot i q_2 \cdot i q_3 \cdot i q_5$
- (6) $r_1 \cdot i r_2 \cdot i r_4 \cdot i r_5 = q_1 \cdot i q_2 \cdot i q_4 \cdot i q_5$
- (7) $r_1 \cdot i r_3 \cdot i r_4 \cdot i r_5 = q_1 \cdot i q_3 \cdot i q_4 \cdot i q_5$
- (8) $r_1 \cdot i r_2 \cdot i r_3 \cdot i r_4 \cdot i r_5 = q_1 \cdot i q_2 \cdot i q_3 \cdot i q_4 \cdot i q_5$

Lemma 7. For any deterministic F-transducer $A = (T_F(X_n), A, T_G(Y_m), A', \Sigma)$ an equivalent NF-transducer can be constructed.

Proof. Let $K=\max(h(\tau^a(p))|p\in \text{dom }\tau^a, a\in A, h(p)\leq ||A||)$ and $L_1 = \max(h(\tau_a(p))|p\in \text{dom }\tau_a, a\in A, h(p)\leq 4\cdot ||A||^2),$ $L_2 = \max(h(\tau_a(p))|p\in \text{dom }\tau_a, a\in A, h(p)\leq 2\cdot ||A||, h^{\ddagger}(p)\leq ||A||)$ and $L=L_1+L_2.$ Moreover, set $Q=\{q|q\in T_G(Y_m), h(q)\leq \max(K, L)\}$ and $C=Q\cup\{\ddagger\}.$ Construct the deterministic F-transducer

$$\mathbf{A}^{1} = (T_{F}(X_{n}), A \times C, T_{G}(Y_{m}), A' \times C, \Sigma^{1})$$

such that $x \rightarrow (a, c)r \in \Sigma^1$ if and only if $x \rightarrow ar \in \Sigma$ and c = r, moreover,

$$f((a_1, c_1), \ldots, (a_k, c_k)) \rightarrow (a, c) r \in \Sigma^1$$

if and only if $f(a_1, ..., a_k) \rightarrow a\bar{r} \in \Sigma$ where c and r are defined in the following way. Let $q = \bar{r}(c_1(z_1), ..., c_k(z_k))$. If $q \in Q$ then c = q otherwise c = #. If $a \notin A'$ and $q \in Q$ then $r = y_1$ otherwise r = q. It is obvious that A and A¹ are equivalent. Eliminating surplus states and rules in a standard way we get a connected deterministic *F*-transducer $\mathbf{B} = (T_F(X_n), B, T_G(Y_m), B', \Sigma_B)$ where $B \subseteq A \times C$, $B' \subseteq A' \times C$ and $\Sigma_B \subseteq \Sigma^1$. It is clear that **B** and A¹ are equivalent.

We will show that **B** is an NF-transducer. Take an arbitrary state $b = (a, c) \in B$. By our construction it is clear that dom $\tau_{A,a} = \text{dom } \tau_{B,b}$ and if $p \in \text{dom } \tau_{B}^{b}$ then $p \in \text{dom } \tau_{A}^{a}$, moreover, if c = # then the equality $\tau_{A}^{a}(p) = \tau_{B}^{b}(p)$ holds, too.

Assume that $c = \sharp$. Then for each tree $p \in \operatorname{dom} \tau_{B}^{b} \subseteq \operatorname{dom} \tau_{A}^{a}$ the inequality $h(\tau_{B}^{b}(p)) > \max(K, L) \cong K$ holds. It follows that there are trees p_{1}, p_{2}, p_{3} and a state \tilde{a} such that $p = p_{1} \cdot p_{2} \cdot p_{3}$, $p_{2} \in \operatorname{dom} \tau_{A,\tilde{a}}^{a}$, $p_{2} \in \operatorname{dom} \tau_{A,\tilde{a}}^{a}$, $p_{2} \in \operatorname{dom} \tau_{A,\tilde{a}}^{a}$, $p_{3} \in \operatorname{dom} \tau_{A,\tilde{a}}^{a}$ and $h^{\sharp} (\tau_{A,\tilde{a}}^{a}(p_{2})) > 0$, $\tau_{A,\tilde{a}}^{a}(p_{3}) \in \tilde{T}_{G}(Y_{m})$. From this we obtain that $p^{k} = p_{1} \cdot p_{2}^{k} \cdot p_{3} \in \operatorname{dom} \tau_{A}^{a}$ ($k = 1, 2, \ldots$) and the trees $\tau_{A}^{a}(p^{k})$ are pairwise different. Since range $\tau_{B}^{b} = \operatorname{range} \tau_{A}^{a} \setminus Q$ thus range τ_{B}^{b} is infinite. Moreover, we have that for all trees $\bar{p} \in \operatorname{dom} \tau_{B,b}$ and $p \in \operatorname{dom} \tau_{B}^{b}$ the equality $\tau_{A}^{a}(p) \cdot \tau_{A,a}(\bar{p}) = \tau_{B}^{b}(p) \cdot \tau_{B,b}(\bar{p})$ holds. From this we obtain that $\tau_{A,a} = = \tau_{B,b}$.

186

Furthermore, we know that if $c \in Q$ then range $\tau_{\mathbf{B}}^{b}$ is a singleton and for each tree $\bar{p} \in \text{dom } \tau_{\mathbf{B}, b} \setminus \{ \sharp \}, \tau_{\mathbf{B}, b} (\bar{p}) \in T_G(Y_m)$. It follows that **B** is a deterministic AF-transducer and condition (i) of Definition 5 holds for **B**.

