On the equivalence of the frontier-to-root tree transducers II.

By Z. Zachar

In this paper we continue our study started in [6] about the equivalent and isomorphic frontier-to-root transducers (F-transducers). First we introduce the superior F-transducer which can be seen the dual of the inferior F-transducer from part I. Then we deal with a subclass of the class of deterministic F-transducers, namely the class of normalized F-transducers. It will be proved that the strongly normalized forms of equivalent deterministic F-transducers are isomorphic.

Since this paper connects with [6] closely thus we use the notions, notations and results of part I.

1. Notions and notations

Take an arbitrary positive integer k. Let $p_{1}, p_{2} \in T_{F}\left(X_{n} \cup Z_{k}\right)$ be arbitrary trees and $z_{i} \in Z_{k}$. Then the z_{i}-product $p_{1} \cdot i p_{2}$ of p_{1} by p_{2} is the tree

$$
p_{2}\left(z_{1}, \ldots, z_{i-1}, p_{1}, z_{i+1}, \ldots, z_{k}\right)
$$

For an F-transducer $\mathbf{A}=\left(T_{F}\left(X_{\dot{n}}\right), A, T_{G}\left(Y_{m}\right), A^{\prime}, \Sigma\right)$ and sets $A_{i} \subseteq A(i=0, \ldots, k)$ we denote by $\tau_{\mathbf{A}, A_{1}, \ldots, A_{k}}$ the transformation induced by

$$
\left(T_{\mathrm{F}}\left(X_{n} \cup Z_{k}\right), A, T_{G}\left(Y_{m} \cup Z_{k}\right), A_{0}, \Sigma \cup\left\{z_{i} \rightarrow a_{i} z_{i} \mid a_{i} \in A_{i}, i=1, \ldots, k\right\}\right)
$$

Finally, when we will refer to a definition or a result from a part of our paper if the serial number of the part is I then it will be marked otherwise it will not be.

2. Superior F-transducers

Definition 1. Let $\mathrm{A}=\left(T_{F}\left(X_{n}\right), A, T_{G}\left(Y_{m}\right), A^{\prime}, \Sigma\right)$ be an $A F$-transducer. The transformation induced by the state $a(\in A)$ can be increased by the tree $q^{a} \in \tilde{T}_{G}\left(Y_{m}\right) \backslash\{\#\}$ if for all $p \in \operatorname{dom} \tau_{\mathrm{A}, a}$ and $q \in \tau_{\mathrm{A}, a}(p)$, there is a tree $\tilde{q} \in T_{G}\left(Y_{m} \cup\{\#\}\right)$ satisfying $q=q^{a} \cdot \tilde{q}$, provided that range τ_{A}^{a} is not a singleton. The tree q^{a} increases the transformation τ_{A}^{a} maximally if the tree q^{a} is a proper subtree of a tree \bar{q}^{a} then τ_{a}^{A} cannot be increased by \bar{q}^{a}.

Definition 2. An $A F$-transducer $A=\left(T_{F}\left(X_{n}\right), A, T_{G}\left(Y_{m}\right), A^{\prime}, \Sigma\right)$ is called a superior $A F$-transducer if none of the transformations induced by its states can be increased by any trees.

Take an $A F$-transducer $\mathrm{A}=\left(T_{F}\left(\dot{X}_{n}\right), A, T_{G}\left(Y_{m}\right), A^{\prime}, \Sigma\right)$. Assume that for each state $a \in A$ the tree q^{a} increases τ^{a} maximally if τ^{a} can be increased and $q^{a}=\#$ otherwise. It means that for all $a \in A, p \in \operatorname{dom} \tau_{a}$ and $q \in \tau_{a}(p)$ there is a tree \tilde{q} such that $q=q^{a} \cdot \tilde{q}$. We suppose that the tree q^{a} is given for every state $a(\in A)$. Then the following lemma is valid under these notations.

Lemma 3. There is a superior $A F$-transducer $\overline{\mathbf{A}}=\left(T_{F}\left(X_{n}\right), A, T_{G}\left(Y_{m}\right), A^{\prime}, \bar{\Sigma}\right)$ which is equivalent to \mathbf{A}.

Proof. We shall show that one can construct an $A F$-transducer

$$
\overline{\mathbf{A}}=\left(T_{F}\left(X_{n}\right), A, T_{G}\left(Y_{m}\right), A^{\prime}, \bar{\Sigma}\right)
$$

such that for each state $a \in A$ the following conditions hold.
(1) $\operatorname{dom} \tau_{\mathrm{A}}^{a}=\operatorname{dom} \tau_{\mathrm{A}}^{a}$.
(2) $\operatorname{dom} \tau_{\mathbf{A}, a}=\operatorname{dom} \tau_{\overline{\mathbf{A}}, a}$ and $\operatorname{dom} \tau_{\mathbf{A}, a}=\operatorname{dom} \tau_{\overline{\mathbf{A}}, a}$.
(3) $\left\{\left(p, q \cdot q^{a}\right) \mid q \in \tau_{\mathrm{A}}^{a}(p), p \in \operatorname{dom} \tau_{\mathrm{A}}^{a}\right\}=\tau_{\mathrm{A}}^{a}$.
(4) $\left\{\left(p, q^{a} \cdot q\right) \mid q \in \tau_{\bar{A}, a}(p), p \in \operatorname{dom} \tau_{\mathbf{A}, a}\right\}=\tau_{\mathbf{A}, a}$.

In a way similar to that in the proof of Lemma I. 7 we can see that $\overline{\mathbf{A}}$ is an equivalent superior $A F$-transducer for \mathbf{A}.

Next we define the rules of $\bar{\Sigma}$ in the following way:
(i) $x \rightarrow \operatorname{ar} \in \Sigma\left(x \in X_{n} \cup F_{0}\right)$ if and only if $x \rightarrow a \bar{r} \in \bar{\Sigma}$ where $\bar{r}=r \cdot q^{a}$,
(ii) $f\left(a_{1}, \ldots, a_{k}\right) \rightarrow \operatorname{ar} \in \Sigma\left(f \in F_{k}, k>0\right)$ if and only if $f\left(a_{1}, \ldots, a_{k}\right) \rightarrow a \bar{r} \in \bar{\Sigma}$ where the tree $\bar{r}\left(q^{a_{1}}\left(z_{1}\right), \ldots, q^{a_{k}}\left(z_{k}\right)\right)$ equals the tree $r \cdot q^{2}$.
It is clear that this construction can be made for each rule of form (i). Assume that $f\left(a_{1}, \ldots, a_{k}\right) \rightarrow \operatorname{ar} \in \Sigma\left(f \in F_{k}, k>0\right)$.

Then let $p^{j} \in \operatorname{dom} \tau_{\mathrm{A}}^{a_{j}}$ and $t_{j} \in \tau_{\mathrm{A}}^{a_{j}}\left(p^{j}\right)$ be arbitrary fixed trees $(j=1, \ldots, k)$. For each index j ($1 \leqq j \leqq k$) we use the following notations:

$$
\begin{gathered}
p_{j}=f\left(p^{1}, \ldots, p^{j-1}, \#, p^{j+1}, \ldots, p^{k}\right), \\
r_{j}=r\left(t_{1}, \ldots, t_{j-1}, \#, t_{j+1}, \ldots, t_{k}\right) \text { and } \\
\bar{r}_{j}=r_{j} \cdot q^{a} .
\end{gathered}
$$

It is sufficient to show that for each index $j(1 \leqq j \leqq k)$ there is a tree \bar{q}_{j} such that $\bar{r}_{j}=q^{a_{j}} \cdot \bar{q}_{j}$. From this we obtain easily that the tree \bar{r} with

$$
r \cdot q^{a}=\bar{r}\left(q^{a_{1}}\left(z_{1}\right), \ldots, q^{a_{k}}\left(z_{k}\right)\right)
$$

can be constructed.
Let j be an arbitrary index $(1 \leqq j \leqq k)$. If $\bar{r}_{j} \in T_{G}\left(Y_{m}\right)$ or $q^{a_{j}}=\#$ then let $\bar{q}_{j}=\bar{r}_{j}$. In this case our statement holds obviously.