Then we have to prove that condition (ii) of Definition 5 can be satisfied. Take arbitrary states $b, \bar{b} \in B$ and trees $q, \bar{q} \in T_G(Y_m)$. Let b = (a, c) and $\bar{b} = (\bar{a}, \bar{c})$. Assume that $dom \tau_b = dom \tau_{\bar{b}}$, both range τ^b and range $\tau^{\bar{b}}$ are infinite, moreover, for each tree $\bar{p} \in dom \tau_b$ the equality $q \cdot \tau_b(\bar{p}) = \bar{q} \cdot \tau_b(\bar{p})$ holds. In this case we have that $c = \bar{c} = \sharp$ and $dom \tau_a = dom \tau_{\bar{a}}$.

It is sufficient to show that if at least one of two trees q and \bar{q} is higher than L then the following condition (ii₁)' holds.

(ii₁)' There are trees $r, \tilde{r} \in \tilde{T}_{G}(Y_{m})$ such that at least one of them is equal to the tree \sharp and for each tree $\bar{p} \in dom \tau_{a} \cap R$ the equality $r \cdot \tau_{a}(\bar{p}) = \bar{r} \cdot \tau_{\bar{a}}(\bar{p})$ holds where $R = \{\bar{p} | \bar{p} \in \tilde{T}_{F}(X_{n}), h(\bar{p}) \leq 4 \cdot ||A||^{2}\}$.

Now we prove this statement. First we show that $h(q), h(\bar{q}) > L_1$. Assume that $h(q) > L = L_1 + L_2$. It is clear that there is a tree $\bar{p} \in dom \tau_a$ for which $h(\bar{p}) \leq 2 \cdot ||A||, h^{\ddagger}(\bar{p}) \leq ||A||$ and $\tau_a(\bar{p}) \in \tilde{T}_G(Y_m)$. Since $h(\tau_{\bar{a}}(\bar{p})) \leq L_2$ and $q \cdot \tau_a(\bar{p}) = = \bar{q} \cdot \tau_{\bar{a}}(\bar{p})$ thus $h(q \cdot \tau_a(\bar{p})) > L$ and $h(\bar{q} \cdot \tau_{\bar{a}}(\bar{p})) \leq h(\bar{q}) + L_2$. It follows that $h(\bar{q}) > L_1$. Similarly, the inequality $h(\bar{q}) > L$ implies $h(q) > L_1$.

We have that there is a tree \bar{p} for which $h(\bar{p}) \leq 4 \cdot ||A||^2$ and at least one of the trees $\tau_a(\bar{p})$ and $\tau_{\bar{a}}(\bar{p})$ is in $\tilde{T}_G(Y_m)$. In this case there exist an $s \in \tilde{T}_G(Y_m)$ and $q_1, \ldots, q_m, \bar{q}_1, \ldots, \bar{q}_m \in T_G(Y_m \cup \{ \sharp \}) \ (m \geq 1)$ such that the equalities $\tau_a(\bar{p}) = s \langle q_1, \ldots, q_m \rangle$ and $\tau_{\bar{a}}(\bar{p}) = s \langle \bar{q}_1, \ldots, \bar{q}_m \rangle$ hold, moreover, for each index j $(1 \leq j \leq m)$ at least one of the trees q_j and \bar{q}_j equals \sharp . It means that $q \cdot q_j = \bar{q} \cdot \bar{q}_j \ (j = 1, \ldots, m)$. Since $h(q_j), h(\bar{q}_j) \leq L_1$ we get $q_j, \bar{q}_j \in \tilde{T}_G(Y_m) \ (j = 1, \ldots, m)$.

Let j be an arbitrarily fixed index $(1 \le j \le m)$ and let $r = q_j$ and $\bar{r} = \bar{q}_j$. It follows that $q \cdot r = \bar{q} \cdot \bar{r}$. We show that for each tree $\bar{p} \in dom \tau_a \cap R$ the equality $r \cdot \tau_a(p) = \bar{r} \cdot \tau_{\bar{a}}(\bar{p})$ holds.

Take an arbitrary tree $\bar{p} \in dom \tau_a \cap R$. If both $\tau_a(\bar{p})$ and $\tau_{\bar{a}}(\bar{p})$ are in $T_G(Y_m)$ then $r \cdot \tau_a(\bar{p}) = \bar{r} \cdot \tau_{\bar{a}}(\bar{p})$ because of the equality $q \cdot \tau_a(\bar{p}) = \bar{q} \cdot \tau_{\bar{a}}(\bar{p})$.

In the opposite case the equalities $\tau_a(\bar{p}) = s\langle q_1, ..., q_m \rangle$ and $\tau_{\bar{a}}(\bar{p}) = s\langle \bar{q}_1, ..., \bar{q}_m \rangle$ hold where the trees $s, q_1, ..., q_m, \bar{q}_1, ..., \bar{q}_m$ satisfy the above conditions. Similarly, we have that $q \cdot q_j = \bar{q} \cdot \bar{q}_j$ and $q_j, \bar{q}_j \in T_G(Y_m)$ (j=1, ..., m).

Assume that $r = \sharp$, consequently, $q = \bar{q} \cdot \bar{r}$. It follows that $\bar{q} \cdot \bar{r} \cdot q_j = \bar{q} \cdot \bar{q}_j$ (j=1,...,m). If $\bar{r}=\sharp$ then $\bar{q} \cdot q_j = \bar{q} \cdot \bar{q}_j$. Since $h(\bar{q}) > L_1$ and $h(q_j), h(\bar{q}_j) \leq L_1$ thus $q_j = \bar{q}_j = \sharp$ (j=1,...,m). From this we obtain $\tau_a(\bar{p}) = \tau_{\bar{a}}(\bar{p})$ i.e. $r \cdot \tau_a(\bar{p}) = \bar{r} \cdot \tau_{\bar{a}}(\bar{p})$. We may suppose that $\bar{r} \neq \sharp$. Then $\bar{q}_j \neq \sharp$, because in the opposite case $\cdot \bar{q} \cdot \bar{r} \cdot q_j = \bar{q}$ which is a contradiction (j=1,...,m). It means that for each index j $(1 \leq j \leq m), q_j = \sharp$ and $\bar{q} \cdot \bar{r} = \bar{q} \cdot \bar{q}_j$. From this we obtain that $\bar{r} = \bar{q}_j$ (j=1,...,m). It implies that $r \cdot \tau_a(\bar{p}) = \bar{r} \cdot \tau_{\bar{a}}(\bar{p})$.

From the assumption $\bar{r} = \#$ we arrive at the equality $r \cdot \tau_a(\bar{p}) = \bar{r} \cdot \tau_{\bar{a}}(\bar{p})$ in a similar way.

Now we can prove that conditions (ii) of Definition 5 are satisfied. If $h(q), h(\bar{q}) \leq L$ then (ii₂) holds because each tree of both range τ^b and range τ^b is higher than L. In the opposite case condition (ii₁)' holds. We will show by induction that $r \cdot \tau_a(\bar{p}) = \bar{r} \cdot \tau_{\bar{a}}(\bar{p})$ for each tree $\bar{p} \in dom \tau_a$.

If $h(\bar{p}) \leq 4 \cdot ||A||^2$ then $r \cdot \tau_a(\bar{p}) = \bar{r} \cdot \tau_{\bar{a}}(\bar{p})$ by $(ii_1)'$. Now let $h(\bar{p}) > 4 \cdot ||A||^2$. We have that there are trees p_1, p_2, p_3, p_4, p_5 and states $\tilde{a}, \tilde{a} \in A$ such that $\bar{p} = p_1 \cdot p_2 \cdot p_3 \cdot p_4 \cdot p_5$ and $p_1 \in \text{dom } \tau_a^{\bar{a}} \cap \text{dom } \tau_{\bar{a},\bar{a}}^{\bar{a}} \cap \text{dom } \tau_{\bar{a},\bar{a}}^{\bar{a}} \cap \text{dom } \tau_{\bar{a},\bar{a}}^{\bar{a}} \cap \text{dom } \tau_{\bar{a},\bar{a}}^{\bar{a}} (i=2,3,4),$ $p_5 \in \text{dom } \tau_{a,\bar{a}} \cap \text{dom } \tau_{\bar{a},\bar{a}}, \text{ where } p_i \in T_F(X_n \cup Z_2) \quad (i=1,...,5) \text{ and the symbol } z_2$ occurs exactly once in the frontier of the tree $p_i (i=2,...,5)$. Let

$$\begin{split} q_{1} &= r \cdot \tau_{a}^{\tilde{a}}(p_{1}), \quad r_{1} = \bar{r} \cdot \tau_{\bar{a}}^{\tilde{a}}(p_{1}), \\ q_{2} &= \tau_{a,\tilde{a}}^{\tilde{a}}(p_{2}), \quad r_{2} = \tau_{\bar{a},\tilde{a}}^{\tilde{a}}(p_{2}), \\ q_{3} &= \tau_{a,\tilde{a}}^{\tilde{a}}(p_{3}), \quad r_{3} = \tau_{\bar{a},\tilde{a}}^{\tilde{a}}(p_{3}), \\ q_{4} &= \tau_{a,\tilde{a}}^{\tilde{a}}(p_{4}), \quad r_{4} = \tau_{\bar{a},\tilde{a}}^{\tilde{a}}(p_{4}), \\ q_{5} &= \tau_{a,\tilde{a}}(p_{5}), \quad r_{5} = \tau_{\bar{a},\tilde{a}}(p_{5}). \end{split}$$

By the induction hypothesis it is clear that the trees r_i , q_i (i=1,...,5) satisfy the conditions of Lemma 6. It means that $q_1 \cdot 2q_2 \cdot 2q_3 \cdot 2q_4 \cdot 2q_5 = r_1 \cdot 2r_2 \cdot 2r_3 \cdot 2r_4 \cdot 2r_5$ i.e., $r \cdot \tau_a(\bar{p}) = \bar{r} \cdot \tau_{\bar{a}}(\bar{p})$.

We have that $\tau_a = \tau_b$ and $\tau_{\bar{a}} = \tau_{\bar{b}}$. It follows that for each tree $\bar{p} \in dom \tau_b$ the equality $r \cdot \tau_b(\bar{p}) = \bar{r} \cdot \tau_b(\bar{p})$ holds. It means that **B** is an *NF*-transducer. Consequently the statement of this lemma is valid.

Lemma 8. Let $\overline{\mathbf{A}} = (T_F(X_n), A, T_G(Y_m), A', \overline{\Sigma}_A)$ be a deterministic *F*-transducer. Then there is an superior *NF*-transducer **B** which is equivalent to $\overline{\mathbf{A}}$.