We may assume that $\bar{r}_{j} \in \tilde{T}_{G}\left(Y_{m}\right)$ and $\bar{q}^{a_{j} \in \tilde{T}_{G}}\left(Y_{m}\right) \backslash\{\#\}$. If range τ^{a} is a singleton then by the construction from Lemma 1.2 the tree r is in $T_{G}\left(Y_{m}\right)$. It follows that $\bar{r}_{j} \in T_{G}\left(Y_{m}\right)$ which is a contradiction. It means that range τ^{a} is not a
singleton. From this we obtain that there are trees $p \in \operatorname{dom} \tau_{a}$ and $q \in \tau_{a}(p)$ such that $q \in \tilde{T}_{G}\left(Y_{m}\right)$. It implies that $r_{j} \cdot q \in \tau_{a_{j}}\left(p_{j} \cdot p\right)$ and $r_{j} \cdot q \in \tilde{T}_{G}\left(Y_{m}\right)$. By Definition 2 we know that $r_{j} \cdot q=q^{a_{j}} \cdot \tilde{q}$ under a suitable \tilde{q}. It means that $\tilde{q} \in \tilde{T}_{G}\left(Y_{m}\right)$.

 $r_{j}=q^{a_{j}} \cdot \bar{q}$. In this case let $\bar{q}_{j}=\bar{q} \cdot q^{a}$. It means that $\bar{r}_{j}=r_{j} \cdot q^{a}=q^{a_{j}} \cdot \bar{q} \cdot q^{a}=q^{a_{j}} \cdot \bar{q}_{j}$.

Secondly, assume that $r_{j} \in \operatorname{sub}\left(q^{a_{j}}\right)$. Then there is a tree $\bar{q} \in \widetilde{T}_{G}\left(Y_{m}\right) \backslash\{\#\}$ for which $q^{a_{j}=r_{j}} \cdot \bar{q}$. We have that for each tree $p \in \operatorname{dom} \tau_{a}$ and $q \in \tau_{a}(p)$, the inclusion $r_{j} \cdot q \in \tau_{a_{j}}\left(p_{j} \cdot p\right)$ holds. Moreover, there is a tree \tilde{q} such that $r_{j} \cdot q=q^{a_{j}} \cdot \tilde{q}$. From this we obtain that $r_{j} \cdot q=r_{j} \cdot \tilde{q} \cdot \tilde{q}$. Since $r_{j} \in \tilde{T}_{G}\left(Y_{m}\right)$ the equality $q=\bar{q} \cdot \tilde{q}$ holds, too. It means that τ^{a} can be increased by the tree \bar{q}.

On the other hand we have that $q=q^{a} \cdot \tilde{\tilde{q}}$ under a suitable tree $\tilde{\tilde{q}}$. Since the tree q^{a} increases τ^{a} maximally thus from the two equalities above we get $\bar{q} \in \operatorname{sub}\left(q^{a}\right)$ i.e., there exists a \bar{q} for which $\bar{q} \cdot \bar{q}=q^{a}$. Let $\bar{q}_{j}=\bar{q}$. It follows that $\bar{r}_{j}=r_{j} \cdot q^{a}=$ $=r_{j} \cdot \bar{q} \cdot \bar{q}=q^{a_{j}} \cdot \bar{q}=q^{a_{j}} \cdot \bar{q}_{j}$.

It means that our statement is valid, thus the rules of $\bar{\Sigma}$ can be constructed.
Finally, one can see easily that the F-transducer $\overline{\mathbf{A}}=\left(T_{F}\left(X_{n}\right), A, T_{G}\left(Y_{m}\right), A^{\prime}, \bar{\Sigma}\right)$ constructed in this way satisfies conditions (1)-(4).

This ends the proof of Lemma 3.
Lemma 4. There is an algorithm to decide for each $A F$-transducer

$$
\mathbf{A}=\left(T_{F}\left(X_{n}\right), A, T_{G}\left(Y_{m}\right), A^{\prime}, \Sigma\right)
$$

and arbitrary state $a(\in A)$ whether the transformation τ^{a} can be increased. Moreover, every tree q^{a} can be given effectively which increases τ^{a}.

Proof. We have that if the transformation τ^{a} can be increased by the tree q^{a} then $h\left(q^{a}\right) \leqq \min \left(\tau_{a}(p) \mid p \in d o m \tau_{a}\right)$. It means that the number of trees which increases τ^{a} is finite. Moreover, by the proof of Lemma 3 it is easy to see that for each tree q^{a} the transformation τ^{a} is increased by q^{a} if and only if the rules of Σ can be rewritten according to the conditions (i)-(ii) from the proof of Lemma 3. From this the statement of our lemma is obtained obviously.

3. Normalized F-transducers

Definition 5. A deterministic $A F$-transducer $\mathbf{A}=\left(T_{F}\left(X_{n}\right), A, T_{G}\left(Y_{m}\right), A^{\prime}, \Sigma\right)$ is called a normalized F-transducer ($N F$-transducer) if conditions (i) and (ii) below hold.
(i) For every state $a \in A$, range τ^{a} is either a singleton or infinite.
(ii) For all states a, \bar{a} if both range τ^{a} and range $\tau^{\bar{a}}$ are infinite, dom $\tau_{a}=$ $=\operatorname{dom} \tau_{\bar{a}}$ and there exist trees $q, \bar{q} \in T_{G}\left(Y_{m}\right)$ such that for each tree $\bar{p} \in d o m \tau_{a}$, $q \cdot \tau_{a}(\bar{p})=\bar{q} \cdot \tau_{\bar{a}}(\bar{p})$ then at least one of the following conditions are satisfied.
(ii) There are trees $r, \tilde{r} \in \widetilde{T}_{G}\left(Y_{m}\right)$ such that at least one of them is equal to the tree $\#$ and for each tree $\vec{p} \in \operatorname{dom} \tau_{a}$ the equality $r \cdot \tau_{a}(\bar{p})=\bar{r} \cdot \tau_{\bar{a}}(\bar{p})$ holds.
(ii ${ }_{2}$) The sets range $\tau^{a} \cap q$ and range $\tau^{\bar{a}} \cap \bar{q}$ are empty.
The next'lemma, in a different form, can be found in [2]. The proof can be performed easily thus it is omitted.

Lemma 6. Let $q_{j}, r_{j} \in T_{G}\left(Y_{m} \cup Z\right)$ te arbitrary trees $(j=1, \ldots, 5)$. For each positive integer i the equalities (1)-(7) imply the equality (8).
(1) $r_{1} \cdot i r_{5}=q_{1} i q_{5}$
(2) $r_{1} \cdot i r_{2} \cdot i r_{5}=q_{1} \cdot i q_{2} \cdot i q_{5}$
(3) $r_{1} \cdot i r_{3} \cdot i r_{5}=q_{1} \cdot i q_{3} \cdot i q_{5}$
(4) $r_{1} \cdot i r_{4}: i r_{5}=q_{1} \cdot i q_{4} \cdot i q_{5}$
(5) $r_{1} \cdot i r_{2} \cdot i r_{3} \cdot i r_{5}=q_{1} \cdot i q_{2} \cdot i q_{3} \cdot i q_{5}$
(6) $r_{1} \cdot i r_{2} \cdot i r_{4} \cdot i r_{5}=q_{1} \cdot i q_{2} \cdot i q_{4} \cdot i q_{5}$
(7) $r_{1} \cdot i r_{3} \cdot i r_{4}: i r_{5}=q_{1} \cdot i q_{3} \cdot i q_{4} \cdot i q_{5}$
(8) $r_{1} ; i r_{2} ; i r_{3} \cdot i r_{4} \cdot i r_{5}=q_{1} ; i q_{2} \cdot i q_{3} \cdot i q_{4} \cdot i q_{5}$

Lemma 7. For any deterministic F-transducer $\mathbf{A}=\left(T_{F}\left(X_{\pi}\right), A, T_{G}\left(Y_{m}\right), A^{\prime}, \Sigma\right)$ an equivalent $N F$-transducer can be constructed.