Proof. By Lemma 3 we can construct a superior *F*-transducer

$$\mathbf{A} = (T_F(X_n), A, T_G(Y_m), A', \Sigma_A)$$

with $\tau_A = \tau_{\overline{A}}$. From the proof of Lemma 3 one can see that A is deterministic, too. Next we consider the *NF*-transducer $\mathbf{B} = (T_F(X_n), B, T_G(Y_m), B', \Sigma_B)$ constructed for A by Lemma 7. From the proof we have that for each state $b \in B$ if range τ_B^b is not a singleton then there exists a state $a \in A$ such that $\tau_{A,a} = \tau_{B,b}$. It follows that τ_B^b can not be increased by any tree q^b , because in the opposite case the transformation τ_A^a is increased by q^b which is a contradiction. It means that **B** is a superior *NF*-transducer equivalent to \overline{A} .

Definition 9. Let $\mathbf{A} = (T_F(X_n), A, T_G(Y_m), A', \Sigma)$ be a superior *NF*-transducer. We say that the state $\bar{a}(\in A)$ can be substituted by the state $a(\in A)$ if the condition (i) holds or there is a tree $\bar{q} \in T_G(Y_m)$ such that the conditions (ii₁)--(ii₆) are satisfied.

- (i) $\tau_a = \tau_{\bar{a}}$, and if range τ^a is a singleton then range $\tau^a = \text{range } \tau^{\bar{a}}$.
- (ii₁) dom $\tau_a = dom \tau_{\bar{a}}$.
- (ii₂) range τ^a is infinite.
- (ii_a) range $\tau^{\bar{a}}$ is a singleton.
- (ii₄) For each tree $\bar{p} \in dom \tau_a \setminus \{ \# \}$ the equality $\bar{q} \cdot \tau_a(\bar{p}) = \tau_{\bar{a}}(\bar{p})$ holds.
- (ii₅) If $\bar{a} \in A'$ then range $\tau^{\bar{a}} = \bar{q}$.
- (ii₆) If there is a state $\bar{a}(\in A \setminus \{a, \bar{a}\})$ for which $dom \tau_a = dom \tau_{\bar{a}}$ and range $\tau^{\bar{a}}$ is infinite, moreover, there exist trees $q, \bar{q} \in T_G(Y_m)$ such that for each tree $\bar{p} \in dom \tau_a$ the equality $q \cdot \tau_a(\bar{p}) = \bar{q} \cdot \tau_{\bar{a}}(\bar{p})$ holds then either $q \neq \bar{q}$ or $\tau_a(\bar{p}) = \tau_{\bar{a}}(\bar{p})$ for each tree $\bar{p} \in dom \tau_a$.

We note that $\tau_a = \tau_{\bar{a}}$ if and only if $dom \tau_a = dom \tau_{\bar{a}}$ and for each tree $\bar{p} \in dom \tau_a$ the equality $\tau_a(\bar{p}) = \tau_{\bar{a}}(\bar{p})$ holds.

Definition 10. A superior NF-transducer $A = (T_F(X_n), A, T_G(Y_m), A', \Sigma)$ is called a *strongly normalized* F-transducer (SNF-transducer) if none of the states can be substituted by another state.

Theorem 11. For each deterministic F-transducer

$$\overline{\mathbf{A}} = (T_F(X_n), \overline{A}, T_G(Y_m), \overline{A}', \overline{\Sigma}_A)$$

an equivalent SNF-transducer can be constructed.

Proof. By Lemma 8 we construct a superior NF-transducer

$$\mathbf{A} = (T_F(X_n), A, T_G(Y_m), A', \Sigma_A)$$

which is equivalent to $\overline{\mathbf{A}}$. Next we will show that by rewriting rules and eliminating states an equivalent *SNF*-transducer is obtained.

Assume that the states $a, \bar{a} \in A$ satisfy the condition (i) of Definition 9. Then we construct the F-transducer $A^1 = (T_F(X_n), A \setminus \{\bar{a}\}, T_G(Y_m), A' \setminus \{\bar{a}\}, \Sigma_A^1)$ in the following way. Let us eliminate the rules of Σ_A wherein the state \bar{a} is in the left side. Then we replace the state \bar{a} by a in each rule. It is clear that A^1 is deterministic. Moreover, for each state $\tilde{a} \in A \setminus \{a, \bar{a}\}, \tau_{A,\bar{a}} = \tau_{A^1,\bar{a}}$ and $\tau_A^{\bar{a}} = \tau_{A^1}^{\bar{a}}$ hold. We have that dom $\tau_A^a = \text{dom } \tau_A^a \cup \text{dom } \tau_A^{\bar{a}}$ and range $\tau_{A^1}^a = \text{range } \tau_A^{\bar{a}} \cup \text{range } \tau_A^{\bar{a}}$. From this one can easily show that A^1 is a superior NF-transducer equivalent to A. It means that for A we construct an equivalent superior NF-transducer $\mathbf{B} = (T_F(X_n), B, T_G(Y_m), B', \Sigma_B)$ such that there are no states $b, \bar{b} \in B$ satisfying condition (i) of Definition 9.

Next we assume that there are states $a, \bar{a} \in B(\subseteq A)$ and a tree $\bar{q} \in T_G(Y_m)$ for which the conditions (ii₁)--(ii₆) hold. In this case we eliminate the rules containing the state \bar{a} in their left side. Then we replace by $a\bar{q}$ the right side of rules wherein the state \bar{a} occurs. Let $\mathbf{B}^1 = (T_F(X_n), B \setminus \{\bar{a}\}, T_G(Y_m), B' \setminus \{\bar{a}\}, \Sigma_B^1)$ be the *F*-transducer obtained this way. By the construction it is obvious that \mathbf{B}^1 is deterministic. We have that for each state $\tilde{a} \in B \setminus \{a, \bar{a}\}, \tau_{\mathbf{B}^1, \bar{a}} = \tau_{\mathbf{B}, \bar{a}}$ and $\tau_{\mathbf{B}^1}^{\bar{a}} = \tau_{\mathbf{B}}^{\bar{a}}$ hold. Moreover, dom $\tau_{\mathbf{B}^1}^{\bar{a}} = \operatorname{dom} \tau_{\mathbf{B}}^{\bar{a}} \cup \operatorname{dom} \tau_{\mathbf{B}}^{\bar{a}}$ and range $\tau_{\mathbf{B}^1}^{\bar{a}} = \operatorname{range} \tau_{\mathbf{B}}^{\bar{a}} \cup \bar{q}$. It is clear that \mathbf{B}^1 is a superior AF-transducer equivalent to \mathbf{B} .

We will show that \mathbf{B}^1 is normalized. By the construction of \mathbf{B}^1 condition (i) of Definition 5 holds. Let $b, \overline{b} \in B \setminus \{\overline{a}\}$ be arbitrary states of \mathbf{B}^1 . Assume that $dom \tau_{\mathbf{B}^1, b} =$ $= dom \tau_{\mathbf{B}^1, \overline{b}}$, both range $\tau_{\mathbf{B}^1}^{\overline{b}}$ and range $\tau_{\overline{\mathbf{B}}^1}^{\overline{b}}$ are infinite, moreover, there are trees $q, \overline{q} \in T_G(Y_m)$ such that for each tree $\overline{p} \in dom \tau_{\mathbf{B}^1, b}, q \cdot \tau_{\mathbf{B}^1, b}(\overline{p}) = \overline{q} \cdot \tau_{\mathbf{B}^1, \overline{b}}(\overline{p})$. If none of the states b, \overline{b} is a then by the above connections it is obvious that condition (ii) holds.

We may assume that b=a. In this case we know that for **B** condition (ii₆) are satisfied by the states a, \bar{a}, \bar{b} and the trees q, \bar{q}, \bar{q} . Furthermore, we have that the equality $\tau_{\mathbf{B},a}(\bar{p}) = \tau_{\mathbf{B},\bar{b}}(\bar{p})$ does not hold for each tree $\bar{p} \in dom \tau_{\mathbf{B},a}$. Indeed, in the opposite case $\tau_{\mathbf{B},a} = \tau_{\mathbf{B},\bar{b}}$ which is a contradiction. By condition (ii₆) it means that $q \neq \bar{q}$. From this we obtain that range $\tau_{\mathbf{B}^1,a} \cap q = \emptyset$ and range $\tau_{\mathbf{B}^1,\bar{b}} \cap \bar{q} = \emptyset$. Consequently, condition (ii) of Definition 5 holds for \mathbf{B}^1 thus \mathbf{B}^1 is a superior normalized *F*-transducer.

Applying this construction we can get an *SNF*-transducer which is equivalent to \overline{A} .

Let $\mathbf{A} = (T_F(X_n), A, T_G(Y_m), A', \Sigma_A)$ and $\mathbf{B} = (T_F(X_n), B, T_G(Y_m), B', \Sigma_B)$ be SNF-transducers such that A and B are equivalent. First we construct the inferior AF-transducers A(B) and B(A) as in part I. Next we consider the superior AF-transducers $\overline{\mathbf{A}}(\mathbf{B}) = (T_F(X_n), \overline{A \times C}, T_G(Y_m), \overline{A' \times C'}, \overline{\Sigma}_A)$ and

$$\overline{\mathbf{B}}(\mathbf{A}) = \left(T_F(X_n), \overline{B \times C}, T_G(Y_m), \overline{B' \times C'}, \overline{\Sigma}_B\right)$$

which are constructed from A(B) and B(A) by Lemma 3, respectively. We have that $\overline{A \times C} \subseteq A \times C$, $\overline{A' \times C'} \subseteq A' \times C'$ and $\overline{B \times C} \subseteq B \times C$, $\overline{B' \times C'} \subseteq B' \times C'$ where $C = A \times B$ and $C' = A' \times B'$. From Theorem I.11 we know that A(B) and B(A)are isomorphic. By conditions (i)—(iv) from the proof of Lemma 3, it follows that $\overline{A}(B)$ and $\overline{B}(A)$ are isomorphic, too. It means that $\tau_A = \tau_{\overline{A}(B)}$ thus both of these transformations shall be denoted by φ . Similarly, ψ can be used instead of τ_B and $\tau_{\overline{R}(A)}$.

The next lemmas are valid under the above notations.

Lemma 12. For each state $(a, c) \in \overline{A \times C}$ (c=(a, b)) the following conditions hold.

(i) $dom \ \varphi_a = dom \ \varphi_{a,c} = dom \ \psi_{b,c} = dom \ \psi_b$.

(ii) If range $\varphi^{a,c}$ is infinite then for each tree $\bar{p} \in dom \ \varphi_a$ the equalities $\varphi_a(\bar{p}) = = \varphi_{a,c}(\bar{p}) = \psi_{b,c}(\bar{p}) = \psi_b(\bar{p})$ hold.

(iii) If range $\varphi^{a,c}$ is a singleton then there are trees $q, \bar{q} \in T_G(Y_m)$ such that for each tree $\bar{p} \in dom \varphi_a \setminus \{ \# \}$ the equalities $q \cdot \varphi_a(\bar{p}) = \varphi_{a,c}(\bar{p}) = \psi_{b,c}(\bar{p}) = \bar{q} \cdot \psi_{b,c}(\bar{p})$ hold, moreover $q = \varphi^a(p)$ and $\bar{q} = \psi^b(p)$ where $p \in dom \varphi^{a,c}$.