Proof. Let $K=\max \left(h\left(\tau^{a}(p)\right) \mid p \in \operatorname{dom} \tau^{a}, a \in A, h(p) \leqq\|A\|\right)$ and $L_{1}=\max \left(h\left(\tau_{a}(p)\right) \mid p \in d o m \tau_{a}, a \in A, h(p) \leqq 4 \cdot\|A\|^{2}\right)$,
$L_{2}=\max \left(h\left(\tau_{a}(p)\right) \mid p \in d o m \tau_{a}, a \in A, h(p) \leqq 2 \cdot\|A\|, h^{\#}(p) \leqq\|A\|\right)$ and $L=L_{1}+L_{2}$.
Moreover, set $Q=\left\{q \mid q \in T_{G}\left(Y_{m}\right), h(q) \leqq \max (K, L)\right\}$ and $C=Q \cup\{\#\}$.
Construct the deterministic F-transducer

$$
\mathbf{A}^{1}=\left(T_{F}\left(X_{n}\right), A \times C, T_{G}\left(Y_{m}\right), A^{\prime} \times C, \Sigma^{1}\right)
$$

such that $x \rightarrow(a, c) r \in \Sigma^{1}$ if and only if $x \rightarrow a r \in \Sigma$ and $c=r$, moreover,

$$
f\left(\left(a_{1}, c_{1}\right), \ldots,\left(a_{k}, c_{k}\right)\right) \rightarrow(a, c) r \in \Sigma^{1}
$$

if and only if $f\left(a_{1}, \ldots, a_{k}\right) \rightarrow a \bar{r} \in \Sigma$ where c and r are defined in the following way. Let $q=\bar{r}\left(c_{1}\left(z_{1}\right), \ldots, c_{k}\left(z_{k}\right)\right)$. If $q \in Q$ then $c=q$ otherwise $c=\#$. If $a \notin A^{\prime}$ and $q \in Q$ then $r=y_{1}$ otherwise $r=q$. It is obvious that \mathbf{A} and \mathbf{A}^{1} are equivalent. Eliminating surplus states and rules in a standard way we get a connected deterministic F-transducer $\mathbf{B}=\left(T_{F}\left(X_{n}\right), B, T_{G}\left(Y_{m}\right), B^{\prime}, \Sigma_{B}\right)$ where $B \subseteq A \times C, B^{\prime} \subseteq A^{\prime} \times C$ and $\Sigma_{B} \sqsubseteq \Sigma^{1}$. It is clear that \mathbf{B} and \mathbf{A}^{1} are equivalent.

We will show that \mathbf{B} is an $N F$-transducer. Take an arbitrary state $b=(a, c) \in B$. By our construction it is clear that $\operatorname{dom} \tau_{\mathbf{A}, a}=\operatorname{dom} \tau_{\mathbf{B}, b}$ and if $p \in \operatorname{dom} \tau_{\mathbf{B}}^{b}$ then $p \in \operatorname{dom} \tau_{\mathrm{A}}^{a}$, moreover, if $c=\#$ then the equality $\tau_{\mathrm{A}}^{a}(p)=\tau_{\mathrm{B}}^{b}(p)$ holds, too.

Assume that $c=\#$. Then for each tree $p \in \operatorname{dom} \tau_{\mathbf{B}}^{b}\left(\cong \operatorname{dom} \tau_{\mathbf{A}}^{a}\right)$ the inequality $h\left(\tau_{\mathbf{B}}^{b}(p)\right)>\max (K, L) \geqq K$ holds. It follows that there are trees p_{1}, p_{2}, p_{3} and a state \tilde{a} such that $p=p_{1} \cdot p_{2}: p_{3}, p_{1} \in \operatorname{dom} \tau_{\mathrm{A}}^{\tilde{a}}, p_{2} \in \operatorname{dom} \tau_{\mathrm{A}, \tilde{a}}^{\tilde{a}}, p_{\cup} \in \operatorname{dom} \tau_{\mathrm{A}, \tilde{a}}^{a}$ and $h^{\#}\left(\tau_{\mathrm{A}, \tilde{a}}^{\tilde{a}}\left(p_{2}\right)\right)>0$, $\tau_{\mathrm{A}, \tilde{\alpha}}^{a}\left(p_{3}\right) \in \tilde{T}_{G}\left(Y_{m}\right)$. From this we obtain that $\quad p^{k}=p_{1} \cdot p_{2}^{k} \cdot p_{3} \in \operatorname{dom} \tau_{\mathbf{A}}^{a} \quad(k=1,2, \ldots)$ and the trees $\tau_{\mathrm{A}}^{a}\left(p^{k}\right)$ are pairwise different. Since range $\tau_{\mathrm{B}}^{b}=$ range $\tau_{\mathrm{A}}^{a} \backslash Q$ thus range $\tau_{\mathbf{B}}^{b}$ is infinite. Moreover, we have that for all trees $\bar{p} \in \operatorname{dom} \tau_{\mathbf{B}, b}$ and $p \in \operatorname{dom} \tau_{\mathbf{B}}^{b}$ the equality $\tau_{\mathbf{A}}^{a}(\dot{p}) \cdot \tau_{\mathbf{A}, a}(\bar{p})=\tau_{\mathbf{B}}^{b}(p) \cdot \tau_{\mathbf{B}, b}(\bar{p})$ holds. From this we obtain that $\tau_{\mathrm{A}, a}=$ $=\tau_{B, b}$.

Furthermore, we know that if $c \in Q$ then range $\tau_{\mathbf{B}}^{b}$ is a singleton and for each tree $\bar{p} \in \operatorname{dom} \tau_{\mathbf{B}, b} \backslash\{\#\}, \tau_{\mathbf{B}, b}(\vec{p}) \in T_{G}\left(Y_{m}\right)$. It follows that \mathbf{B} is a deterministic $A F$ transducer and condition (i) of Definition 5 holds for \mathbf{B}.

Then we have to prove that condition (ii) of Definition 5 can be satisfied. Take arbitrary states $b, \bar{b} \in B$ and trees $q, \bar{q} \in T_{G}\left(Y_{m}\right)$. Let $b=(a, c)$ and $\bar{b}=(\bar{a}, \bar{c})$. Assume that dom $\tau_{b}=\operatorname{dom} \tau_{b}$, both range τ^{b} and range τ^{b} are infinite, moreover, for each tree $\bar{p} \in$ dom τ_{b} the equality $q \cdot \tau_{b}(\bar{p})=\bar{q} \cdot \tau_{b}(\bar{p})$ holds. In this case we have that $c=\bar{c}=\#$ and $\operatorname{dom} \tau_{a}=\operatorname{dom} \tau_{\bar{u}}$.

It is sufficient to show that if at least one of two trees q and \bar{q} is higher than L then the following condition (iii $)^{\prime}$ holds.
(ii $)^{\prime}$ There are trees $r, \tilde{r} \in \tilde{T}_{G}\left(Y_{m}\right)$ such that at least one of them is equal to the tree $\#$ and for each tree $\bar{p} \in \operatorname{dom} \tau_{a} \cap R$ the equality $r \cdot \tau_{a}(\bar{p})=\bar{r} \cdot \tau_{\bar{a}}(\bar{p})$ holds where $R=\left\{\bar{p} \mid \bar{p} \in \tilde{T}_{F}\left(X_{n}\right), h(\bar{p}) \leqq 4 \cdot\|A\|^{2}\right\}$.

Now we prove this statement. First we show that $h(q), h(\bar{q})>L_{1}$. Assume that $h(q)>L=L_{1}+L_{2}$. It is clear that there is a tree $\bar{p} \in \operatorname{dom} \tau_{a}$ for which $h(\bar{p}) \leqq 2 \cdot\|A\|, h^{\#}(\bar{p}) \leqq\|A\|$ and $\tau_{a}(\bar{p}) \in \tilde{T}_{G}\left(Y_{m}\right)$. Since $h\left(\tau_{\bar{a}}(\bar{p})\right) \leqq L_{2}$ and $q \cdot \tau_{a}(\bar{p})=$ $=\bar{q} \cdot \tau_{\bar{a}}(\bar{p})$ thus $h\left(q \cdot \tau_{a}(\bar{p})\right)>L$ and $h\left(\bar{q} \cdot \tau_{\bar{u}}(\bar{p})\right) \leqq h(\bar{q})+L_{2}$. It follows that $h(\bar{q})>L_{1}$. Similarly, the inequality $h(\bar{q})>L$ implies $h(q)>L_{1}$.

We have that there is a tree \bar{p} for which $h(\bar{p}) \leqq 4 \cdot\|A\|^{2}$ and at least one of the trees $\tau_{a}(\bar{p})$ and $\tau_{\bar{a}}(\bar{p})$ is in $\widetilde{T}_{G}\left(Y_{m}\right)$. In this case there exist an $s \in \tilde{T}_{G}\left(Y_{m}\right)$ and $q_{1}, \ldots, q_{m}, \bar{q}_{1}, \ldots, \bar{q}_{m} \in T_{G}\left(Y_{m} \cup\{\#\}\right)(m \geqq 1)$ such that the equalities $\tau_{a}(\bar{p})=s\left\langle q_{1}, \ldots, q_{m}\right\rangle$ and $\tau_{\bar{a}}(\bar{p})=s\left\langle\bar{q}_{1}, \ldots, \bar{q}_{m}\right\rangle$ hold, moreover, for each index j ($1 \leqq j \leqq m$) at least one of the trees q_{j} and \bar{q}_{j} equals \#. It means that $q \cdot q_{j}=\bar{q} \cdot \bar{q}_{j}(j=1, \ldots, m)$. Since $h\left(q_{j}\right), h\left(\bar{q}_{j}\right) \leqq L_{1}$ we get $q_{j}, \bar{q}_{j} \in \widetilde{T}_{G}\left(Y_{m}\right)(j=1, \ldots, m)$.

Let j be an arbitrarily fixed index $(1 \leqq j \leqq m)$ and let $r=q_{j}$ and $\bar{r}=\bar{q}_{j}$. It follows that $q \cdot r=\bar{q} \cdot \bar{r}$. We show that for each tree $\bar{p} \in \operatorname{dom} \tau_{a} \cap R$ the equality $r \cdot \tau_{a}(p)=\bar{r} \cdot \tau_{\bar{a}}(\bar{p})$ holds.

Take an arbitrary tree $\bar{p} \in d o m \tau_{a} \cap R$. If both $\tau_{a}(\bar{p})$ and $\tau_{\bar{q}}(\bar{p})$ are in $T_{G}\left(Y_{m}\right)$ then $r \cdot \tau_{a}(\bar{p})=\bar{r} \cdot \tau_{\bar{a}}(\bar{p})$ because of the equality $q \cdot \tau_{a}(\bar{p})=\bar{q} \cdot \tau_{\bar{a}}(\bar{p})$.

In the opposite case the equalities $\tau_{a}(\bar{p})=s\left\langle q_{v}, \ldots, q_{m}\right\rangle$ and $\tau_{\bar{a}}(\bar{p})=s\left\langle\bar{q}_{1}, \ldots, \bar{q}_{m}\right\rangle$ hold where the trees $s, q_{1}, \ldots, q_{m}, \bar{q}_{1}, \ldots, \bar{q}_{m}$ satisfy the above conditions. Similarly, we have that $q \cdot q_{j}=\bar{q} \cdot \bar{q}_{j}$ and $q_{j}, \bar{q}_{j} \in \tilde{T}_{G}\left(Y_{m}\right)(j=1, \ldots, m)$.

Assume that $r=\#$, consequently, $q=\bar{q} \cdot \bar{r}$. It follows that $\bar{q} \cdot \bar{r} \cdot q_{j}=\bar{q} \cdot \bar{q}_{j}$ $(j=1, \ldots, m)$. If $\bar{r}=\#$ then $\bar{q} \cdot q_{j}=\bar{q} \cdot \bar{q}_{j}$. Since $h(\bar{q})>L_{1}$ and $h\left(q_{j}\right), h\left(\bar{q}_{j}\right) \leqq L_{1}$ thus $q_{j}=\bar{q}_{j}=\#(j=1, \ldots, m)$. From this we obtain $\tau_{a}(\bar{p})=\tau_{\bar{a}}(\bar{p})$ i.e. $r \cdot \tau_{a}(\bar{p})=$ $=\bar{r} \cdot \tau_{\bar{a}}(\bar{p})$. We may suppose that $\bar{r} \neq \#$. Then $\bar{q}_{j} \neq \#$, because in the opposite case $\cdot \bar{q} \cdot \bar{r} \cdot q_{j}=\bar{q}$ which is a contradiction $(j=1, \ldots, m)$. It means that for each index $j(l \leqq j \leqq m), q_{j}=\#$ and $\bar{q} \cdot \bar{r}=\bar{q} \cdot \bar{q}_{j}$. From this we obtain that $\bar{r}=\bar{q}_{j}$ $(j=1, \ldots, m)$. It implies that $r \cdot \tau_{a}(\bar{p})=\bar{r} \cdot \tau_{\bar{a}}(\bar{p})$.

From the assumption $\bar{r}=\#$ we arrive at the equality $r \cdot \tau_{a}(\bar{p})=\bar{r} \cdot \tau_{\bar{a}}(\bar{p})$ in a similar way.

Now we can prove that conditions (ii) of Definition 5 are satisfied. If $h(q), h(\bar{q}) \leqq L$ then $\left(\mathrm{ii}_{2}\right)$ holds because each tree of both range τ^{b} and range $\tau^{\bar{b}}$ is higher than L. In the opposite case condition ($\left.\mathrm{ii}_{1}\right)^{\prime}$ holds. We will show by induction that $r \cdot \tau_{a}(\bar{p})=\bar{r} \cdot \tau_{\bar{a}}(\bar{p})$ for each tree $\bar{p} \in \operatorname{dom} \tau_{a}$.

If $h(\bar{p}) \leqq 4 \cdot\|A\|^{2}$ then $r \cdot \tau_{a}(\bar{p})=\bar{r} \cdot \tau_{\bar{a}}(\bar{p})$ by (ii $)^{\prime}$. Now let $h(\bar{p})>4 \cdot\|A\|^{2}$. We have that there are trees $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$ and states $\tilde{a}, \tilde{\bar{a}} \in A$ such that
$\bar{p}=p_{1} \cdot 2 p_{2} \cdot 2 p_{3} \cdot 2 p_{4} \cdot 2 p_{5} \quad$ and $\quad p_{1} \in \operatorname{dom} \tau_{a}^{\bar{a}} \cap \operatorname{dom} \tau_{\tilde{a}}^{\tilde{a}}, p_{i} \in \operatorname{dom} \tau_{a, \tilde{a}}^{\dot{a}} \cap \operatorname{dom} \tau_{\bar{a}, \tilde{a}}^{\tilde{a}}(i=2,3,4)$, $p_{5} \in \operatorname{dom} \tau_{a, \tilde{a}} \cap \operatorname{dom} \tau_{\tilde{a}, \tilde{a}}$, where $p_{i} \in T_{F}\left(X_{n} \cup Z_{2}\right)(i=1, \ldots, 5)$ and the symbol z_{2} occurs exactly once in the frontier of the tree $p_{i}(i=2, \ldots, 5)$.
Let

$$
\begin{array}{ll}
q_{1}=r \cdot \tau_{a}^{\tilde{a}}\left(p_{1}\right), & r_{1}=\bar{r} \cdot \tau_{\bar{a}}^{\tilde{a}}\left(p_{1}\right), \\
q_{2}=\tau_{a, \tilde{a}}^{\tilde{a}}\left(p_{2}\right), & r_{2}=\tau_{\bar{a}, \tilde{a}}^{\tilde{a}}\left(p_{2}\right), \\
q_{3}=\tau_{a, \tilde{a}}^{\tilde{a}}\left(p_{3}\right), & r_{3}=\tau_{\bar{a}, \tilde{a}}^{\tilde{a}}\left(p_{3}\right), \\
q_{4}=\tau_{a, \tilde{a}}^{\tilde{a}}\left(p_{4}\right), & r_{4}=\tau_{\bar{a}, \tilde{a}}^{\tilde{a}}\left(p_{4}\right), \\
q_{\bar{a}}=\tau_{a, \tilde{a}}\left(p_{\bar{j}}\right), & r_{5}=\tau_{\bar{a}, \tilde{a}}\left(p_{5}\right) .
\end{array}
$$

By the induction hypothesis it is clear that the trees $r_{i}, q_{i}(i=1, \ldots, 5)$ satisfy the conditions of Lemma 6. It means that $q_{1} \cdot 2 q_{2} \cdot 2 q_{3} \cdot 2 q_{4} \cdot 2 q_{5}=r_{1} \cdot 2 r_{2} \cdot 2 r_{3} \cdot 2 r_{4} \cdot 2 r_{5}$ i.e., $r \cdot \tau_{a}(\bar{p})=\bar{r} \cdot \tau_{\bar{a}}(\bar{p})$.