Proof. Let $(a, c) \in \overline{A \times C}$ be an arbitrary state where c = (a, b). Let $p \in \text{dom } \varphi^{a,c}$ be a fixed tree. Then $p \in \text{dom } \varphi^a \cap \text{dom } \psi^{b,c} \cap \text{dom } \psi^b$. Let $\overline{p} \in \text{dom } \varphi_a$. Since $p \cdot \overline{p} \in \text{dom } \varphi$ the tree \overline{p} is in $dom \varphi_{a,c}$. Consequently, $dom \varphi_a \subseteq dom \varphi_{a,c}$. In the same way one can prove the inclusions $dom \varphi_a \subseteq \text{dom } \varphi_{a,c} \subseteq \text{dom } \psi_{b,c} \subseteq \text{dom } \psi_b \subseteq \subseteq \text{dom } \varphi_a$. From this we obtain that condition (i) holds.

Assume that range $\varphi^{a,c}$ is infinite. It follows that range $\psi^{b,c}$ is infinite, too. Then there are trees $p_1, p_2 \in \text{dom } \varphi^{a,c}$ such that $\varphi^{a,c}(p_1) \neq \varphi^{a,c}(p_2)$. For each tree $\bar{p} \in \text{dom } \varphi_a$ the equality $\varphi^{a,c}(p_i) \cdot \varphi_{a,c}(\bar{p}) = \psi^{b,c}(p_i) \cdot \psi_{b,c}(\bar{p})$ holds (i=1, 2). In a similar way as in the proof of Lemma 3, we can obtain that there exist trees r, \bar{r} such that at least one of them equals the tree \ddagger and for each tree $\bar{p} \in \text{dom } \varphi_a$, $r \cdot \varphi_a(\bar{p}) = \bar{r} \cdot \varphi_{a,c}(\bar{p})$.

On the other hand we have that both $\overline{\mathbf{A}}(\mathbf{B})$ and $\overline{\mathbf{B}}(\mathbf{A})$ are superior *F*-transducers. It means that $r=\bar{r}=\#$ i.e., for each tree $\bar{p}\in dom \varphi_a$ the equality $\varphi_a(\bar{p})==\varphi_{a,c}(\bar{p})$ holds.

Furthermore we know that range $\psi^{b,c}$ is infinite. In the same way we get that for each tree $\bar{p} \in dom \psi_b$, $\psi_{b,c}(\bar{p}) = \psi_b(\bar{p})$. Since $\bar{A}(B)$ and $\bar{B}(A)$ are isomorphic it follows that condition (ii) of our lemma holds.

Next we assume that range $\varphi^{a,c}$ is a singleton. Let $p \in \text{dom } \varphi^{a,c}$ be an arbitrarily fixed tree. We have that $p \in \text{dom } \varphi^a$. Let $q = \varphi^a(p)$. It means that for each tree $\bar{p} \in \text{dom } \varphi_a \setminus \{ \sharp \}$ the equalities $q \cdot \varphi_a(\bar{p}) = \varphi(p \cdot \bar{p}) = \varphi^{a,c}(p) \cdot \varphi_{a,c}(\bar{p}) = \varphi_{a,c}(\bar{p})$ hold. In this case range $\psi^{b,c}$ is a singleton, too. It follows that if $\psi^{b,c}(p) = \bar{q}$ then

for each tree $\bar{p} \in dom \psi_a \setminus \{\#\}, \bar{q} \cdot \psi_b(\bar{p}) = \psi_{b,c}(\bar{p})$. It is clear that if $a \in A'$ then b, (a, c), (b, c) are final states. From this we obtain $q = \bar{q}$. It means that condition (iii) holds, too.

Lemma 13. For each state $a \in A$ there is exactly one state $b(\in B)$ satisfying the inclusion $(a, (a, b)) \in \overline{A \times C}$, and conversely, for each state $b \in B$ there is exactly one state $a(\in A)$ with $(b, (a, b)) \in \overline{B \times C}$. Moreover, if $(a, c) \in \overline{A \times C}$ (c = (a, b)) then for each tree $\overline{p} \in dom \varphi_a$ the equalities $\varphi_a(\overline{p}) = \varphi_{a,c}(\overline{p}) = \psi_{b,c}(\overline{p}) = \psi_b(\overline{p})$ hold.

Proof. Let $a \in A$ be an arbitrary state. Denote by B_a the set

$$\{b|c = (a, b), (a, c) \in \overline{A \times C}\}.$$

It is clear that B_a is a nonvoid set.

Firstly, we assume that range φ^a is infinite. Then there are trees $p_i \in \operatorname{dom} \varphi^a$ (i=1, 2, ...) such that the trees $\varphi^a(p_i)$ are pairwise different. Moreover, we know that there exists a state $b_i \in B_a$ such that $p_i \in \operatorname{dom} \psi^{b_i}$ (i=1, 2, ...). Since B_a is a finite set of states there are indices $k, l \ (k < l)$ satisfying $b_k = b_l$. Denote by b this state. Let c = (a, b). It is clear that neither range $\varphi^{a,c}$ nor range $\psi^{b,c}$ are a singleton. By Lemma 12 we get that for each tree $\bar{p} \in \operatorname{dom} \varphi_a$ the equalities $\varphi_a(\bar{p}) =$ $= \varphi_{a,c}(\bar{p}) = \psi_{b,c}(\bar{p}) = \psi_b(\bar{p})$ hold.

Next we show that the set B_a is a singleton. Assume that there is a state $\overline{b} \in B_a$ differing from b. Let $\overline{c} = (a, \overline{b})$. Now there are three cases.