We have that $\tau_{a}=\tau_{b}$ and $\tau_{\bar{a}}=\tau_{b}$. It follows that for each tree $\bar{p} \in d o m \tau_{b}$ the equality $r \cdot \tau_{b}(\bar{p})=\bar{r} \cdot \tau_{b}(\bar{p})$ holds. It means that \mathbf{B} is an $N F$-transducer. Consequently the statement of this lemma is valid.

Lemma 8. Let $\overline{\mathbf{A}}=\left(T_{F}\left(X_{n}\right), A, T_{G}\left(Y_{m}\right), A^{\prime}, \bar{\Sigma}_{A}\right)$ be a deterministic F-transducer. Then there is an superior $N F$-transducer \mathbf{B} which is equivalent to $\overline{\mathbf{A}}$.

Proof. By Lemma 3 we can construct a superior F-transducer

$$
\mathbf{A}=\left(T_{F}\left(X_{n}\right), A, T_{G}\left(Y_{m}\right), A^{\prime}, \Sigma_{A}\right)
$$

with $\tau_{\mathbf{A}}=\tau_{\overline{\mathbf{A}}}$. From the proof of Lemma 3 one can see that \mathbf{A} is deterministic, too. Next we consider the $N F$-transducer $\mathbf{B}=\left(T_{F}\left(X_{n}\right), B, T_{G}\left(Y_{m}\right), B^{\prime}, \Sigma_{B}\right)$ constructed for \mathbf{A} by Lemma 7. From the proof we have that for each state $b \in B$ if range $\tau_{\mathbf{B}}^{b}$ is not a singleton then there exists a state $a \in A$ such that $\tau_{\mathrm{A}, a}=\tau_{\mathbf{B}, b}$. It follows that $\tau_{\mathbf{B}}^{b}$ can not be increased by any tree q^{b}, because in the opposite case the transformation $\tau_{\mathbf{A}}^{a}$ is increased by q^{b} which is a contradiction. It means that \mathbf{B} is a superior $N F$-transducer equivalent to $\overline{\mathbf{A}}$.

Definition 9. Let $\mathbf{A}=\left(T_{F}\left(X_{n}\right), A, T_{G}\left(Y_{m}\right), A^{\prime}, \Sigma\right)$ be a superior $N F$-transducer. We say that the state $\vec{a}(\in A)$ can be substituted by the state $a(\in A)$ if the condition (i) holds or there is a tree $\bar{q} \in T_{G}\left(Y_{m}\right)$ such that the conditions (iii $)$-(ii_{6}) are satisfied.
(i) $\tau_{a}=\tau_{\bar{a}}$, and if range τ^{a} is a singleton then range $\tau^{a}=$ range $\tau^{\bar{a}}$.
(iii) $\operatorname{dom} \tau_{a}=\operatorname{dom} \tau_{\bar{a}}$.
(ii ${ }_{2}$) range τ^{a} is infinite.
(iii ${ }_{3}$) range $\tau^{\bar{a}}$ is a singleton.
(ii $)$ For each tree $\bar{p} \in \operatorname{dom} \tau_{a} \backslash\{\#\}$ the equality $\bar{q} \cdot \tau_{a}(\bar{p})=\tau_{\bar{a}}(\bar{p})$ holds.
(ii ${ }^{5}$) If $\bar{a} \in A^{\prime}$ then range $\tau^{\bar{a}}=\bar{q}$.
(iii $)$ If there is a state $\bar{a}(\in A \backslash\{a, \bar{a}\})$ for which $\operatorname{dom} \tau_{a}=\operatorname{dom} \tau_{\overline{\bar{a}}}$ and range $\tau^{\overline{\bar{u}}}$ is infinite, moreover, there exist trees $q, \bar{q} \in T_{G}\left(Y_{m}\right)$ such that for each tree $\bar{p} \in \operatorname{dom} \tau_{a}$ the equality $q \cdot \tau_{a}(\bar{p})=\bar{q} \cdot \tau_{\bar{u}}(\bar{p})$ holds then either $q \neq \bar{q}$ or $\tau_{a}(\bar{p})=\tau_{\bar{a}}(\bar{p})$ for each tree $\bar{p} \in \operatorname{dom} \tau_{a}$.

We note that $\tau_{a}=\tau_{\bar{a}}$ if and only if dom $\tau_{a}=\operatorname{dom} \tau_{\bar{a}}$ and for each tree $\bar{p} \in \operatorname{dom} \tau_{a}$ the equality $\tau_{a}(\bar{p})=\tau_{\bar{a}}(\bar{p})$ holds.

Definition 10. A superior $N F$-transducer $\mathbf{A}=\left(T_{F}\left(X_{n}\right), A, T_{G}\left(Y_{m}\right), A^{\prime}, \Sigma\right)$ is called a strongly normalized F-transducer ($S N F$-transducer) if none of the states can be substituted by another state.

Theorem 11. For each deterministic F-transducer

$$
\overline{\mathbf{A}}=\left(T_{F}\left(X_{n}\right), \bar{A}, T_{G}\left(Y_{m}\right), \bar{A}^{\prime}, \bar{\Sigma}_{A}\right)
$$

an equivalent $S N F$-transducer can be constructed.
Proof. By Lemma 8 we construct a superior $N F$-transducer

$$
\mathbf{A}=\left(T_{F}\left(X_{n}\right), A, T_{G}\left(Y_{m}\right), A^{\prime}, \Sigma_{A}\right)
$$

which is equivalent to $\overline{\mathbf{A}}$. Next we will show that by rewriting rules and eliminating states an equivalent $S N F$-transducer is obtained.

Assume that the states $a, \bar{a} \in A$ satisfy the condition (i) of Definition 9. Then we construct the F-transducer $\mathbf{A}^{1}=\left(T_{F}\left(X_{n}\right), A \backslash\{\bar{a}\}, T_{G}\left(Y_{m}\right), A^{\prime} \backslash\{\bar{a}\}, \Sigma_{A}^{1}\right)$ in the following way. Let us eliminate the rules of Σ_{A} wherein the state \bar{a} is in the left side. Then we replace the state \bar{a} by a in each rule. It is clear that \mathbf{A}^{1} is deterministic. Moreover, for each state $\tilde{a} \in A \backslash\{a, \bar{a}\}, \tau_{\mathbf{A}, \tilde{a}}=\tau_{\mathbf{A}^{1}, \tilde{a}}$ and $\tau_{\mathbf{A}}^{\tilde{u}}=\tau_{\mathbf{A}^{1}}^{\tilde{u}}$ hold. We have that $\operatorname{dom} \tau_{\mathbf{A}^{1}}^{a}=\operatorname{dom} \tau_{\mathbf{A}}^{a} \cup \operatorname{dom} \tau_{\mathbf{A}}^{\bar{a}}$ and range $\tau_{\mathbf{A}^{1}}^{a}=$ range $\tau_{\mathbf{A}}^{a} \cup$ range $\tau_{\mathbf{A}}^{\bar{a}}$. From this one can easily show that \mathbf{A}^{1} is a superior $N F$-transducer equivalent to \mathbf{A}. It means that for A we construct an equivalent superior $N F$-transducer $\mathbf{B}=\left(T_{F}\left(X_{n}\right), B, T_{G}\left(Y_{m}\right), B^{\prime}, \Sigma_{B}\right)$ such that there are no states $b, \bar{b} \in B$ satisfying condition (i) of Definition 9.

Next we assume that there are states $a, \bar{a} \in B(\subseteq A)$ and a tree $\bar{q} \in T_{G}\left(Y_{m}\right)$ for which the conditions $\left(\mathrm{ii}_{1}\right)$-(ii_{6}) hold. In this case we eliminate the rules containing the state \bar{a} in their left side. Then we replace by $a \bar{q}$ the right side of rules wherein the state \bar{a} occurs. Let $\mathbf{B}^{1}=\left(T_{F}\left(X_{n}\right), B \backslash\{\bar{a}\}, T_{G}\left(Y_{m}\right), B^{\prime} \backslash\{\bar{a}\}, \Sigma_{B}^{1}\right)$ be the F-transducer obtained this way. By the construction it is obvious that \mathbf{B}^{1} is deterministic. We have that for each state $\tilde{a} \in B \backslash\{a, \bar{a}\}, \tau_{\mathbf{B}^{1}, \tilde{a}}=\tau_{\mathbf{B}, \tilde{a}}$ and $\tau_{\mathbf{B}^{1}}^{\tilde{a}^{1}}=\tau_{\mathbf{B}}^{\tilde{a}}$ hold. Moreover, $\operatorname{dom} \tau_{\mathbf{B}^{1}}^{a}=\operatorname{dom} \tau_{\mathbf{B}}^{a} \cup \operatorname{dom} \tau_{\mathbf{B}}^{a}$ and range $\tau_{\mathbf{B}^{1}}^{a}=\operatorname{range} \tau_{\mathbf{B}}^{a} \cup \bar{q}$. It is clear that \mathbf{B}^{1} is a superior $A F$-transducer equivalent to \mathbf{B}.