First, suppose that range $\varphi^{a,\bar{c}}$ is infinite. By Lemma 12 we have that $\varphi_a(\bar{p}) = = \varphi_{a,\bar{c}}(\bar{p}) = \psi_{\bar{b},\bar{c}}(\bar{p}) = \psi_{\bar{b}}(\bar{p})$ hold for each tree $\bar{p} \in dom \varphi_a$. It means that the state \bar{b} can be substituted by b which is a contradiction because **B** is an *SNF*-transducer.

In the second case assume that both range $\varphi^{a,\bar{c}}$ and range $\psi^{\bar{b}}$ are singleton. Then we know that for each tree $\bar{p} \in dom \ \varphi_a \setminus \{ \# \}$ the equalities $q \cdot \varphi_a(\bar{p}) = \varphi_{a,\bar{c}}(\bar{p}) =$ $=\psi_{b,\bar{c}}(\bar{p})=\psi_b(\bar{p})$ hold, where $q=\varphi^a(p)$ and $p\in \text{dom }\varphi^{a,\bar{c}}$. It is clear that $q = \text{range } \psi^b$ if \bar{b} is a final state. From this we obtain $q \cdot \psi_b(\bar{p}) = \psi_b(\bar{p})$ for each tree $\bar{p} \in dom \psi^{b} \setminus \{\#\}$. Since the state \bar{b} cannot be substituted by the state b and conditions (ii₁)--(ii₅) of Definition 9 hold for the states b, \overline{b} and the tree q condition (ii₆) can not be satisfied. It means that there is a state $\overline{b} \in B \setminus \{b, \overline{b}\}$ and a tree $\bar{q} \in T_G(Y_m)$ for which $dom \psi_b = dom \psi_{\bar{b}}$ and range $\psi^{\bar{b}}$ is infinite, moreover, for each tree $\bar{p} \in dom \psi_b$ the equality $q \cdot \psi_b(\bar{p}) = \bar{q} \cdot \psi_{\bar{b}}(\bar{p})$ holds. One can see easily that there is a state $\bar{a} \in A \setminus \{a, \bar{a}\}$ such that $dom \varphi_{\bar{a}} = dom \psi_{\bar{b}}$ and for each tree $\bar{p} \in dom \ \psi_{\bar{b}}, \ \varphi_{\bar{a}}(\bar{p}) = \psi_{\bar{b}}(\bar{p}).$ It implies that for each tree $\bar{p} \in dom \ \varphi_a, \ q \cdot \varphi_a(\bar{p}) = \bar{q} \cdot \varphi_{\bar{a}}(\bar{p}).$ Since A is an *NF*-transducer condition (ii) of Definition 5 has to hold. We have that $q \cap \text{range } \varphi^a \neq \emptyset$ thus there are trees $r, \vec{r} \in \tilde{T}_G(Y_m)$ such that $r \cdot \varphi_a(\vec{p}) = \vec{r} \cdot \varphi_{\bar{a}}(\vec{p})$ for each tree $\bar{p} \in dom \varphi_a$, where at least one of the trees r, \bar{r} equals #. It is clear that $r = \bar{r} = \#$ because A is a superior NF-transducer. It implies that for each tree $\bar{p} \in dom \, \varphi_a$ the equality $\varphi_a(\bar{p}) = \varphi_{\bar{a}}(\bar{p})$ holds which is a contradiction.

In the third case suppose that range $\varphi^{a,\bar{c}}$ is a singleton and range $\psi^{\bar{b}}$ is infinite. We have that for each tree $\bar{p} \in dom \varphi_a \setminus \{ \sharp \}$ the equalities $q \cdot \varphi_a(\bar{p}) = \varphi_{a,\bar{c}}(\bar{p}) = = \psi_{\bar{b},\bar{c}}(\bar{p}) = \bar{q} \cdot \psi_{\bar{b}}(\bar{p})$ hold where $q \in \text{range } \varphi^a$ and $\bar{q} \in \text{range } \psi^{\bar{b}}$. We have that if a is a final state then \bar{b} is also a final state and $q = \bar{q}$. It implies that for each tree $\bar{p} \in dom \psi_b$, $q \cdot \psi_b(\bar{p}) = \bar{q} \cdot \psi_b(\bar{p})$. From Definition 5 we obtain that either for each tree $\bar{p} \in dom \psi_b$ the equality $\psi_b(\bar{p}) = \psi_b(\bar{p})$ holds or range $\psi^b \cap \bar{q} = \emptyset$. It contradicts the above statements. It means that if range φ^a is infinite then B_a is a singleton.

Similarly, we can show that for each state $b \in B$ if range ψ^b is infinite then there is exactly one state $a \in A$ satisfying the inclusion $(b, c) \in \overline{B \times C}$ where c = (a, b). Moreover, for each tree $\overline{p} \in dom \psi_b$ the equalities $\varphi_a(\overline{p}) = \varphi_{a,c}(\overline{p}) = \psi_{b,c}(\overline{p}) = = \psi_b(\overline{p})$ hold.

Secondly, we may assume that range φ^a is a singleton. It is clear that $B_a \neq \emptyset$ and for each state $b \in B_a$ range ψ_b is a singleton, too. Let $b \in B_a$ be arbitrary. Then for each tree $\bar{p} \in dom \ \varphi_a$ the equalities $\varphi_a(\bar{p}) = \varphi_{a,c}(\bar{p}) = \psi_{b,c}(\bar{p}) = \psi_b(\bar{p})$ hold where c = (a, b). We have that b is a final state if and only if a is a final state. It implies that range $\varphi^a = \text{range } \psi^b$. From this and Definition 9 we get that B_a is a singleton.