We will show that \mathbf{B}^{1} is normalized. By the construction of \mathbf{B}^{1} condition (i) of Definition 5 holds. Let $b, \bar{b} \in B \backslash\{\bar{a}\}$ be arbitrary states of \mathbf{B}^{1}. Assume that dom $\tau_{\mathbf{B}^{1}, b}=$ $=\operatorname{dom} \tau_{\mathbf{B}^{1}, \bar{b}}$, both range $\tau_{\mathbf{B}^{1}}^{b}$ and range $\tau_{\mathbf{B}^{1}}^{\bar{b}}$ are infinite, moreover, there are trees $q, \bar{q} \in T_{G}\left(Y_{m}\right)$ such that for each tree $\bar{p} \in \operatorname{dom}_{\boldsymbol{B}^{1}, b}, q \cdot \tau_{\mathbf{B}^{1}, b}(\bar{p})=\bar{q} \cdot \tau_{\mathbf{B}^{1}, \bar{b}}(\bar{p})$. If none of the states b, \bar{b} is a then by the above connections it is obvious that condition (ii) holds.

We may assume that $b=a$. In this case we know that for \mathbf{B} condition (ii ${ }_{6}$) are satisfied by the states a, \bar{a}, \bar{b} and the trees q, \bar{q}, \bar{q}. Furthermore, we have that the equality $\tau_{\mathbf{B}, \boldsymbol{a}}(\bar{p})=\tau_{\mathbf{B}, \bar{b}}(\bar{p})$ does not hold for each tree $\bar{p} \in \operatorname{dom} \tau_{\mathbf{B}, a}$. Indeed, in the opposite case $\tau_{\mathbf{B}, a}=\tau_{\mathbf{B}, \bar{b}}$ which is a contradiction. By condition (ii $)$ it means that $q \neq \bar{q}$. From this we obtain that range $\tau_{\mathbf{B}^{1}, a} \cap q=\emptyset$ and range $\tau_{\mathbf{B}^{1}, \bar{b}} \cap \bar{q}=\emptyset$. Consequently, condition (ii) of Definition 5 holds for \mathbf{B}^{1} thus \mathbf{B}^{1} is a superior normalized F-transducer.

Applying this construction we can get an $S N F$-transducer which is equivalent to $\overline{\mathbf{A}}$.

Let $\mathbf{A}=\left(T_{F}\left(X_{n}\right), A, T_{G}\left(Y_{m}\right), A^{\prime}, \Sigma_{A}\right)$ and $\quad \mathbf{B}=\left(T_{F}\left(X_{n}\right), B, T_{G}\left(Y_{m}\right), B^{\prime}, \Sigma_{B}\right)$ be $S N F$-transducers such that \mathbf{A} and \mathbf{B} are equivalent. First we construct the inferior $A F$-transducers $\mathbf{A}(\mathbf{B})$ and $\mathbf{B}(\mathbf{A})$ as in part I. Next we consider the superior $A F$-transducers $\overline{\mathbf{A}}(\mathbf{B})=\left(T_{F}\left(X_{n}\right), \overline{A \times C}, T_{G}\left(Y_{m}\right), \overline{A^{\prime} \times C^{\prime}}, \bar{\Sigma}_{A}\right)$ and

$$
\overline{\mathbf{B}}(\mathbf{A})=\left(T_{F}\left(X_{n}\right), \overline{B \times C}, T_{G}\left(Y_{m}\right), \overline{B^{\prime} \times C^{\prime}}, \bar{\Sigma}_{B}\right)
$$

which are constructed from $\mathbf{A}(\mathbf{B})$ and $\mathbf{B}(\mathbf{A})$ by Lemma 3, respectively. We have that $\overline{A \times C} \subseteq A \times C, \overline{A^{\prime} \times C^{\prime}} \subseteq A^{\prime} \times C^{\prime}$ and $\overline{B \times C} \subseteq B \times C, \overline{B^{\prime} \times C^{\prime}} \subseteq B^{\prime} \times C^{\prime}$ where $C=A \times B$ and $C^{\prime}=A^{\prime} \times B^{\prime}$. From Theorem I.11 we know that $\mathbf{A}(\mathbf{B})$ and $\mathbf{B}(\mathbf{A})$ are isomorphic. By conditions (i)-(iv) from the proof of Lemma 3, it follows that $\overline{\mathbf{A}}(\mathbf{B})$ and $\overline{\mathbf{B}}(\mathbf{A})$ are isomorphic, too. It means that $\tau_{\mathbf{A}}=\tau_{\overline{\mathbf{A}}}(\mathbf{B})$ thus both of these transformations shall be denoted by φ. Similaily, ψ can be used instead of $\tau_{\mathbf{B}}$ and $\tau_{\overline{\mathrm{B}}(\mathrm{A})}$.

The next lemmas are valid under the above notations.
Lemma 12. For each state $(a, c) \in \overline{A \times C}(c=(a, b))$ the following conditions hold.
(i) $\operatorname{dom} \varphi_{a}=\operatorname{dom} \varphi_{a, c}=\operatorname{dom} \psi_{b, c}=\operatorname{dom} \psi_{b}$.
(ii) If range $\varphi^{a, c}$ is infinite then for each tree $\bar{p} \in \operatorname{dom} \varphi_{a}$ the equalities $\varphi_{a}(\bar{p})=$ $=\varphi_{a, c}(\bar{p})=\psi_{b, c}(\bar{p})=\psi_{b}(\bar{p})$ hold.
(iii) If range $\varphi^{a, c}$ is a singleton then there are trees $q, \bar{q} \in T_{G}\left(Y_{m}\right)$ such that for each tree $\bar{p} \in \operatorname{dom} \varphi_{a} \backslash\{\#\}$ the equalities $q \cdot \varphi_{a}(\bar{p})=\varphi_{a, c}(\bar{p})=\psi_{b, c}(\bar{p})=\bar{q} \cdot \psi_{b, c}(\bar{p})$ hold, moreover $q=\varphi^{a}(p)$ and $\bar{q}=\psi^{b}(p)$ where $p \in \operatorname{dom} \varphi^{a, c}$.

Proof. Let $(a, c) \in \overline{A \times C}$ be an arbitrary state where $c=(a, b)$. Let $p \in \operatorname{dom} \varphi^{a, c}$ be a fixed tree. Then $p \in \operatorname{dom} \varphi^{a} \cap \operatorname{dom} \psi^{b, c} \cap \operatorname{dom} \psi^{b}$. Let $\bar{p} \in \operatorname{dom} \varphi_{a}$. Since $p \cdot \bar{p} \in \operatorname{dom} \varphi$ the tree \bar{p} is in dom $\varphi_{a, c}$. Consequently, dom $\varphi_{a} \subseteq \operatorname{dom} \varphi_{a, c}$. In the same way one can prove the inclusions $\operatorname{dom} \varphi_{a} \subseteq \operatorname{dom} \varphi_{a, c} \subseteq \operatorname{dom} \psi_{b, c} \cong d o m \psi_{b} \subseteq$ $\subseteq \operatorname{dom} \varphi_{a}$. From this we obtain that condition (i) holds.

Assume that range $\varphi^{a, c}$ is infinite. It follows that range $\psi^{b, c}$ is infinite, too. Then there are trees $p_{1}, p_{2} \in \operatorname{dom} \varphi^{a, c}$ such that $\varphi^{a, c}\left(p_{1}\right) \neq \varphi^{a, c}\left(p_{2}\right)$. For each tree $\bar{p} \in \operatorname{dom} \varphi_{a}$ the equality $\varphi^{a, c}\left(p_{i}\right) \cdot \varphi_{a, c}(\bar{p})=\psi^{b, c}\left(p_{i}\right) \cdot \psi_{b, c}(\bar{p})$ holds $(i=1,2)$. In a similar way as in the proof of Lemma 3, we can obtain that there exist trees r, \bar{r} such that at least one of them equals the tree $\#$ and for each tree $\dot{\bar{p}} \in d o m \varphi_{a}$, $r \cdot \varphi_{a}(\bar{p})=\bar{r} \cdot \varphi_{a, c}(\bar{p})$.

On the other hand we have that both $\overline{\mathbf{A}}(\mathbf{B})$ and $\overline{\mathbf{B}}(\mathbf{A})$ are superior F-transducers. It means that $r=\bar{r}=\#$ i.e., for each tree $\bar{p} \in \operatorname{dom} \varphi_{a}$ the equality $\varphi_{a}(\bar{p})=$ $=\varphi_{a, c}(\bar{p})$ holds.

Furthermore we know that range $\psi^{b, c}$ is infinite. In the same way we get that for each tree $\bar{p} \in \operatorname{dom} \psi_{b}, \psi_{b, c}(\bar{p})=\psi_{b}(\bar{p})$. Since $\overline{\mathbf{A}}(\mathbf{B})$ and $\overline{\mathbf{B}}(\mathbf{A})$ are isomorphic it follows that condition (ii) of our lemma holds.

Next we assume that range $\varphi^{a . c}$ is a singleton. Let $p \in \operatorname{dom} \varphi^{a, c}$ be an arbitrarily fixed tree. We have that $p \in \operatorname{dom} \varphi^{a}$. Let $q=\varphi^{a}(p)$. It means that for each tree $\bar{p} \in \operatorname{dom} \varphi_{a} \backslash\{\#\}$ the equalities $q \cdot \varphi_{a}(\bar{p})=\varphi(p \cdot \bar{p})=\varphi^{a, c}(p) \cdot \varphi_{a, c}(\bar{p})=\varphi_{a, c}(\bar{p})$ hold. In this case range $\psi^{b, c}$ is a singleton, too. It follows that if $\psi^{b, c}(p)=\bar{q}$ then
for each tree $\bar{p} \in \operatorname{dom} \psi_{a} \backslash\{\#\}, \bar{q} \cdot \psi_{b}(\bar{p})=\psi_{b, c}(\bar{p})$. It is clear that if $a \in A^{\prime}$ then b, $(a, c),(b, c)$ are final states. From this we obtain $q=\bar{q}$. It means that condition (iii) holds, too.

Lemma 13. For each state $a \in A$ there is exactly one state $b(\in B)$ satisfying the inclusion $(a,(a, b)) \in \overline{A \times C}$, and conversely, for each state $b \in B$ there is exactly one state $a(\in A)$ with $(b,(a, b)) \in \overline{B \times C}$. Moreover, if $(a, c) \in \overline{A \times C}(c=(a, b))$ then for each tree $\bar{p} \in \operatorname{dom} \varphi_{a}$ the equalities $\varphi_{a}(\bar{p})=\varphi_{a, c}(\bar{p})=\psi_{b, c}(\bar{p})=\psi_{b}(\bar{p})$ hold.

Proof. Let $a \in A$ be an arbitrary state. Denote by B_{a} the set

$$
\{b \mid c=(a, b),(a, c) \in \overline{A \times C}\}
$$

It is clear that B_{a} is a nonvoid set.
Firstly, we assume that range φ^{a} is infinite. Then there are trees $p_{i} \in \operatorname{dom} \varphi^{a}$ $(i=1,2, \ldots)$ such that the trees $\varphi^{a}\left(p_{i}\right)$ are pairwise different. Moreover, we know that there exists a state $b_{i}\left(\in B_{a}\right)$ such that $p_{i} \in \operatorname{dom} \psi^{b_{i}}(i=1,2, \ldots)$. Since B_{a} is a finite set of states there are indices $k, l(k<l)$ satisfying $b_{k}=b_{l}$. Denote by b this state. Let $c=(a, b)$. It is clear that neither range $\varphi^{a, c}$ nor range $\psi^{b, c}$ are a singleton. By Lemma 12 we get that for each tree $\bar{p} \in \operatorname{dom} \varphi_{a}$ the equalities $\varphi_{a}(\bar{p})=$ $=\varphi_{a, c}(\bar{p})=\psi_{b, c}(\bar{p})=\psi_{b}(\bar{p})$ hold.

Next we show that the set B_{a} is a singleton. Assume that there is a state $\bar{b} \in B_{a}$ differing from b. Let $\bar{c}=(a, \bar{b})$. Now there are three cases.

First, suppose that range $\varphi^{a, \bar{c}}$ is infinite. By Lemma 12 we have that $\varphi_{a}(\bar{p})=$ $=\varphi_{a, \bar{c}}(\bar{p})=\psi_{b, \bar{c}}(\bar{p})=\psi_{b}(\bar{p})$ hold for each tree $\bar{p} \in \operatorname{dom} \varphi_{a}$. It means that the state \bar{b} can be substituted by b which is a contradiction because B is an $S N F$-transducer.

In the second case assume that both range $\varphi^{a, \bar{c}}$ and range ψ^{b} are singleton. Then we know that for each tree $\bar{p} \in \operatorname{dom} \varphi_{a} \backslash\{\#\}$ the equalities $q \cdot \varphi_{a}(\bar{p})=\varphi_{a, \bar{c}}(\bar{p})=$ $=\psi_{b, \bar{c}}(\bar{p})=\psi_{b}(\bar{p})$ hold, where $q=\varphi^{a}(p)$ and $p \in \operatorname{dom} \varphi^{a, \bar{c}}$. It is clear that $q=$ range ψ^{5} if \bar{b} is a final state. From this we obtain $q \cdot \psi_{b}(\bar{p})=\psi_{b}(\bar{p})$ for each tree $\bar{p} \in \operatorname{dom} \psi^{b} \backslash\{\#\}$. Since the state \bar{b} cannot be substituted by the state b and conditions (ii i_{1})-(ii_{5}) of Definition 9 hold for the states b, b and the tree q condition (ii ${ }_{6}$) can not be satisfied. It means that there is a state $\bar{b} \in B \backslash\{b, \bar{b}\}$ and a tree $\bar{q} \in T_{G}\left(Y_{m}\right)$ for which dom $\psi_{b}=$ dom $\psi_{\bar{b}}$ and range $\psi^{\bar{b}}$ is infinite, moreover, for each tree $\bar{p} \in \operatorname{dom} \psi_{b}$ the equality $q \cdot \psi_{b}(\bar{p})=\bar{q} \cdot \psi_{\bar{b}}(\bar{p})$ holds. One can see easily that there is a state $\bar{a} \in A \backslash\{a, \bar{a}\}$ such that $\operatorname{dom} \varphi_{\overline{\bar{a}}}=\operatorname{dom} \psi_{\bar{b}}$ and for each tree $\bar{p} \in \operatorname{dom} \psi_{\bar{b}}, \varphi_{\bar{a}}(\bar{p})=\psi_{\bar{b}}(\bar{p})$. It implies that for each tree $\bar{p} \in \operatorname{dom} \varphi_{a}, q \cdot \varphi_{a}(\bar{p})=\bar{q} \cdot \varphi_{\bar{a}}(\bar{p})$. Since \mathbf{A} is an $N F$-transducer condition (ii) of Definition 5 has to hold. We have that q คrange $\varphi^{a} \neq \emptyset$ thus there are trees $r, \bar{r} \in \widetilde{T}_{G}\left(Y_{m}\right)$ such that $r \cdot \varphi_{a}(\bar{p})=\bar{r} \cdot \varphi_{\bar{a}}(\bar{p})$ for each tree $\bar{p} \in \operatorname{dom} \varphi_{a}$, where at least one of the trees r, \bar{r} equals $\#$. It is clear that $r=\bar{r}=\#$ because \mathbf{A} is a superior $N F$-transducer. It implies that for each tree $\bar{p} \in \operatorname{dom} \varphi_{a}$ the equality $\varphi_{a}(\bar{p})=\varphi_{\bar{a}}(\bar{p})$ holds which is a contradiction.