In a similar way we can see that for each $b \in B$ if range ψ^b is a singleton then there is exactly one state $a \in A$ such that $(b, c) \in \overline{B \times C}$ (c=(a, b)) and for each tree $\overline{p} \in dom \varphi_a$ the equalities $\varphi_a(\overline{p}) = \varphi_{a,c}(\overline{p}) = \psi_{b,c}(\overline{p}) = \psi_b(\overline{p})$ hold. This ends the proof of Lemma 13.

Lemma 14. The SNF-transducers A and B are isomorphic.

Proof. Let us define a mapping $\mu: A \rightarrow B$ such that $\mu(a)=b$ if and only if $(a, (a, b)) \in \overline{A \times C}$. By Lemma 13 it is clear that μ is a bijective mapping of A onto B, moreover, $\mu(A')=B'$.

Next suppose that $x \to aq \in \Sigma_A$ $(x \in X_n \cup F_0)$ and $b = \mu(a)$. We have that $x \to br \in \Sigma_B$ and for each tree $\bar{p} \in dom \ \varphi_a = dom \ \psi_b$ the equality $\varphi_a(\bar{p}) = \psi_b(\bar{p})$ holds. It implies that $q \cdot \varphi_a(\bar{p}) = \varphi(x \cdot \bar{p}) = \psi(x \cdot \bar{p}) = r \cdot \psi_b(\bar{p})$. From this we can obtain that q = r. It means that $x \to bq \in \Sigma_B$. Similarly, if $x \to br \in \Sigma_B$ and $a = \mu^{-1}(b)$ then $x \to ar \in \Sigma_A$.

Let $f(a_1, ..., a_k) \rightarrow a_0 q \in \Sigma_A$ where $f \in F_k$ (k > 0) and $a_i \in A$ (i=0, 1, ..., k). We have that there is a rule of the form $f(b_1, ..., b_k) \rightarrow b_0 r$ in Σ_B where $b_i = \mu(a_i)$ (i=0, 1, ..., k). Moreover, it is clear that dom $\varphi^{a_i} = \text{dom } \psi^{b_i}$, and for each tree $p_i \in \text{dom } \varphi^{a_i}$, $\varphi^{a_i}(p_i) = \psi^{b_i}(p_i)$ (i=0, 1, ..., k). From the proof of Lemma 13 we know that if range φ^{a_0} is a singleton then $q = \text{range } \varphi^{a_0} = \text{range } \psi^{b_0} = r$.

Next we may assume that range φ^{a_0} is infinite. In this case we have that there is a tree $\bar{p} \in dom \varphi_{a_0}$ for which $\varphi_{a_0}(\bar{p}) \in \tilde{T}_G(Y_m)$. Let $p_i \in dom \varphi^{a_i}$ (i=1, ..., k) be arbitrary trees and let j be an arbitrary index $(1 \le j \le k)$. We define the trees s_i, t_i (i=1, ..., k) in the following way. If i=j then $s_i=t_i=\#$, otherwise $s_i=p_i$ and $t_i=\varphi^{a_i}(p_i)=\psi^{b_i}(p_i)$ (i=1, ..., k). Denote by \bar{s}_j , \bar{q}_j and \bar{r}_j the trees $f(s_1, ..., s_k)$, $q(t_1, ..., t_k)$ and $r(t_1, ..., t_k)$, respectively. By Lemma 13 we have that the equalities $\bar{q}_j \cdot \varphi_{a_0}(\bar{p})=\varphi_{a_j}(\bar{s}_j \cdot \bar{p})=\psi_{b_j}(\bar{s}_j \cdot \bar{p})=\bar{r}_j \cdot \psi_{b_0}(\bar{p})$ and $\varphi_{a_0}(\bar{p})=\psi_{b_0}(\bar{p})$ hold. It follows that $\bar{q}_j=\bar{r}_j$. Since j is arbitrary we get r=q. It means that $f(b_1, ..., b_k) \rightarrow b_0 q \in \Sigma_B$.

Similarly, one can see that if $f(b_1, ..., b_k) \rightarrow b_0 r \in \Sigma_B$ then $f(a_1, ..., a_k) \rightarrow a_0 r \in \Sigma_A$ where $a_i = \mu^{-1}(b_i)$ (i=0, 1, ..., k). Therefore, the SNF-transducers A and B are isomorphic.

By this lemma we get the following theorem.

Theorem 15. The SNF-transducers A and B are equivalent if and only if they are isomorphic.

192

On the equivalence of the frontier-to-root tree transducers

References

- [1] ENGELFRIET, J., Bottom-up and top-down tree transformations A comparison, Math. Systems Theory, v. 9, 1975, pp. 198-231.
- [2] ENGELFRIET, J., Some open questions and recent results on tree transducers and languages, Formal language theory, ed. by R. V. Book, Academic Press, 1980, pp. 241-286.
- [3] ÉSIK, Z., Decidability results conserning tree transducers I, Acta Cybernet., v. 5, 1980, pp. 1-20.
- [4] GÉCSEG, F.-STEINBY, M., A faautomaták algebrai elmélete I, Matematikai Lapok, v. 26, 1975, pp. 169-207.
- [5] GÉCSEG, F.-STEINBY, M., A faautomaták algebrai elmélete II, Matematikai Lapok, v. 27, 1976—1979, pp. 283—336. [6] ZACHAR, Z., On the equivalence of the frontier-to-root transducers I, Acta Cybernet., to appear.

Received Apr. 19, 1984

TATABÁNYA COAL MINES VÉRTANÚK TERE I 2800 TATABÁNYA, HUNGARY