In the third case suppose that range $\varphi^{a, \bar{c}}$ is a singleton and range $\psi^{\bar{b}}$ is infinite. We have that for each tree $\bar{p} \in \operatorname{dom} \varphi_{a} \backslash\{\#\}$ the equalities $q \cdot \varphi_{a}(\bar{p})=\varphi_{a, \bar{c}}(\bar{p})=$ $=\psi_{b, \bar{c}}(\bar{p})=\bar{q} \cdot \psi_{b}(\bar{p})$ hold where $q \in$ range φ^{a} and $\bar{q} \in$ range ψ^{5}. We have that if a is a final state then \bar{b} is also a final state and $q=\bar{q}$. It implies that for each tree $\bar{p} \in \operatorname{dom} \psi_{b}, q \cdot \psi_{b}(\bar{p})=\bar{q} \cdot \psi_{b}(\bar{p})$. From Definition 5 we obtain that either for each tree $\bar{p} \in \operatorname{dom} \psi_{b}$ the equality $\psi_{b}(\bar{p})=\psi_{b}(\bar{p})$ holds or range $\psi^{\bar{b}} \cap \bar{q}=0$. It contra-
dicts the above statements. It means that if range φ^{a} is infinite then B_{a} is a singleton.

Similarly, we can show that for each state $b \in B$ if range ψ^{b} is infinite then there is exactly one state $a \in A$ satisfying the inclusion $(b, c) \in \overline{B \times C}$ where $c=(a, b)$. Moreover, for each tree $\bar{p} \in \operatorname{dom} \psi_{b}$ the equalities $\varphi_{a}(\bar{p})=\varphi_{a, c}(\bar{p})=\psi_{b, c}(\bar{p})=$ $=\psi_{b}(\bar{p})$ hold.

Secondly, we may assume that range φ^{a} is a singleton. It is clear that $B_{a} \neq \emptyset$ and for each state $b \in B_{a}$ range ψ_{b} is a singleton, too. Let $b \in B_{a}$ be arbitrary. Then for each tree $\bar{p} \in \operatorname{dom} \varphi_{a}$ the equalities $\varphi_{a}(\bar{p})=\varphi_{a, c}(\bar{p})=\psi_{b, c}(\bar{p})=\psi_{b}(\bar{p})$ hold where $c=(a, b)$. We have that b is a final state if and only if a is a final state. It implies that range $\varphi^{a}=$ range ψ^{b}. From this and Definition 9 we get that B_{a} is a singleton.

In a similar way we can see that for each $b \in B$ if range ψ^{b} is a singleton then there is exactly one state $a \in A$ such that $(b, c) \in \overline{B \times C}(c=(a, b))$ and for each tree $\bar{p} \in$ dom φ_{a} the equalities $\varphi_{a}(\bar{p})=\varphi_{a, c}(\bar{p})=\psi_{b, c}(\bar{p})=\psi_{b}(\bar{p})$ hold. This ends the proof of Lemma 13.

Lemma 14. The $S N F$-transducers \mathbf{A} and \mathbf{B} are isomorphic.
Proof. Let us define a mapping $\mu: A \rightarrow B$ such that $\mu(a)=b$ if and only if $(a,(a, b)) \in \overline{A \times C}$. By Lemma 13 it is clear that μ is a bijective mapping of A onto B, moreover, $\mu\left(A^{\prime}\right)=B^{\prime}$.

Next suppose that $x \rightarrow a q \in \Sigma_{A}\left(x \in X_{n} \cup F_{0}\right)$ and $b=\mu(a)$. We have that $x \rightarrow b r \in \Sigma_{B}$ and for each tree $\bar{p} \in \operatorname{dom} \varphi_{a}=\operatorname{dom} \psi_{b}$ the equality $\varphi_{a}(\bar{p})=\psi_{\dot{o}}(\bar{p})$ holds. It implies that $q \cdot \varphi_{a}(\bar{p})=\varphi(x \cdot \bar{p})=\psi(x \cdot \bar{p})=r \cdot \psi_{b}(\bar{p})$. From this we can obtain that $q=r$. It means that $x \rightarrow b q \in \Sigma_{B}$. Similarly, if $x \rightarrow b r \in \Sigma_{B}$ and $a=\mu^{-1}(b)$ then $x \rightarrow a r \in \Sigma_{A}$.

Let $f\left(a_{1}, \ldots, a_{k}\right) \rightarrow a_{0} q \in \Sigma_{A}$ where $f \in F_{k}(k>0)$ and $a_{i} \in A(i=0,1, \ldots, k)$. We have that there is a rule of the form $f\left(b_{1}, \ldots, b_{k}\right) \rightarrow b_{0} r$ in Σ_{B} where $b_{i}=\mu\left(a_{i}\right)$ ($i=0,1, \ldots, k$). Moreover, it is clear that $\operatorname{dom} \varphi^{a_{i}}=\operatorname{dom} \psi^{b_{i}}$, and for each tree $p_{i} \in \operatorname{dom} \varphi^{a_{i}}, \varphi^{a_{i}}\left(p_{i}\right)=\psi^{b_{i}}\left(p_{i}\right)(i=0,1, \ldots, k)$. From the proof of Lemma 13 we know that if range $\varphi^{a_{0}}$ is a singleton then $q=$ range $\varphi^{a_{0}}=$ range $\psi^{b_{0}}=r$.

Next we may assume that range $\varphi^{a_{0}}$ is infinite. In this case we have that there is a tree $\bar{p} \in \operatorname{dom} \varphi_{a_{0}}$ for which $\varphi_{a_{v}}(\bar{p}) \in \tilde{T}_{G}\left(Y_{m}\right)$. Let $p_{i} \in \operatorname{dom} \varphi^{a_{i}}(i=1, \ldots, k)$ be arbitrary trees and let j be an arbitrary index ($1 \leqq j \leqq k$). We define the trees s_{i}, t_{i} ($i=1, \ldots, k$) in the following way. If $i=j$ then $s_{i}=t_{i}=\#$, otherwise $s_{i}=p_{i}$ and $t_{i}=\varphi^{a_{i}}\left(p_{i}\right)=\psi^{b_{i}}\left(p_{i}\right)(i=1, \ldots, k)$. Denote by \bar{s}_{j}, \bar{q}_{j} and \bar{r}_{j} the trees $f\left(s_{1}, \ldots, s_{k}\right)$, $q\left(t_{1}, \ldots, t_{k}\right)$ and $r\left(t_{1}, \ldots, t_{k}\right)$, respectively. By Lemma 13 we have that the equalities $\bar{q}_{j} \cdot \varphi_{a_{0}}(\bar{p})=\varphi_{a_{j}}\left(\bar{s}_{j} \cdot \bar{p}\right)=\psi_{b_{j}}\left(\bar{s}_{j} \cdot \bar{p}\right)=\bar{r}_{j} \cdot \psi_{b_{0}}(\bar{p})$ and $\varphi_{a_{0}}(\bar{p})=\psi_{b_{0}}(\bar{p})$ hold. It follows that $\bar{q}_{j}=\bar{r}_{j}$. Since j is arbitrary we get $r=q$. It means that $f\left(b_{1}, \ldots, b_{k}\right) \rightarrow b_{0} q \in \Sigma_{B}$.

Similarly, one can see that if $f\left(b_{1}, \ldots, b_{k}\right) \rightarrow b_{0} r \in \Sigma_{B}$ then $f\left(a_{1}, \ldots, a_{k}\right) \rightarrow a_{0} r \in \Sigma_{A}$ where $a_{i}=\mu^{-1}\left(b_{i}\right)(i=0,1, \ldots, k)$. Therefore, the $S N F$-transducers \mathbf{A} and \mathbf{B} are isomorphic.

By this lemma we get the following theorem.
Theorem 15. The $S N F$-transducers \mathbf{A} and \mathbf{B} are equivalent if and only if they are isomorphic.

References

[1] Engelfriet, J., Bottom-up and top-down tree transformations - A comparison, Math. Systems Theory, v. 9, 1975, pp. 198-231.
[2] Engelfriet, J., Some open questions and recent results on tree transducers and languages, Formal language theory, ed. by R. V. Book, Academic Press, 1980, pp. 241-286.
[3] Ésik, Z., Decidability results conserning tree transducers I, Acta Cybernet., v. 5, 1980, pp. $1-20$.
[4] Gécseg, F.-Steinby, M., A faautomaták algebrai elmélete I, Matematikai Lapok, v. 26, 1975, pp. 169-207.
[5] Gécseg, F.-Steinby, M., A faautomaták algebrai elmélete II, Matematikai Lapok, v. 27, 1976-1979, pp. 283-336.
[6] Zachar, Z., On the equivalence of the frontier-to-root transducers I, Acta Cybernet., to appear.

Received Apr. 19, 1984

